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Background: Obesity and metabolic syndrome pose significant health

challenges in the United States (US), with connections to disruptions in sex

hormone regulation. The increasing prevalence of obesity and metabolic

syndrome might be associated with exposure to phthalates (PAEs). Further

exploration of the impact of PAEs on obesity is crucial, particularly from a sex

hormone perspective.

Methods: A total of 7780 adult participants in the National Health and Nutrition

Examination Survey (NHANES) from 2013 to 2016 were included in the study.

Principal component analysis (PCA) coupled with multinomial logistic regression

was employed to elucidate the association between urinary PAEs metabolite

concentrations and the likelihood of obesity. Weighted quartiles sum (WQS)

regression was utilized to consolidate the impact of mixed PAEs exposure on sex

hormone levels (total testosterone (TT), estradiol and sex hormone-binding

globulin (SHBG)). We also delved into machine learning models to accurately

discern obesity status and identify the key variables contributing most to

these models.

Results: Principal Component 1 (PC1), characterized by mono(2-ethyl-5-

carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-hydroxyhexyl) phthalate

(MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) as major

contributors, exhibited a negative association with obesity. Conversely, PC2,

with monocarboxyononyl phthalate (MCNP), monocarboxyoctyl phthalate

(MCOP), and mono(3-carboxypropyl) phthalate (MCPP) as major contributors,

showed a positive association with obesity. Mixed exposure to PAEs was

associated with decreased TT levels and increased estradiol and SHBG. During

the exploration of the interrelations among obesity, sex hormones, and PAEs,

models based on Random Forest (RF) and eXtreme Gradient Boosting (XGBoost)

algorithms demonstrated the best classification efficacy. In both models, sex

hormones exhibited the highest variable importance, and certain phthalate

metabolites made significant contributions to the model’s performance.
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Conclusions: Individuals with obesity exhibit lower levels of TT and SHBG,

accompanied by elevated estradiol levels. Exposure to PAEs disrupts sex

hormone levels, contributing to an increased risk of obesity in US adults. In the

exploration of the interrelationships among these three factors, the RF and

XGBoost algorithm models demonstrated superior performance, with sex

hormones displaying higher variable importance.
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1 Introduction

The prevalence of central obesity, defined as body mass index

(BMI) ≥ 30.0 kg/m2, significantly increased from 45.2% in 1999-

2000 to 56.7% in 2013-2014 (1). Obese people are also more likely to

develop metabolic diseases that threaten population health, such as

cardiovascular disease, type 2 diabetes, dyslipidaemia,

osteoarthritis, sleep apnoea, certain types of cancer and all-cause

mortality (2–4). The increase in obesity rates in the population can

be attributed to alterations in genetic, lifestyle, and environmental

factors and their interactions (5). Research have proven a tight

correlation between sex steroid hormones and obesity. Testosterone

(TT) is the major androgenic steroid hormone in adult males and is

responsible for maintaining sperm production, libido, and sexual

efficacy (6). Men with obesity exhibit reduced levels of testosterone,

and sex hormone-binding globulin (SHBG) (7, 8). Obesity-

associated reduction in testosterone is accompanied by reduced

levels of luteinizing hormone (LH), whereas age-related reduction

in testosterone is correlated with increased LH (7), indicating

central rather than gonadal dysregulation in obesity. Estradiol, the

principal hormone in female reproduction, is vital for the

development and maintenance of female reproductive tissues and

the regulation of the menstrual cycle (9). Women with overweight

and obesity tend to have higher estrogen levels compared to their

normal-weight counterparts (10). Weight loss interventions have

been shown to effectively reduce estrogen levels among females with

obesity (11). SHBG is a glycoprotein that transports TT and

estradiol to target tissues, thereby influencing the bioavailability

of these reproductive hormones (12). Observational studies have

indicated that lower levels of SHBG are associated with an increased

incidence of insulin resistance and type 2 diabetes, independent of

sex hormone concentrations (13). Sex steroid hormone drugs have

been used to treat obesity and metabolic imbalances (14).

Endocrine disruptors chemicals (EDCs) are a group of

substances with endocrine hormone effects, most of which are

artificially synthesized chemicals, such as bisphenol A, phthalates
02
(PAEs), insecticides, polychlorinated biphenyls, and more (15).

These substances can enter the human body through ingestion in

the digestive tract, inhalation in the respiratory tract, and skin

contact, resulting in a variety of adverse effects, which are mainly

characterized by endocrine disruption, hormone function

disruption, and reproductive organ developmental disorders, and

in severe cases, can induce cancer (16, 17). Evidence suggests that

EDCs may be associated with a significant increase in the

prevalence of metabolic diseases such as obesity (18). PAEs as

EDCs continue to receive academic attention as risk factors for

metabolic diseases such as diabetes mellitus, hypertension,

hyperlipidemia, and the reproductive toxicity (19, 20). PAEs are

mainly used as plasticizers in the manufacturing of plastic products.

Plastic products can be found everywhere in modern life, from

infants to the elderly, all of whom are exposed to PAEs in the

environment for long periods of time. The variety of PAEs used as

plasticizers is large, and their hydrolysis process in the human body

is complex, with different stages of metabolites (21). Previous

studies have indicated the presence of 22 phthalate metabolites in

human urine (22). Exposure to PAEs may induce hypothalamic-

pituitary-gonadal (HPG) axis dysfunction, disrupting the balance of

multiple sex hormones within the body (23, 24). Exposure to PAEs

is closely linked to obesity, except for their role in causing

imbalances in sex hormone levels. The association between PAEs

and obesity has been extensively investigated in diverse populations

(25–28). PAEs metabolites exhibit biochemical activity, including

the activation of peroxisome proliferator receptors and

antiandrogenic effects, which contribute to the development of

obesity (29).

Considering the correlation between sex steroid hormones and

obesity, we included all these three aspects in our study. To explore

the role that sex steroid hormones play in the increased risk of

obesity due to phthalates, we tried various machine learning models

for interpretation. We aimed to investigate the association between

PAEs, sex steroid hormones, and obesity from a novel perspective,

thereby highlighting the health risks associated with PAEs.
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2 Methods

2.1 Study design and participants

NHANES is an ongoing cross-sectional survey conducted by the

National Center for Health Statistics (NCHS) of the Centers for

Disease Control and Prevention (CDC) to collect health screening

data from a nationally representative sample of U.S. residents and

noninstitutionalized civilians. The dataset for this study contains

two cycles of NHANES (2013-2014 and 2015-2016), which includes

laboratory data on phthalate metabolites and sex steroid hormones

(TT, estradiol and SHBG). We initially selected 10090 participants.

Of these, 1035 participants were excluded due to the presence of

interfering sex hormone levels (including hormone medication

using, pregnancy, ovariectomy and menstrual disorders), and a

further 391 participants were excluded due to missing data on

phthalate variables, resulting in the inclusion of 7780 eligible adult

subjects (3915 males and 3865 females). The flow chart for

screening participants is shown in Figure 1.
2.2 Phthalate metabolites

Phthalate metabolites were sampled using urine, and quantitative

detection was achieved by high performance liquid chromatography-

electrospray ionization-tandem mass spectrometry (30). These

metabolites encompass various compounds, including

monocarboxynonyl phthalate (MCNP) from di-isodecyl phthalate

(DDP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono

(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl)

phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate
Frontiers in Endocrinology 03
(MEOHP) derived from di(2-ethylhexyl) phthalate (DEHP)

monocarboxyoctyl phthalate (MCOP) and monoisononyl phthalate

(MNP) from di-isononyl phthalate (DNP); mono(3-carboxypropyl)

phthalate (MCPP) from di-n-octyl phthalate (DiNOP); mono-n-

butyl phthalate (MBP) from di-n-butyl phthalate (DBP);

monoethyl phthalate (MEP) from di-ethyl phthalate (DEP); mono-

isobutyl phthalate (MiBP) from di-isobutyl phthalate; monobenzyl

phthalate (MBzP) from benzylbutyl phthalate (BzBP); and

cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester

(MHNCH) from 1,2-cyclohexane dicarboxylic acid, di-isononyl

ester (DINCH) (31). We calculated the non-detection rate of

individual phthalate metabolites in the samples and excluded two

variables with non-detection rates greater than 50%. 11 phthalate

metabolites were finally included in this study, namely MCNP,

MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MEHP, MiBP,

MEOHP and MBzP. The lower limit of detections (LLODs) of all

phthalate metabolites are shown in Table S4. Detailed protocols for

urine sample collection and its analysis are described in publications

and on the CDC Web site (32, 33).
2.3 Sex steroid hormones

Sex steroid hormone data were categorized in the NHANES

laboratory data. Briefly, total testosterone and estradiol were

determined using isotope dilution liquid chromatography-tandem

mass spectrometry (ID-LC-MS/MS). SHBG is not measured

directly, but is based on a chemiluminescent measurement of the

reaction of SHBG with an immunological antibody and the reaction

products. For detailed descriptions of all laboratory test methods,

refer to the CDC’s Laboratory Methods document (34, 35). Sex

steroid hormones were measured using blood samples.
2.4 Covariates

Several covariates were selected for inclusion in the statistical

model based on the characteristics of the population studied. These

included some typical demographic variables such as age, gender,

race, place of birth, and marital status. Educational level was divided

into four categories: lower than high school, high school, some

college, or Associate of Arts (AA) degree, and college graduate or

above. The ratio of household income to poverty was set to three

categories (1.3 and 3.5 as the two dividing lines for the ratio values).

Smoking, drinking, hypertension, and diabetes were included in the

study as basic diseases of the population. Other key covariates were

body mass index (BMI), time of day of serum collection (i.e.

morning, afternoon, evening) and urinary creatinine. Considering

the possible influence on individual obesity status, we included

physical activity and average daily calorie intake as covariates (36).
2.5 Statistical analysis

NHANES uses a complex sampling weight design (37),

intended to make the sample data more representative of the
FIGURE 1

Flow chart of the participants included in this analysis (n = 7780),
NHANES 2013-16. Only adult participants aged 20 years or older
were retained (3915 males and 3865 females). All participants were
divided into three subgroups based on body mass index (BMI): BMI
of less than 25 were ‘Normal weight’, between 25 and 30 were
‘Overweight’, greater than or equal to 30 were defined as ‘Obese’.
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entire U.S. population. Therefore, we conducted statistical

descriptions on the sample data and weighted data separately.

The population was divided into three subgroups based on body

mass index (BMI): BMI of less than 25 were ‘Normal weight’,

between 25 and 30 were ‘Overweight’, greater than or equal to 30

were defined as ‘Obese’. PAEs metabolite levels were derived from

urine samples, to control for the interference of renal metabolic

differences in different individuals in the study, urinary creatinine

levels were adjusted to accommodate variations in urine dilution

(36, 38, 39), and the timing of blood sample collection was regulated

to address diurnal fluctuations in sex hormone concentrations (36).

For continuous variables, skewness and kurtosis tests were used to

test whether the distribution of the data was approximately normal,

and non-normal continuous variables were described using the

median (IQR). The Mann-Whitney U test and Kruskal-Wallis’ rank

sum test were used to compare differences between subgroups. For

categorical variables, the frequency and percentage were calculated,

and the Chi-square test was used to check differences between

subgroups. P values for multiple comparisons were calibrated using

the Bonferroni’s correction.

We plotted correlation heat maps and calculated Spearman’s

correlation coefficients and FDR-corrected (false discovery rate) P

values to confirm the correlation between urinary creatinine and

phthalate metabolites. Due to the presence of multicollinearity

among the phthalate metabolites, principal component analysis

was used to obtain principal component variables for the

phthalate metabolite variables, which were included in the

multinomial logistic regression instead of the original variables.

Weighted quantile sum (WQS) regression was used to explore the

effects of mixed PAEs exposure on sex steroid hormones and BMI.

We experimented with a variety of machine learning models to

build predictive models with the aim of making full use of data

features to shed light on the impact of phthalates on human health.

We tested K-Nearest Neighbor (KNN), Naive Bayes, Support
Frontiers in Endocrinology 04
Vector Machines (SVM), Decision Trees (DT), Random Forest

(RF), Gradient Boosting Decision Tree (GBDT) and eXtreme

Gradient Boosting (XGBoost) algorithms to build the predictive

models, using cross-validation and calculating the predictive

accuracy of each model. ‘Accuracy’ and ‘F1-score’ was calculated

to evaluate the superiority of prediction performance among

the models.

Data analysis and machine learning modelling were

implemented using R of version 4.2.1, with missing values of the

independent variables filled in by the “DMwR2” package. Outliers

were identified as values outside the interquartile plus or minus

three interquartile range (IQR) and were removed from further

analysis. Principal component analysis, multinomial logistic

regression and WQS regression were implemented by the package

“stats”, “nnet” and “gWQS”, respectively. The statistical significance

level was set at 0.05. The modelling was mainly performed using a

number of machine learning algorithms integrated in the “mlr”

package (40).
3 Results

3.1 Characteristics of subjects

Table 1 shows the descriptive statistics of the 7780 subjects

included in the analysis, which were divided into three groups based

on BMI; i.e., 1643 participants were ‘Normal weight’, 2372

participants were ‘overweight’, and 3765 participants were defined

as ‘obese’. The median ages for the total group and the three

subgroups were 60, 58, 62, and 59, respectively. Non-Hispanic

black people were in the majority in each subgroup, followed by

non-Hispanic white people. The highest proportion of males was

found in the overweight subgroup. Overall, the ‘Overweight’ and

‘Obese’ subgroups had lower educational attainment than the
TABLE 1 Demographic characteristics in different subgroups.

Overall Normal weight Overweight Obese P values

n (%) 7780 (100) 1643 (21.12) 2372 (30.49) 3765 (48.39)

Age(years); median (IQR) 60 (25) 58 (34) 62 (24) a*** 59 (22) b*** < 0.001

Gender(male), n (%) 3915 (50.32) 726 (44.19) 1452 (61.21) 1737 (46.14) < 0.001

Race/ethnicity, n (%) < 0.001

Mexican American 1091 (14.02) 138 (8.40) 337 (14.21) 616 (16.36)

Non-Hispanic White People 1786 (22.96) 290 (17.65) 487 (20.53) 1009 (26.80)

Non-Hispanic Black People 3120 (40.10) 716 (43.58) 927 (39.08) 1477 (39.23)

Other Hispanic 814 (10.46) 125 (7.61) 295 (12.44) 394 (10.46)

Other Race 969 (12.46) 374 (22.76) 326 (13.74) 269 (7.14)

Education level, n (%) < 0.001

Lower than high school 2107 (27.08) 419 (25.50) 1032 (27.41) 656 (27.66)

High school 1758 (22.60) 363 (22.09) 870 (23.11) 525 (22.13)

(Continued)
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‘Normal weight’ subgroup. The ‘Obese’ subgroup had a smaller

proportion of higher incomes. Over half of the participants in the

overweight and obese subgroups were married. The ‘Obese’

subgroup had a higher percentage of US births than overall. The

‘Normal weight’ subgroup had a higher proportion of never-

smokers than overall. Notably, the ‘Obese’ subgroup had a higher

rate of diabetes, while the ‘Overweight’ subgroup had a higher

average daily energy intake. The weighted statistical descriptions of

the participants can be viewed in Table S1.

Table 2 characterizes the levels and distribution of serum sex

steroid hormones (TT, estradiol and SHBG), urinary creatinine and

urinary phthalate metabolites by median and interquartile spacing
Frontiers in Endocrinology 05
(IQR). We used the Kruskal-Wallis’ rank sum test to compare

between-group differences in continuous variables across the three

subgroups, and the Mann-Whitney U test for two-by-two

comparisons between subgroups. We found significant differences

in the levels and distributions of these laboratory variables across

the three subgroups, with the results of the Mann-Whitney U test

showing more pronounced differences between the subgroups

‘Normal weight’ and ‘Obese’. Median urinary levels of phthalate

metabolites were significantly higher in the ‘Obese’ subgroup than

in the other two subgroups, as were median levels of urinary

creatinine (115.0 mg/dL). Serum estradiol levels were higher in

the ‘Obese’ subgroup (21.3 pg/mL), whereas serum SHBG levels
TABLE 1 Continued

Overall Normal weight Overweight Obese P values

Some college or AA degree 2311 (29.70) 416 (25.32) 1296 (34.42) 599 (25.25)

College graduate or above 1604 (20.62) 445 (27.08) 567 (15.06) 592 (24.96)

Family PIR1, n (%) < 0.001

<= 1.3 2560 (32.90) 568 (34.57) 717 (30.23) 1275 (33.86)

1.3 ~ 3.5 3201 (41.14) 645 (39.26) 924 (38.95) 1632 (43.35)

> 3.5 2560 (32.90) 430 (26.17) 731 (30.82) 858 (22.79)

Marital status, n (%) < 0.001

Married 4035 (51.86) 735 (44.74) 1411 (59.49) 1889 (50.17)

Other 3745 (48.14) 908 (55.26) 961 (40.51) 1876 (49.83)

Country of birth, n (%) < 0.001

US born 5678 (72.98) 1104 (67.19) 1579 (66.57) 2995 (79.55)

Non-US born 2102 (27.02) 539 (32.81) 793 (33.43) 770 (20.45)

Alcohol use status (yes), n (%) 1214 (15.60) 242 (14.73) 373 (15.73) 599 (15.91) 0.536

Hypertension (yes), n (%) 4606 (59.2) 701 (42.67) 1326 (55.90) 2579 (68.50) 0.144

Smoking status, n (%) < 0.001

Current smoker 1457 (18.73) 382 (23.25) 354 (14.92) 721 (19.15)

Former smoker 2347 (30.17) 365 (22.22) 840 (35.41) 1142 (30.33)

Never smoker 3976 (51.11) 896 (54.53) 1178 (49.66) 1902 (50.52)

Physical activity, n (%) 0.321

High 1242 (15.96) 244 (14.85) 394 (16.61) 604 (16.04)

Low 6538 (84.04) 1399 (85.15) 1978 (83.39) 3161 (83.96)

Diabetes (yes), n (%) 2558 (32.88) 260 (15.82) 672 (28.33) 1626 (43.19) < 0.001

Energy intake (kcal/day); median (IQR) 1908.5 (750.82) 1871.03 (732.31) 1945.75 (739.13) a*** 1901.69 (759) 0.008

Time of blood draw, n (%) < 0.001

Morning 3825 (49.16) 877 (53.38) 1136 (47.89) 1812 (48.13)

Afternoon 2968 (38.15) 581 (35.36) 963 (40.60) 1424 (37.82)

Evening 987 (12.69) 185 (11.26) 273 (11.51) 529 (14.05)
fr
7780 participants were divided into three subgroups based on body mass index: ‘Normal weight’, ‘Overweight’, and ‘Obese’. Mann-Whitney U test and Kruskal-Wallis’ rank sum test were used to
compare the differences in continuous variables between subgroups. Chi-square test was used to find differences in categorical variables between subgroups.
a: Compared to the ‘Normal weight’ subgroup.
b: Compared to the ‘Overweight’ subgroup.
*P< 0.05, **P< 0.01 and ***P< 0.001.
1 Family PIR represents the ratio of family income to poverty.
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were instead lower (45.5 nmol/L). Remarkably, the median level of

serum TT was much higher in the ‘Overweight’ subgroup (268.0 ng/

dL) than in the ‘Normal weight’ and ‘Obese’ subgroups. Weighted

statistical descriptions of serum sex steroid hormones, urinary

creatinine, and urinary phthalate metabolites are shown in

Supplementary Table 2.
3.2 Regression results

To examine the distinct associations among PAEs metabolites,

sex steroid hormones, and participants’ obesity status, we

constructed a multinomial logistic regression model with obesity

status as a three-categorical dependent variable. However, we

observed multicollinearity among these phthalate metabolites.

Additionally, since these metabolites were sampled in urine

samples, there was some correlation with urinary creatinine

levels. We generated correlation heatmaps to illustrate the

relationships between PAEs metabolites and urinary creatinine

levels, as depicted in Figure 2. Positive correlations between PAEs

metabolites and urinary creatinine were prevalent, and the FDR-

corrected P-values remained significant (P< 0.001).

To address the issue of multicollinearity among phthalate

metabolites, we employed principal component analysis (PCA) to

reduce the dimensionality of the original variables. As shown in
Frontiers in Endocrinology 06
Supplementary Figure 1, PCA extracted 11 principal components

that accounted for all the variances in the original variables. Notably,

the proportions of variances explained by the components beyond

the sixth were consistently lower than 0.04. Consequently, we opted

for the first six principal components instead of the original variables,

collectively explaining 90.5% of the total variance in the original

variables. The contribution of each phthalate metabolite to each PC is

presented in Supplementary Table 3. These principal components

derived from PCA were incorporated into multinomial logistic

regression to calculate odds ratios (ORs) and corresponding 95%

confidence intervals (CI) for the other two categorical endpoints, with

‘Normal weight’ as the reference (Table 3). The regression results

revealed a statistically significant association between PC1, PC2, and

obesity status, with PC2 posing a risk factor for obesity (OR = 1.082,

P< 0.001) and PC1 acting as a protective factor (OR = 0.890, P =

0.003). When using ‘Normal weight’ as the reference, PC5 emerged as

a risk factor for the population’s tendency to be overweight (OR =

1.152, P = 0.02), but the association with obesity was not statistically

significant (P = 0.136). Since principal components can be interpreted

as linear combinations of primitive continuous variables, those

associated with obesity status can be analyzed based on their

composition. As outlined in Table S3, the risk factor PC2 for

obesity status was primarily explained by MCNP, MCOP, and

MCPP, while the protective factor PC1 was predominantly

explained by MECPP, MBP, MEHHP, MEHP, and MEOHP.
TABLE 2 Descriptive statistics for phthalate metabolites and sex steroid hormones in different subgroups.

Overall Normal weight Overweight Obese P values

n (%) 7780 (100) 1643 (21.1) 2372 (30.5) 3765 (48.4)

Urinary creatinine (mg/dL) 107.0 (102.0) 91.0 (100.0) 103.0 (98.0) a*** 115.0 (105.0) a***,b*** < 0.001

Phthalates (ng/mL) #

MBP 11.0 (15.4) 10.9 (16.7) 9.7 (14.6) 11.9 (15.4) a***,b*** < 0.001

MBzP 3.7 (7.7) 3.7 (7.4) 3.2 (5.9) a* 4.0 (8.7) a***,b*** < 0.001

MCNP 1.9 (2.8) 1.8 (2.5) 1.8 (2.4) 2.1 (3.0) a***,b*** < 0.001

MCOP 10.15 (24.3) 8.0 (20.3) 9.9 (20.3) a* 12.5 (30.2) a***,b*** < 0.001

MCPP 1.3 (2.5) 1.3 (2.3) 1.1 (2.3) 1.5 (2.8) a***,b*** < 0.001

MECPP 10.4 (13.9) 10.1 (14.9) 9.4 (12.6) 11.4 (14.4) a***,b*** < 0.001

MEHHP 6.9 (10.0) 6.4 (10.8) 5.8 (8.9) 7.7 (10.1) a***,b*** < 0.001

MEHP 1.1 (1.7) 1.1 (1.8) 1.0 (1.8) a* 1.1 (1.6) a*** 0.033

MEOHP 4.4 (6.5) 4.3 (7.2) 3.8 (5.4) 4.7 (6.5) a***,b*** < 0.001

MEP 38.05 (104.1) 30.6 (83.6) 33.25 (93.2) 44.9 (127.6) a***,b*** < 0.001

MiBP 8.5 (12.4) 7.6 (11.7) 8.1 (11.5) a* 9.2 (13.9) a***,b*** < 0.001

Serum sex hormones

Total testosterone (ng/dL) 85.0 (333.1) 37.44 (402.4) 268.0 (375.9) a*** 43.8 (276.7) a***,b*** < 0.001

Estradiol (pg/mL) 20.55 (23.8) 18.6 (30.0) 20.9 (20.3) a** 21.3 (24.1) a***,b*** < 0.001

SHBG (nmol/L) 51.53 (35.3) 68.96 (55.2) 53.63 (32.9) a*** 45.54 (28.8) a***,b*** < 0.001
fr
Mann-Whitney U test and Kruskal-Wallis’ rank sum test were used to compare the differences between subgroups. a: Compared to the ‘Normal weight’ subgroup.
b: Compared to the ‘Overweight’ subgroup.
*P< 0.05, **P< 0.01 and ***P< 0.001.
#See Supplementary Table 4 for full names of abbreviated phthalate metabolites.
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Concerning sex steroid hormones, TT and SHBG emerged as

protective factors for obesity status (OR = 0.997; OR = 0.977), with

only estradiol identified as a risk factor (OR = 1.008). Among other

covariates, hypertension and diabetes were significant risk factors for

obesity (OR = 2.938; OR = 3.31).

The WQS regression method was employed to examine the

impact of mixed PAEs exposure on sex steroid hormones and BMI

(as a continuous variable). This weighted approach aimed to

amalgamate PAEs metabolites into a ‘phthalate index’ to address

multicollinearity among the original variables. The objective was to

obtain interpretable regression coefficients that quantify the

combined effect of phthalate metabolites on sex hormones. The

WQS regression results indicated that the phthalate index was

significant for all three sex steroid hormones and BMI (Table 4).

Notably, the phthalate index exhibited a negative correlation with

TT (b = -20.85, P< 0.001) and positive correlations with estradiol

(b = 3.00, P = 0.001) and SHBG (b = 5.22, P< 0.001). Regarding the

negative correlation of the phthalate index with total testosterone,

MCOP contributed the most with 34.6%, while in the positive

correlation with estradiol, MiBP contributed the most with 37.0%.

In the positive correlation of the phthalate index with SHBG,

MEOHP accounted for the most with 24.3% (Table 5).

Additionally, the PAEs index demonstrated a positive correlation

with BMI, with MEP contributing to 41.0% of the mean weight.

Given the variation in sex hormone levels across genders and

ages, we conducted subgroup analyses to explore potential

differences (Supplementary Table 5). For age stratification,

participants were divided into ‘middle-aged’ and ‘older’ subgroups

using the median age (60 years) as the cutoff. The stable negative
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TABLE 3 Results of multinomial logistic regression.

Overweight Obese

Age 1.015 (1.012, 1.019) 1.001 (0.997, 1.004)

Gender

male 1.000 (reference) 1.000 (reference)

female 0.749 (0.710, 0.790) 0.869 (0.822, 0.918)

Race

Mexican American 1.000 (reference) 1.000 (reference)

Non-Hispanic White People 0.492 (0.453, 0.535) 0.353 (0.323, 0.385)

Non-Hispanic Black People 0.716 (0.673, 0.762) 0.480 (0.451, 0.510)

Other Hispanic 1.007 (0.932, 1.087) 0.728 (0.676, 0.783)

Other Race 0.312 (0.288, 0.339) 0.129 (0.119, 0.140)

Education

Lower than high school 1.000 (reference) 1.000 (reference)

High school 0.981 (0.925, 1.040) 0.964 (0.906, 1.025)

Some college or AA degree 1.039 (0.986, 1.095) 1.290 (1.217, 1.367)

College graduate or above 0.831 (0.779, 0.887) 0.686 (0.644, 0.731)

Family PIR1

<= 1.3 1.000 (reference) 1.000 (reference)

1.3 ~ 3.5 0.928 (0.863, 0.998) 1.097 (1.018, 1.183)

> 3.5 1.227 (1.141, 1.320) 1.069 (0.995, 1.149)

Marital status

Other 1.000 (reference) 1.000 (reference)

Married 0.671 (0.628, 0.716) 0.748 (0.699, 0.799)

Country of birth

US born 1.000 (reference) 1.000 (reference)

Non-US born 0.881 (0.805, 0.965) 0.411 (0.377, 0.450)

Alcohol using

No 1.000 (reference) 1.000 (reference)

Yes 0.891 (0.824, 0.964) 0.883 (0.816, 0.956)

Hypertension

No 1.000 (reference) 1.000 (reference)

Yes 1.576 (1.476, 1.682) 2.938 (2.753, 3.134)

Diabetes

No 1.000 (reference) 1.000 (reference)

Yes 1.506 (1.409, 1.608) 3.310 (3.092, 3.543)

Physical activity

Low 1.000 (reference) 1.000 (reference)

High 1.031 (0.954, 1.114) 1.130 (1.044, 1.222)

(Continued)
FIGURE 2

Heat map showing Spearman’s correlation matrix for concentrations
of eleven urinary phthalate metabolites and urinary creatinine levels.
The FDR-corrected P values indicate that Spearman’s correlation
matrix is statistically significant (P< 0.001). The color corresponds to
the strength of correlations (blue: positive correlation; white: no
correlation; red: negative correlation).
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correlation between PC1 and obesity was observed across all four

subgroups, with no statistically significant differences in ‘Female-

mid’ and ‘Male-mid’. WQS regression was applied to investigate the

effects of mixed PAEs exposure on sex hormones in all subgroups

(Supplementary Table 6). The results revealed a positive association

between BMI and mixed PAEs exposure in all subgroups, along

with a negative association between TT and mixed PAEs exposure.

Concerning estradiol, a positive correlation with mixed PAEs
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exposure was observed in all subgroups except for ‘Male-mid’.

Similarly, a positive correlation with mixed PAEs exposure was

noted for SHBG in all subgroups, though the differences in ‘Female-

mid’ and ‘Male-mid’ were not statistically significant.
3.3 Machine learning models

After obtaining regression results, our next objective was to

discern the predominant influences of sex hormones and phthalate

metabolites on the population’s obesity status. To achieve this, we

employed various algorithms for prediction models. Independent

variables underwent preprocessing using the one-hot coding

technique, as some machine learning algorithms do not

accommodate categorical independent variables. The total

samples were randomly divided into an 80% training set and a

20% validation set. Utilizing the grid search technique, the training

set entered a suitable hyperparameter space to identify the optimal

hyperparameter combination. To mitigate errors from random

sampling, a 5-fold cross-validation was employed during the

search process. This methodology pinpointed the hyperparameter

combination minimizing the average error, used to construct the

prediction model. Subsequently, the validation set evaluated the

predictive performance of the model, and the ‘Accuracy’

represented the ratio of correctly predicted samples to the total

number in the validation set. F1-score is obtained from the

confusion matrix of the prediction results, which is a

comprehensive evaluation combining ‘Precision’ and ‘Recall’, and

is calculated by the formula of F1= 2�Precision�Recall
Precision+Recall . Simply put,

when the F1-score is higher, the accuracy and recall are higher and

the model has better predictive power.

When comparing the predictive performance of all models

(Table 6), those with high accuracy also exhibit higher F1-scores.

To ensure an unbiased model selection, we introduced several

simple yet classical algorithms, including KNNs, Naive Bayes, and

the acquired multinomial logistic regression model. Regression

models and Naive Bayes, being less reliant on hyperparameter

tuning, are user-friendly and easily interpretable. However, their

prediction accuracy, as revealed by the outcomes, falls below 60%,

indicating suboptimal efficacy on our dataset. The KNN algorithm

achieves a prediction accuracy of 83.4% with an F1-score of 0.813,

employing a hyperparameter ‘k’ set to 1. SVM, classified into ‘radial’

and ‘polynomial’ based on different kernel functions, both

demonstrate an accuracy of approximately 85%, with F1-scores

exceeding 0.83. Despite the decision tree model having an accuracy

of 80.4%, the decision tree algorithm remains a foundational

concept for numerous complex algorithms.

The RF algorithm is an extension of the decision tree

classification algorithm. In our RF model, we utilize 300 decision

tree models (ntree = 300), a maximum of 15 features used on the

nodes of each decision tree model (mtry = 15), a minimum of 12

samples on the leaf nodes (nodesize = 12), and a total maximum

number of leaf nodes set to 350 (maxnodes = 350). With this set of

hyperparameters, the RF model achieves an accuracy of 88.4% and

an F1-score of 0.87. Despite the randomization method employed

by RF, which reduces the risk of overfitting, we exercise control over
TABLE 3 Continued

Overweight Obese

Smoking status

Current smoker 1.000 (reference) 1.000 (reference)

Former smoker 1.558 (1.454, 1.669) 1.425 (1.334, 1.523)

Never smoker 0.854 (0.792, 0.922) 1.005 (0.924, 1.094)

Energy intake2 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)

Urinary creatinine 1.005 (1.004, 1.006) 1.006 (1.005, 1.007)

Principal components of PAEs3

PC 1 0.852 (0.819, 0.887) 0.890 (0.857, 0.926)

PC 2 1.069 (1.013, 1.128) 1.082 (1.027, 1.141)

PC 3 0.964 (0.903, 1.029) 1.054 (0.989, 1.124)

PC 4 1.010 (0.937, 1.090) 0.971 (0.903, 1.045)

PC 5 1.152 (1.053, 1.260) 1.067 (0.980, 1.163)

PC 6 1.033 (0.934, 1.143) 1.023 (0.926, 1.129)

Time of blood draw

Morning 1.000 (reference) 1.000 (reference)

Afternoon 1.323 (1.241, 1.410) 1.037 (0.973, 1.105)

Evening 1.287 (1.183, 1.402) 1.458 (1.334, 1.594)

Sex steroid hormone

Total testosterone 0.999 (0.999, 1.000) 0.997 (0.997, 0.998)

Estradiol 1.005 (1.002, 1.007) 1.008 (1.006, 1.011)

SHBG 0.985 (0.983, 0.987) 0.977 (0.975, 0.979)
The results of the multinomial logistic regression are expressed as ORs and 95% CIs, with
‘Normal weight’ as the reference. Bolded ORs indicate statistical significance (P<0.05). The
categorical variables are referenced to the selected categories and the corresponding ORs
are obtained.
1Family PIR represents the ratio of family income to poverty.
2Average daily energy intake (kcal/day).
3Principal components (PC) consisting of the original PAEs variables.
TABLE 4 Results of weighted quantile sum regression.

Phthalates index* P values

Total testosterone -20.85 (-31.62, -10.08) < 0.001

Estradiol 3.00 (1.21, 4.79) 0.001

SHBG 5.22 (2.17, 8.27) < 0.001

BMI 0.52 (0.15, 0.90) 0.007
*Regression coefficients and 95% CI for mixed exposures in the weighted quantile
sum regression.
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the values of mtry, nodesize, and maxnodes to further mitigate the

potential for overfitting during model training.

The importance of the characteristics in the RF model for the

three categorical endpoints was comprehensively evaluated using

‘mean decrease accuracy’ (41). The top 20 independent variables

contributed to 83% of the mean decrease accuracy values of all

variables (Figure 3). The sex hormone variable emerged as the most

significant contributor to the predictive accuracy of the model,

followed by age, diabetes mellitus, average daily caloric intake,

hypertension, and phthalate metabolite levels. These findings

underscore the importance of age, diabetes, and hypertension as

crucial factors in predicting obesity status. Furthermore, the

substantial variations in sex hormone levels across different

subsets highlight the significant contributions of these three sex

hormone variables to the predictions of the RF model. Among PAEs

metabolites, MEP, MiBP and MCOP exhibited higher mean

decreasing accuracy values (Figure 3).

Both GBDT and RF are extensions of the decision tree

algorithm, but RF is a variant of the decision tree algorithm

optimized with the bootstrap aggregating (or bagging for short)

technique, while GBDT is the decision tree algorithm optimized

with the gradient boosting technique. Since our target variable

involves a triple classification of physical states, the

hyperparameter ‘distribution’ for GBDT is set to ‘multinomial’.

The final GBDT model consists of a total of 400 decision trees

(n.trees = 400), with a minimum of 40 observations in the terminal

nodes (n.minobsinnode = 40), and a learning rate of 0.9 for each

decision tree (shrinkage = 0.9). However, the GBDT model’s

prediction accuracy is only 77.1%, and the F1-score is only 0.752,

indicating suboptimal performance on our dataset. In response to

this, we explored the XGBoost algorithm, which is also grounded in

the gradient boosting technique.

In our XGBoost model, the learning rate is set to 0.1 (eta = 0.1),

the minimum loss reduction at leaf nodes is 0.556 (gamma = 0.556),
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the maximum depth of the trees is 10 (max_depth = 10), the

minimum impurity level before node divis ion is 1.5

(min_child_weight = 1.5), the proportion of independent

variables used in a single decision tree is 0.5 (colsample_bytree =

0.5), the total number of decision trees is 100 (nrounds = 100), and

the loss function employed is the logarithmic loss function

(eval_metric = ‘mlogloss’). We also constrained the search range

of hyperparameters during the hyperparameter search to prevent

overfitting. This configuration of hyperparameters for our XGBoost

model yields a prediction accuracy of 89.1% and an F1-score

of 0.879.

To assess the contribution of each variable in predicting

individual physical states, we applied the Shapley additive
TABLE 5 Composition of phthalate metabolites in mixed exposures.

Phthalates
index

Total
testosterone

Estradiol SHBG BMI

MCNP 0.072 0.048 0.152 0.070

MCOP 0.346* 0.076 0.011 0.120

MECPP 0.043 0.032 0.008 0.110

MBP 0.108 0.029 0.023 0.000

MCPP 0.001 0.136 0.022 0.039

MEP 0.109 0.130 0.082 0.410*

MEHHP 0.181 0.008 0.165 0.048

MEHP 0.058 0.121 0.067 0.000

MiBP 0.013 0.370* 0.193 0.000

MEOHP 0.069 0.031 0.243* 0.140

MBzP 0.000 0.021 0.033 0.065
*Original variables with the largest contribution to the Phthalates index.
TABLE 6 Classification performance of all models.

hyper-
parameters

Accuracy F1-
score

multinomial
logistic regression

– 0.586 0.530

Naive Bayes – 0.530 0.517

KNN1 k = 1 0.834 0.813

Support vector machine

radial kernel = ‘radial’; degree
= 5;

cost = 25; gamma
= 0.01;

0.846 0.835

polynomial kernel = ‘polynomial’;
degree = 5;

cost = 3.667; gamma
= 1.117;

0.851 0.835

Decision Tree minsplit = 1; minbucket
= 2;

cp = 0.001; maxdepth
= 23;

0.804 0.784

Random Forest ntree = 300; mtry = 15;
nodesize = 12;

maxnodes = 350;

0.882 0.870

GBDT2 distribution =
‘multinomial’;
n.trees = 400;

n.minobsinnode = 40;
shrinkage = 0.9;

0.771 0.752

XGBoost3 eta = 0.1; gamma =
0.556;

max_depth = 10;
min_child_weight = 1.5;
colsample_bytree = 0.5;

nrounds = 100;
eval_metric
= ‘mlogloss’;

0.891 0.879
fron
The classification models were built using machine learning algorithms with adjusted
parameters, and accuracy and F1-score were used as model evaluation metrics.
1KNN represents K Nearest Neighbor.
2GBDT represents Gradient Boosting Decision Tree.
3XGBoost represents eXtreme Gradient Boosting.
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explanatory (SHAP) tree framework to the XGBoost model with a

customized loss model (42). The SHAP value combines the effect of a

given variable on its own and the effect of the interaction of that

variable with other parameters. For a given individual (local

interpretation), the sum of the SHAP values for all variables of the

model represents the deviation of the individual from the predicted

propensity of obesity status for the entire dataset. The greater the

overall SHAP value, the more significant the contribution of

the variable to predicting obesity status. The global SHAP values

for the top 15 variables, as depicted in Figure 4, account for 73.2%,

67.9%, and 71.2% of the average total SHAP contribution,

respectively. The three subplots depict the global SHAP values for

Normal weight (Figure 4A), Overweight (Figure 4B), and Obese

(Figure 4C) respectively.

As depicted in Figure 4, within the XGBoost model, sex steroid

hormones exhibited the most substantial contributions to

predicting all obesity conditions. Additionally, age, hypertension,

diabetes, urinary creatinine, and certain phthalate metabolites

showed high global SHAP values. Notably, individuals with

hypertension or diabetes displayed a clear inclination toward

obesity, underscoring the significant role of hypertension and

diabetes as risk factors for obesity, consistent with earlier

regression findings. Among the top 15 variables contributing

most to the prediction of obesity status (Figure 4C), only three

phthalate metabolites—MEHP, MCNP, and MCOP—were present,

with MEHP being consistently negatively associated with obesity.

Diabetes exhibited a negative association with ‘Normal weight’

status (Figure 4A). Participants from ‘other races’ tended to

predict normal weight, while Mexican Americans displayed the

opposite trend. The regression results from the principal

component analyses described earlier indicated statistically

significant associations between the three sex steroid hormones

and obesity status, with a low strength of association (odds ratios

approximating 1.0), consistent with the global SHAP values for the

sex hormone variables in Figure 4.
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4 Discussion

The analysis results unveiled noteworthy connections between

sex steroid hormones and obesity in the population, with specific

principal components of phthalate metabolite composition also

displaying substantial associations with obesity status in US

adults. The outcomes from WQS regression models pointed out

that mixed exposure to phthalate metabolites was linked to total

testosterone TT, estradiol, and SHBG. Among various predictive

models, RF and XGBoost exhibited superior predictive performance

for obesity, with sex steroid hormones contributing the most to the

model predictions, followed by demographic variables such as

diabetes and hypertension, and phthalate metabolites.

PAEs, as a typical environmental EDCs, have multifaceted and

multi-systemic effects on human health (43). This study reveals a

positive correlation between PAEs exposure and BMI, with MEP

contributing 41.0% to the average weight of PAEs index. The

regression findings indicated a positive connection between the

PC2 of phthalate metabolites and the likelihood of obesity. MCNP,

MCOP, and MCPP constituted the primary contributing factors to

PC2, thus categorizing them as obesity risk factors. Additionally, the

fifth principal component (PC5), predominantly composed of MiBP

and MBP, displayed a positive correlation with the occurrence of

overweight. These findings underscore the complex and

interconnected impact of PAEs on human health, particularly in

relation to weight-related outcomes. These results align closely with

previous research findings. Stahlhut et al. found the PAEs exposures

and their associations with obesity in adult US males (participant in

the NHANES 1999-2002) (43). MBP, MCOP, MCNP, MCPP and

MECPP were also found to be associated with obesity or BMI in

adults participating in the U.S.-based NHANES (44, 45). Notably,

MCOP exhibited associations not only with BMI but also with waist

circumference. In a more recent cohort study involving 942 elderly

individuals in China(Li et al.) (46), urinary levels of MEP, MEOHP,

MBP, and MMP were positively associated with general obesity in
FIGURE 3

Top-20 importance ranking features based on mean decrease accuracy from the RF model. Among PAEs metabolites, MEP, MiBP and MCOP
exhibited higher mean decreasing accuracy values.
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males. Furthermore, an intriguing discovery indicated that MCNP,

MCOP, and MEHP play a role in the onset of obesity (47). A

comprehensive meta-analysis concluded that MMP, MEP, and MiBP

showed positive associations with abdominal obesity, while MEHHP,

MECPP, and MCOP exhibited positive correlations with general
Frontiers in Endocrinology 11
obesity in adults (48) Their study formed part of a broader

understanding of phthalate exposure and its effects on obesity-

related outcomes. In a longitudinal cohort study conducted by the

Women’s Health Initiative (WHI), certain phthalate biomarkers,

including MCNP, were found to be positively associated with an

increase in visceral adipose tissue (VAT) in postmenopausal women.

However, no significant correlation was established between other

phthalate biomarkers (MCOP, MCPP, etc.) and either VAT or

subcutaneous adipose tissue (SAT) (49). This cumulative evidence

supports the intricate relationship between phthalate exposures and

obesity across diverse populations and study designs.

Sexual steroid hormones affect the metabolism, distribution,

and increase of adipose tissue by binding to receptors in adipose

tissue, and a decrease in estrogen and/or androgens typically leads

to central obesity (50). The reproductive toxicity of PAEs, as

confirmed by numerous existing studies, encompasses adverse

effects on the HPG axis, including abnormal release of

gonadotropin-releasing hormone and gonadotropins, along with

dysfunction of sex hormone receptors and steroid hormone

synthesis (23). These factors collectively contribute to a

heightened prevalence of metabolic disorders (38, 51).

Additionally, some researchers contend that obesity, on the

contrary, heightens the risk of sex hormone imbalances (52).

Lapauw et al. found that low serum SHBG and total testosterone

levels were very common in obese men (53). Our results indicated

that estradiol was positively associated with obesity, while total

testosterone and SHBG levels were negatively associated with

obesity. The relationship between these elevated rates and the

concomitant presence of chronic sex hormone imbalances and

PAEs exposure warrants further investigation and scrutiny.

Building upon this, it’s noteworthy that combined exposure to

phthalates and their metabolites contributes to an elevation in

estradiol and SHBG levels, coupled with a reduction in TT levels.

The disruptive impact of phthalates on hormonal balance has been

established in both animal and human studies, suggesting potential

implications for endocrine systems. In particular, DEHP has

exhibited anti-androgenic effects and estrogen-mimicking

activities both in vivo and in vitro, and it has been associated with

decreased TT levels in male animals and humans (54–57). Cathey

et al. found that TT was positively associated with MHBP and

inversely associated with MEP in women during pregnancy (57).

Similarly, urinary MEHP was found to be inversely associated with

circulating steroid hormone levels in adult men (58). Drawing on

data from NHANES 2015-2016, a study involving 1768 adults

measured 16 urinary phthalate metabolites and three serum sex

hormones. Among males, TT levels displayed a negative association

with MnBP, MEHHP, MECPP, MEP, and MiBP. Conversely,

among females, the natural logarithm-transformed estradiol

exhibited an increase of 0.18 pg/mL and 0.15 pg/mL with each 1

natural logarithm-concentration rise in MEHP and MNP,

respectively (30). In a cross-sectional study involving 614 women

aged 45-54 years, an association was identified between phthalate

exposure and an increase in estradiol levels (59). However, when

comparing the relationship between SHBG and phthalate

metabolites, disparities emerged between previous studies and our

current research. Some studies reported that elevated levels of
B

C

A

FIGURE 4

Global explainability of physical state. Global explainability of the
XGBoost model for the top 15 most important variables (ranked in
order of importance based on the mean of the absolute SHAP
values). Each dot color codes the SHAP value of each variable for
each individual; yellow and purple indicate high and low values of
the variable, respectively. A positive or negative SHAP value on the
x-axis imply that the variable contributes to a positive or negative
estimate of physical state for a given individual. (A) Global
explainability of normal weight state. (B) Global explainability of
overweight state. (C) Global explainability of obesity state.
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exposure to MECCP, MEOHP, MEHHP, and MBzP were linked to

decreased SHBG levels, but not to increased TT levels (58). We

attribute these variations to differences in the study population and

our comprehensive approach to phthalate exposure analysis.

In the negative correlation of phthalate index with TT, MCOP

contributed the most (34.6%), while in the positive correlation of

phthalate index with estradiol, MiBP contributed the most with

37.0%. MEOHP accounted for the most in the positive correlation

of phthalate index and SHBG with 24.3%. The correlation between

TT and MCOP aligns with findings from previous research. A study

focusing on midlife women revealed a negative correlation between

MCOP and TT levels. (D%: -2.08%; 95% CI, -3.66 to -0.47) (60).

Further, a study involving 1179 children aged 6-19 years

demonstrated that MiBP, MCOP and MBzP were generally

negatively associated with estrodial and TT, while positively

associated with SHBG (61). However, the correlation between

estrogen and MiBP shows some differences compared to previous

studies. MCOP and MBzP exhibited a positive association with

estrogen, while MEP, MiBP, and MEOHP demonstrated an inverse

correlation with estrogen (62). In a study focused on 297 women of

childbearing age, MiBP was linked to a 0.01 (95% CI: -0.01, 0.00)

decrease in natural logarithm-unit levels of estradiol. Additionally, a

study involving 297 girls aged 12 to 19 in the NHANES (2013-2016)

found that MBzP was positively associated with SHBG, while

MCNP andMECPP showed an inverse association with SHBG (62).

In this study, variations in the influence of PAEs metabolites on

estrogen and SHBG were observed compared to the existing

literature. To further investigate the reasons behind the

aforementioned differences, we stratified the study population

based on age and gender. In group “Male-mid”, we observed a

negative correlation between PAEs exposure and estrogen levels,

while in the other subgroups, it showed a positive correlation. This

finding aligns with results reported in certain earlier studies. In male

adolescents, there was a negative correlation between PAEs and

estrogen (b= -0.137, 95% CI: -0.263, -0.011), as well as TT

(b= -0.189, 95% CI: -0.375, -0.002) (63). Data from U.S.

population found that exposure to PAEs, both individuals and as

a mixture, was inversely associated with estradiol levels and the

ratio of TT to estradiol in children (61). In a cross-sectional

investigation, it was observed that urinary DEHP metabolites and

MEHP exhibited a notable positive correlation with serum estradiol

levels (64). This aligns with a previous study, which indicated a

positive correlation between urinary DEHP metabolites (MEHP,

MEOHP, MEHHP) and estradiol levels in polyvinyl chloride

production workers (65). On the contrary, DEHP was linked to

reduced serum estradiol levels in postmenopausal women (36), a

finding corroborated by prior studies that reported non-significant

negative results (66, 67). Gender-specific analyses indicated that

phthalate exposure has a distinct impact on various sex steroid

hormones. Exposure to phthalates (PAEs) manifests most

prominently in sex hormones among middle-aged individuals,

while it exhibits a more pronounced effect on BMI increase in

elderly females.

To explore the association between phthalate metabolites and

obesity in the population from the perspective of sex hormones, we
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used multiple machine learning algorithms to model the data of these

algorithms from the studied cohort. Of these algorithms, RF and

XGBoost exhibited the best classification performance. During the

interpretation of the models, we observed that sex steroid hormones

tended to perform better. Hypertensive and diabetic individuals had a

higher risk of obesity, consistent with the regression results. Phthalate

metabolites also contributed significantly to the model classification

performance. A relatively clear negative correlation was found,

during the interpretation of the XGBoost model, between MEHP

and population obesity. However, a study by Desvergne et al. found

that MEHP, a selective PPARg modulator, is capable of disrupting

lipid and carbohydrate metabolism, thereby increasing the risk of

obesity (68). For the negative association with obesity exhibited by

MEHP in this study, we speculate that it is related to the multiple

correlations of this class of phthalate metabolites. Considering that

the hydrolysis products of DEHP are sufficiently complex, perhaps

MEHP could serve as an intermediate cue for the DEHP hydrolysis

process, which requires more research to elucidate the

mechanisms involved.

In this study, we used principal component analysis to deal with

the issue of collinearity PAEs metabolites and combined with sex

hormone status to explore the association between PAEs and obesity

in the population. We tried multiple classes of predictive models, and

the results showed that XGBOOST and RF performed better; such

integrated models have good interpretability and can fully exploit

potentially meaningful associations among numerous features. It is

hoped that integrated machine learning algorithms will be considered

and attempted in a wide range of bioinformatic research. This study

has certain limitations. Firstly, adjustment methods for urine dilution

could bias conclusion. As urinary creatinine levels may be affected by

factors including age, sex, and kidney disease, statistical estimation

with traditional creatinine adjustment may be influenced under

certain circumstances (69). The use of urinary creatinine to adjust

urine dilution may bias the chemical exposure estimates and

therefore the association with the health outcome as well. And we

opted for single-point urine samples instead of 24-hour urine samples

to assess phthalate exposure, a choice that could potentially introduce

measurement errors. Replication of these findings is crucial, and

further studies are warranted for validation. Secondly, we formed a

composite variable by weighting 11 PAEs metabolites to examine the

relationship between overall exposure and hormones. At present, we

have not explored the influence of each PAEs metabolite

on hormones.

In future research, exploring gender and age-specific subgroup

analyses could uncover unique patterns in the link between PAEs

and obesity, shedding light on different roles within these

demographics. Additionally, employing advanced statistical

methods, such as deep learning on longitudinal data, may provide

a more comprehensive understanding of the potential relationship

between PAEs exposure and obesity, capturing the long-term effects

of PAEs in the development of obesity. Finally, integrating in vivo

and in vitro methods, such as cell culture experiments or animal

models, could contribute to a more in-depth understanding of the

biological impact of PAEs on sex hormones and their mechanistic

relationship with obesity.
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5 Conclusions

Our study explores the impact of phthalate exposure on sex

steroid hormone levels and the propensity for obesity in adults. The

results from the PCA indicate that PC2, primarily composed of

MCNP, MCOP, and MCPP, shows a positive association with

obesity. Specifically, Estradiol is positively correlated with obesity,

whereas TT and SHBG exhibit negative associations. Notably,

combined exposure to phthalates and their metabolites leads to

an increase in estradiol and SHBG levels, while decreasing TT levels.

Among the machine learning algorithms utilized, the RF and

XGBoost models demonstrate the highest capability to distinguish

adult obesity status. Additionally, the interpretation of both models

underscores the effectiveness of sex steroid hormones as predictor

variables, highlighting the recommendation to consider them in

future obesity-related studies.
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