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Identification of immune-related
endoplasmic reticulum stress
genes in proliferative diabetic
retinopathy using
bioinformatics analysis
Han Chen †, Enguang Chen †, Miaomiao Liu, Jianhui Wang,
Jiawei Yin, Peiquan Zhao* and Yu Xu*

Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of
Medicine, Shanghai, China
Background: Proliferative diabetic retinopathy (PDR) is a severe complication of

diabetes, and understanding its molecular mechanisms is crucial. Endoplasmic

reticulum (ER) stress has been implicated in various diseases, including diabetic

complications. This study aims to elucidate ER stress-related biomarkers in PDR,

providing insights into the underlying molecular pathways.

Methods: We analyzed two independent PDR datasets, GSE102485 and

GSE60436. The GSE102485 dataset (22 PDR and 3 normal samples) was the

primary dataset for comprehensive analyses, including differential expression,

functional enrichment, PPI network construction, immune cell infiltration, and

drug prediction. The GSE60436 dataset (6 PDR and 3 normal samples) was used

for validation. In vitro experiments using human umbilical vein endothelial cells

(HUVECs) in a high-glucose environment were conducted to validate key

bioinformatics outcomes. Western blotting assessed protein levels of ER stress

markers (TRAM1 and TXNIP).

Results: Differential expression analysis identified 2451 genes, including 328 ER

stress-related genes. Functional analysis revealed enrichment in ER stress-

related processes and pathways. Hub genes (BCL2, CCL2, IL-1b, TLR4, TNF,
TP53) were identified, and immune infiltration analysis showed altered immune

cell proportions. Validation in GSE60436 and in vitro confirmed ER stress gene

dysregulation. Drug prediction suggested potential small molecules targeting ER

stress markers.

Conclusion: This study provides a comprehensive molecular characterization of

ER stress in PDR, highlighting altered biological processes, immune changes, and

potential therapeutic targets. The identified hub genes and small molecules offer

avenues for further investigation and therapy development, enhancing

understanding of PDR pathogenesis and aiding targeted intervention creation.
KEYWORDS
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1 Introduction

Diabetic retinopathy (DR), a prevalent microvascular

complication of diabetes mellitus (DM), contributes to visual

impairment in approximately one-third of diabetic patients (1). It

emerges as one of the most severe complications of diabetes,

especially when advancing to Proliferative Diabetic Retinopathy

(PDR) (2, 3). PDR is characterized by abnormal blood vessel growth

in the retina, leading to the potential for vision loss and blindness

(4). The intricate molecular mechanisms underlying the transition

to PDR remain a subject of intense research interest. Understanding

the gene expression patterns and immune landscape associated with

PDR is essential for unraveling the complexities of its pathogenesis

and identifying potential therapeutic targets.

The endoplasmic reticulum (ER) serves as a cellular organelle

responsible for protein homeostasis, or “proteostasis” (5). Cellular

stress and inflammation can result in the buildup of unfolded or

misfolded proteins, a condition known as ER stress (6). One of the

underlying molecular mechanisms contributing to the pathogenesis

of PDR is ER stress (7). Despite the recognized importance of ER

stress in PDR, a comprehensive molecular understanding of ER

stress-related biomarkers in the context of PDR remains a

significant research gap (8–10). In recent years, molecular

investigations into the intricacies of ER stress-related biomarkers

have provided a promising avenue for understanding the molecular

basis of PDR (5, 11, 12). Unraveling the specific biomolecular

signatures associated with ER stress in PDR holds the potential

not only to deepen our comprehension of disease mechanisms but

also to identify precise targets for therapeutic intervention.

Despite significant strides in diabetes research, there remains a

gap in our understanding of the specific molecular events that drive

the progression to PDR. Advancements in high-throughput

technologies have revolutionized our ability to dissect the

molecular landscape of complex diseases (13). Through the

analysis of the transcriptome profiles of PDR patient samples and

normal samples in the GSE102485 dataset from the GEO database,

we investigated differentially expressed genes (DEGs) related to ER

stress in PDR. Through Gene Ontology (GO) enrichment analysis,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis, and Protein-Protein Interaction (PPI) network analysis,

our objective was to enhance our understanding of the molecular

characteristics of ER stress-related biomarkers in PDR.

Six key genes were identified through STRING, Cytoscape and

CytoHubba, and further validation was performed in a separate

dataset (GSE60436) and in a DR model using in vitro quantitative

real-time polymerase chain reaction (qRT-PCR). Additionally, we

explored the correlation between these central genes and the level of

immune cell infiltration, revealing the immunomodulatory role of

ER stress in PDR. Finally, potential small molecules for treating

PDR were predicted using the Connectivity Map (cMAP). The

objective of this analysis was to identify drugs with potential

therapeutic effects that may intervene in the development of PDR

by modulating molecular pathways associated with ER stress. This

study bridged molecular biology and DR research, aiming to dissect

the molecular signatures indicative of ER stress in PDR and shed
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light on the nuanced interplay between ER stress and the

progression of DR.
2 Methods

2.1 Data collection

Two independent PDR datasets were downloaded from the

GEO database. (http://www.ncbi.nlm.nih.gov/geo/), which included

GSE102485 and GSE60436 (Table 1). The first transcriptome

dataset was the test dataset (GSE102485) and the second

microarray dataset was the validation dataset (GSE60436).

For GSE102485, we selected a subset of 22 neovascular

proliferative membrane specimens and three normal retina

samples (14). We downloaded and analyzed the raw data from

the GSE102485 dataset, processed and normalized the protein-

coding genes using the R package “DESeq2” for further analysis.

Additionally, we selected the GSE60436 microarray dataset as

the validation set, comprising 6 PDR samples and 3 normal

samples (15). The raw data from the GSE60436 dataset were

downloaded, underwent ID conversion, normalization, and

background correction. Additionally, we identified 328 ER stress-

related genes with a relevance score greater than 3 in Genecards

(Supplementary Table S1).
2.2 Identification of ER stress-related DEGs

Before conducting differential analysis on GSE102485, we

filtered for mRNAs with expression counts greater than one in at

least the number of replicates. Subsequently, we analyzed gene

expression using the DESeq2 package. DEGs were identified using

the criteria of an adjusted P-value <0.05 and an absolute |log2 Fold

Change| ≥ 2. Next, we employ the R software packages “heatmap”

and “ggplot2” to create visual representations, including heatmap

and volcano plots. We performed an intersection analysis and

created a Venn diagram to visually represent the overlap among

these ER stress-related genes and DEGs in GSE102485.
2.3 Functional and pathway
enrichment analysis

We conducted GO enrichment analysis and KEGG pathway

analysis on the ER stress-related DEGs using the R package

“ClusterProfiler” (16). We considered adjusted p-values of < 0.05

to be statistically significant in our analysis. Furthermore, we
TABLE 1 Data information.

Data Platform PDR Normal Other

GSE102485 GPL18573 22 3 5

GSE60436 GPL6884 6 3 0
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employed the Metascape database (https://metascape.org/) to

further explore the functional mechanisms. The criteria set were a

minimum overlap of 3, p ≤ 0.01, and a minimum enrichment of 1.5.
2.4 PPI Network construction and hub
gene identification

We used the STRING database (https://string-db.org/) to

explore the interactions among the ER stress-related DEGs (17).

A threshold of a combined score ≥ 0.4 was set to identify significant

interactions between these genes. The Cytoscape plugin MCODE

was employed to filter out important modules of core genes in the

PPI network with the following criteria: degree cutoff = 2, node

score cutoff = 0.2, K-core = 2, maximum depth = 100. To identify

hub genes, we utilized the CytoHubba plug-in (version 0.1) within

Cytoscape software. CytoHubba identifies hub genes based on the

consensus of multiple algorithms (MCC, MNC, Degree and EPC).
2.5 Analysis of immune cell infiltration

We utilized the CIBERSOFT algorithm from the R package

“IOBR” (18) to analyze the infiltration of multiple immune cell

subtypes in PDR and control samples from the GSE102485 dataset

with the transcriptome of neovascular membranes. Linear regression

analysis was conducted to analyze the correlation between the

expression of ER stress-related hub genes and immune cells. The

results were visualized using the R package “ggplot2”.
2.6 Cell culture

Human umbilical vein endothelial cells (HUVECs) (ATCC,

Cat. CRL-1730) were cultured in DMEM containing 10% fetal

bovine serum (FBS) and 1% antibiotic-antimycotic under

standard conditions (5% CO2, 37°C). The HUVECs in the

logarithmic growth phase were categorized into two groups for

the experiment: the control group and the high glucose (HG) group.

HUVECs cultured in a medium with 5.5 mmol/L glucose were

assigned to the control group, whereas those cultured in a medium

containing 30 mmol/L glucose were assigned to the HG group.
2.7 Western blot analysis

Protein extraction from HUVECs was performed using RIPA

lysis buffer containing protease inhibitors and phosphatase

inhibitors (Yesen, China). The protein concentration was

determined using the BCA protein assay kit (ZJ102, Epizyme,

China). Subsequently, proteins were separated on 10% SDS-

PAGE gels and transferred onto PVDF membranes (R9A84148,

Millipore). The membranes were then blocked in QuickBlock™

Western Blocking Buffer (P0252, Beyotime) for 30 minutes and

incubated overnight at 4°C with primary antibodies against TRAM1

(18243-1-AP, Proteintech) and TXNIP (12705-1-AP, Proteintech).
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The following day, the membranes were incubated with HRP-

conjugated secondary antibodies at room temperature for 1 hour.

Protein bands were visualized using enhanced chemiluminescence

(SQ201, EpiZyme, China), and protein densitometry was quantified

using ImageJ software (version 6.0; Media Cybernetics, Inc.).

b-actin (66031-1-lg, Proteintech) was used as the internal reference.
2.8 RNA extraction and qRT-PCR

RNA was extracted from HUVECs using the EZ-press-RNA

purification kit (EZBioscience, USA) according to the

manufacturer’s plan. Then, cDNA was reverse-transcribed from

total RNA using the reverse transcription kit (Takara, Japan) and

RT-PCR was conducted using TB Green® Premix Ex Taq™ II kit

(Takara, Japan). Primer sequences are detailed in Supplementary

Table S2. b-actin was chosen as the reference gene for normalizing

mRNA expression levels, and quantitative analysis was performed

using the 2-DDCT method.
2.9 Small molecular drug analysis for ER
stress-related DEGs

The Connectivity Map (cMAP) website was utilized to

investigate small molecule drugs with the potential to inhibit the

formation and progression of PDR (19). We submitted the 51 ER

stress-related DEGs to the cMAP website, focusing specifically on

the 46 upregulated genes, to identify potential small molecule drugs

that could inhibit the formation and development of PDR. The

score in the results list returned by cMAP represents the percentage

by which the reference gene set is more similar to the current

perturbation compared to the similarity of the query to the current

perturbation. Drugs with negative scores and high absolute values

are considered potential treatments because they can inhibit the

expression of ER stress characteristic genes.
2.10 Statistical analysis

An independent Student’s t-test was employed to compare the

two groups based on statistically significant differences of normally

distributed variables. For non-normally distributed variables, the

Wilcoxon rank-sum test was utilized. Statistical analysis was

performed using R (version 4.2.0), with a significance threshold

set at p < 0.05.
3 Results

3.1 Identification of DEGs and ER stress-
related DEGs

The study was designed according to the flow chart outlined in

Figure 1. Overall, 2451 DEGs were recognized in GSE102485, with

1815 genes displaying significant upregulation and 636 genes
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exhibiting significant downregulation. The volcano plots illustrating

the DEGs are presented in Figure 2A. Subsequently, employing a

filtering criterion of a correlation score > 3, we identified a total of 328

ER stress-related genes from the GeneCards database. By generating

Venn diagrams, a total of 51 ER stress-related DEGs were identified,

among which 46 were upregulated and 5 were downregulated as ER

stress-related DEGs (Figures 2B, C).
3.2 Functional enrichment analysis of the
ER stress-related DEGs

To further explore the potential biological functions of these ER

stress-related DEGs at the biological level, we conducted GO and

KEGG analyses. As depicted in Figures 3A–C, Biological Process (BP)

terms were predominantly enriched in “response to endoplasmic

reticulum stress”, “intrinsic apoptotic signaling pathway in response

to endoplasmic reticulum stress”, and “intrinsic apoptotic signaling

pathway”. In the context of Cellular Component (CC) ontology,

significant enrichment was noted in both the “outer membrane” and

the “mitochondrial outer membrane”. Turning to Molecular

Function (MF) analysis, the predominant enrichment was

identified in functions related to “cytokine receptor binding” and

“protein phosphatase 2A binding”. Moreover, illustrated in

Figure 3D, the KEGG analysis showcased enrichment in pathways

such as the “AGE-RAGE signaling pathway in diabetic
Frontiers in Endocrinology 04
complications”, “NOD-like receptor signaling pathway” and the

“TNF signaling pathway”. As illustrated in Figure 3E, the bar chart

depicts the results of Metascape enrichment analysis for the provided

gene list. The enrichment analysis of ER stress-related DEGs revealed

significant associations with biological processes such as lipid and

atherosclerosis pathways, immune responses including NOD-like

receptor signaling and infectious diseases like influenza.

Additionally, ER stress-related DEGs were implicated in cellular

responses to various stimuli, including abiotic and mechanical

stress, as well as pathways related to ER stress and apoptotic signaling.
3.3 Identification and analysis of ER stress-
related hub genes

To further elucidate the potential relationships among the proteins

encoded by these ER stress-related DEGs and to identify hub genes, a

PPI network analysis was conducted using STRING. The PPI network

comprised 51 nodes and 283 edges, with a highly significant

enrichment (PPI enrichment p-value < 1.0e-16) as shown in

Figure 4A. Subsequently, module analysis using the MCODE plugin

revealed the most significant module: Module 1, which included 18

nodes and 140 edges, with a cluster score of 16.471 (Figure 4B).

In the quest to pinpoint the hub genes among the ER stress-

related DEGs, multiple topological analysis algorithms, including

MCC, MNC, Degree, and EPC, were employed. The results from
FIGURE 1

The workflow of our research.
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the top 10 genes obtained from each algorithm were cross-

referenced, leading to the identification of 6 hub genes: BCL2,

CCL2, IL-1b, TLR4, TNF, and TP53 (Figure 4C). The location of the
6 hub genes on chromosomes is shown in Figure 4D.
3.4 Immune infiltration analysis

We used the CIBERSORT algorithm to assess the proportions

of different infiltrating immune cell types between the PDR group

and the control group. The bar chart presented in Figure 5A

illustrates the proportions of 22 immune cell types across the 25

samples. Compared to the control group, there was an increase in

eosinophil infiltration while memory B cells and T follicular helper

cell infiltration decreased (Figure 5B). Concerning the correlation

between hub gene expression and immune cell infiltration, there

was a notable negative correlation between the expression of BCL2,

CCL2, IL-1b, TLR4, and TP53, and the levels of infiltration of

memory B cells and T follicular helper cells (Figure 5C).
3.5 External validation of TRAM1, TXNIP
and ER stress-related hub genes

Typically, there is a degree of consistency observed between the

outcomes of the training set and those of the validation set. After

normalizing the raw data from the validation set GSE60436, we

found that in the comparison between the PDR group and the

control group, the expression differences of CCL2, IL-1b, TLR4,
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TNF, and TP53 were consistent with our results from the

GSE102485 dataset, and these differences were statistically

significant with a p-value < 0.05 (Figure 6A).

In addition, we cultured HUVECs in a HG environment

(30mM) to simulate the DR model in vitro. Firstly, we examined

the expression of the ER stress markers TRAM1 and TXNIP

proteins using Western blotting, which are key executive factors

of ER stress. The results revealed a significant upregulation of

TRAM1 and TXNIP protein levels in HUVECs after incubation

with high glucose (Figure 6B), indicating the occurrence of ER

stress. Subsequently, we employed qRT-PCR analysis to validate the

expression of ER stress-related hub genes. The results revealed a

significant upregulation in the expression of BCL2, CCL2, IL-1b,
TLR4, TNF, and TP53 in HUVECs after 48 hours under HG

conditions compared to the low-glucose environment

(Supplementary Table S3). These findings align with the results

obtained from bioinformatics analysis (Figure 6C).
3.6 Drug prediction for ER stress signature

To predict potential small molecule drugs that may inhibit ER

stress in PDR, we uploaded the upregulated ER stress-DEGs to the

cMAP online tool. We identified 8 drugs with the highest negative

scores (diazepam, FG-7142, benzanthrone, AR-A014418, rucaparib,

phenamil, quercetagetin, and parbendazole), indicating that they

may inhibit the expression of ER stress markers (Figure 7A,

Supplementary Table S4). Furthermore, we present the chemical

structures of these eight small molecular compounds (Figure 7B).
FIGURE 2

Identification of endoplasmic reticulum stress-related differentially expressed genes (ER stress-related DEGs). (A) Volcano plot of the DEGs in
GSE102485. Blue dots represent downregulated DEGs, red dots represent upregulated DEGs and gray dots show genes with no significant
difference. (B) Venn diagram of the intersection of DEGs in GSE102485 and ER stress-related genes. (C) Heatmap of the identified 51 ER stress-
related DEGs in GSE102485.
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4 Discussion

DR is a common microvascular complication in diabetic patients,

characterized by abnormalities in retinal blood vessels (20). Although

the exact pathological mechanisms of this disease are not fully

understood, high blood glucose levels are considered its major

triggering factor. The retina, as a highly metabolically active tissue, is

sensitive to light and rich in polyunsaturated fatty acids, making it

susceptible to oxidative stress (21). Emerging research underscores the

critical role of ER stress in maintaining cellular homeostasis (22).

Furthermore, excessive and prolonged ER stress is closely associated

with the increased risk of various acute and chronic eye diseases, such as
Frontiers in Endocrinology 06
DR, cataracts, glaucoma, age-related macular degeneration, and others

(23–25). Moreover, the involvement of ER stress in microenvironment

regulation underscores its potential influence on additional ocular

inflammatory conditions, such as uveitis and keratitis (5, 26). Recent

studies have shown that dysregulated ER stress regulation has become

one of the major contributors to the development of DR (9, 10). This

understanding provides important clues and potential targets for the

development of new therapeutic strategies.

Bioinformatics methods are increasingly utilized for aiding

disease diagnosis and exploring potential therapeutic targets for

PDR (27, 28). To the best of our knowledge, while biomarkers

related to autophagy, cell pyroptosis, and ferroptosis have been
FIGURE 3

Enrichment analysis of ER stress-related DEGs. (A) Bar plot of enriched GO terms. (B) Chord diagram showing the relationships between enriched
GO terms and associated genes, with colors indicating gene expression changes. (C) Chordal graph depicting expression changes of genes
associated with GO terms; points’ colors reflect upregulation or downregulation. The table lists GO term IDs and descriptions. (D) KEGG analyses
showing the enriched associated signaling pathways. (E) Metascape bar chart of the top 20 non-redundant enrichment clusters. The x-axis
represents the -log10(p) value. The y-axis lists the GO terms and KEGG pathways associated with each cluster.
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investigated in DR, there is currently no reported bioinformatics

analysis focusing on ER stress-related genes in DR (29–31). Our

study delves into the intricate molecular landscape of PDR through

a comprehensive analysis of gene expression profiles, ER stress-

related DEGs, immune cell infiltration, and potential therapeutic

targets. The amalgamation of multiple datasets, GSE102485 and

GSE60436, empowered us to unravel the complex interplay of

molecular events underlying PDR pathogenesis.

The identification of 328 ER stress-related genes, along with the

subsequent focus on 51 DEGs, enhanced our understanding of ER

stress in PDR. The upregulation of 46 genes associated with ER stress

suggests a pivotal involvement of this cellular stress response in the

disease, emphasizing its potential as a therapeutic target. The GO and

KEGG pathway analyses illuminated the biological processes and

pathways associated with ER stress-related DEGs. Enrichment in ER

stress response, apoptotic signaling pathways, immune-related

processes, and pathways related to lipid and atherosclerosis

underscored the multifaceted nature of PDR pathogenesis. The

Metascape enrichment analysis further expanded our

comprehension, linking ER stress-related DEGs to broader biological

processes and diseases. In fact, cholesterol levels are elevated in the

blood of type 2 diabetes patients, and there was a significant increase in

lipid peroxides in the vitreous humor of patients with PDR (32, 33).

Due to the presence of various lipid-processing enzymes in the ER, the

accumulation of free cholesterol and phospholipids rich in saturated

fatty acids on the ER membrane occurs during lipid overload. This
Frontiers in Endocrinology 07
results in ER stress and increased mitochondrial b-oxidation, triggering
the generation of reactive oxygen species (ROS), thus being closely

associated with the severity of the disease (34, 35).

The construction of a PPI network and identification of hub genes

shed light on the molecular interactions and central players in PDR.

BCL2, CCL2, IL-1b, TLR4, TNF, and TP53 emerged as pivotal hub

genes, implicating their involvement in modulating the complex

network of molecular events associated with PDR. The negative

correlation between hub gene expression and specific immune cell

types suggests potential immunomodulatory roles for these genes. The

pro-apoptotic and anti-apoptotic BCL-2 family members have been

demonstrated to localize to the ER (36, 37). Prolonged ER stress may

lead to the phosphorylation of IRE1 through TRAF2 and ASK1,

activating the c-Jun N-terminal kinase (JNK) pathway (38, 39). This

further results in the phosphorylation of the BCL2 protein, activating

pro-apoptotic members of the BCL2 family (such as Bad, Bak, Bax and

Bok), ultimately causing cell damage or even apoptosis (40). When the

ER stress signaling pathway is activated, it leads to the secretion of

immune-suppressive and metastasis-related cytokines, such as CCL2,

by tumor cells, reshaping the tumor microenvironment for immune

cell evasion. However, the STING inhibitor (C-176, H151) can alleviate

the ER stress response and reduce the secretion level of CCL2 in tumor

cells with high chromosomal instability (41). During ER stress, the

activation of the NF-kB pathway promotes the upregulation of NLRP3

and its substrate, IL-1b, in the NLRP3 inflammasome (42).

Simultaneously, the dissociation of IRE1a and PERK from BiP
FIGURE 4

Identification and analysis of ER stress-related hub genes. (A) PPI network of ER stress-related DEGs. (B) Subnetwork of hub genes from the PPI
network. (C) Identification of six candidates for hub genes by four algorithms. (D) The location of the 6 hub genes on the 22 chromosomes.
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facilitates the localization of NLRP3, leading to both NLRP3 activation

and apoptosis (43). Studies have revealed that ER stress can enhance

the production and secretion of TNF-a and IL-1b (44). Additionally,

TLR4 activation is known to induce inflammatory responses and lead

to the release of these inflammatory cytokines. Consequently, ER stress

and TLR4 may collaboratively promote the occurrence of

inflammatory reactions by regulating the production of TNF-a and

IL-1b, thereby playing a role in the development of inflammatory
Frontiers in Endocrinology 08
diseases. The upregulation of TP53 exacerbates the elevation of ROS

levels and calcium ion release in tumor cells, inducing ER stress

imbalance and promoting cell death in colorectal cancer cells (45).

The ER stress has a significant impact on the immune system,

with an important association between ER stress and immune

dysregulation through maintaining ER homeostasis and enhancing

sensitivity to inflammatory stimuli (46). The CIBERSORT algorithm

allowed for a comprehensive exploration of immune cell infiltration
FIGURE 5

The landscape of immune cell infiltration. (A) The abundance of 22 immune cells in PDR samples and control samples. (B) The fraction of each immune
cell type in the two groups. (C) Correlation between ER stress-related hub gene expression and immune cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 6

External validation of TRAM1, TXNIP and ER stress-related hub genes (A) Validation of ER stress-related hub genes in the GSE60436 dataset. (B) The
protein levels of TRAM1 and TXNIP were evaluated in cell samples by western blot. (C) The mRNA levels of BCL2, CCL2, IL-1Β, TLR4, TNF, and TP53
were measured in cell samples by qRT-PCR. Ctrl, control group; HG, high-glucose group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
FIGURE 7

Identifying small-molecule compounds via cMAP analysis. (A) A heatmap illustrates the top 8 negatively enriched compounds. (B) The chemical
structures of these 8 compounds.
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in PDR. Consistent with previous research results, changes in

eosinophil infiltration and the negative correlation between hub

gene expression and memory B cells and follicular helper T cells

provide insights into the immune landscape associated with PDR (47,

48). These findings underscore the intricate crosstalk between ER

stress and immune responses in the context of PDR pathogenesis.

A recent study suggests that TCF7L2 acts as a trigger factor for

ATF6-related ER stress signaling. The upregulation of TCF7L2

expression influences the permeability of HUVECs by activating

ATF6-related ER stress signaling (49). Furthermore, we further

analyzed the upregulation of ER stress-related markers TRAM1 and

TXNIP in HUVECs under high-glucose conditions, indicating that

ER stress is one of the pathological mechanisms of DR. The

validation of our findings in an independent dataset (GSE60436)

and in vitro experiments on HUVECs underscored the robustness

of our bioinformatics analysis. The consistent upregulation of hub

genes in both datasets highlights their potential as reliable

biomarkers for PDR. Furthermore, the identification of potential

small molecule drugs, such as diazepam and rucaparib, offers

promising avenues for therapeutic intervention in mitigating ER

stress in PDR.

While this study provides valuable insights into the gene

expression patterns and immune landscape associated with PDR,

it is important to acknowledge certain limitations. Firstly, the

relatively limited sample size may impact the generalizability of

the findings. Additionally, the utilization of specific datasets and

analytical tools in this study introduces the potential for dataset-

specific biases, and alternative datasets or analysis methods might

yield different outcomes. Future research endeavors should focus on

expanding sample sizes, validating findings, employing more

comprehensive study designs and analytical approaches to gain a

more nuanced understanding of the molecular mechanisms and

immune regulation in PDR.
5 Conclusion

In conclusion, our integrated analysis provides a holistic view of

the molecular and immune landscape associated with PDR, with a

particular focus on ER stress. The identified hub genes and potential

therapeutic targets offer valuable insights for future research and the

development of targeted interventions in the context of PDR. Further

experimental validation and clinical investigations are warranted to

translate these findings into tangible clinical applications.
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