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Giftedness and atypical sexual
differentiation: enhanced
perceptual functioning through
estrogen deficiency instead of
androgen excess
Kikue Sakaguchi1* and Shintaro Tawata2

1Research Department, National Institution for Academic Degrees and Quality Enhancement of
Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan, 2Graduate School of Human Sciences,
Sophia University, Chiyoda-ku, Tokyo, Japan
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also

manifest hypogonadism. Compared to the popular Extreme Male Brain theory,

the Enhanced Perceptual Functioning model explains the connection between

ASC, savant traits, and giftedness more seamlessly, and their co-emergence with

atypical sexual differentiation. Overexcitability of primary sensory inputs

generates a relative enhancement of local to global processing of stimuli,

hindering the abstraction of communication signals, in contrast to the

extraordinary local information processing skills in some individuals. Weaker

inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors

and the atypicality of synapse formation lead to this difference, and the formation

of unique neural circuits that process external information. Additionally,

deficiency in monitoring inner sensory information leads to alexithymia

(inability to distinguish one’s own emotions), which can be caused by

hypoactivity of estrogen and oxytocin in the interoceptive neural circuits,

comprising the anterior insular and cingulate gyri. These areas are also part of

the Salience Network, which switches between the Central Executive Network

for external tasks and the Default Mode Network for self-referential mind

wandering. Exploring the possibility that estrogen deficiency since early

development interrupts GABA shift, causing sensory processing atypicality, it

helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity

disorder, dyslexia, and schizophrenia based on phenotypic and physiological

bases. It also provides clues for understanding the common underpinnings of

these neurodevelopmental disorders and gifted populations.
KEYWORDS

savant syndrome, gender identity, free-energy principle, hyper/hypoesthesia, autism
spectrum condition, Klinefelter syndrome, estrogen deficiency syndrome
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1 Introduction

Various neurodevelopmental atypicalities are overrepresented

in males, and autism spectrum conditions (ASC), which have been

the targets of primary attention, are approximately three times more

prevalent in males than females (1) [however, some current

arguments maintain equal prevalence of ASC across sexes (2)].

There are also global sex differences in professional interest and

cognitive strength (3, 4). Classically, Geshwind et al. assumed that

high prenatal androgen levels cause the suppression of “dominant”

left cerebral cortex language field development, leading to learning

disorders, left-handedness, and susceptibility to immune diseases

and migraines (5, 6). In a more recent version, Baron-Cohen’s

Extreme Male Brain (EMB) theory posits that systemizing-

empathizing dimensions of cognitive preference explain ASC

tendencies in parallel with male-female brain differences (7–9).

There is a global sex difference in the 2nd to 4th digit ratio, and a

smaller (< 0) ratio is regarded to reflect a stronger androgen effect in

utero. The finger digit ratio is easy to measure and came to be the

most popular putative biomarker of prenatal androgen effects,

instead of handedness (10).

However, these premises are rebutted by many accounts that

failed to find an association between various androgen measures

and ASC symptoms (11), especially in ASC males (12). Brain

differences between ASC versus typically developed (TD) in

women somewhat overlap with male-female sex differences

among TD, but they have little overlap with ASC-TD differences

within men (13). The diagnosis of ASC does not imply a uniform

tendency, which covers a multifaceted spectrum (14), questioning

the plausibility of research strategies that investigate mechanisms in

parallel with typical gender differences.

Therefore, we focused on multiple chromosomal/genetic

syndromes associated with sex steroid deficiencies and the known

risks of ASC. About 5–20% of ASC are considered syndromic (15),

and many also show hypogonadism. Characteristically, 30–50% of

individuals with Klinefelter syndrome (KS), one of the most

prevalent syndromes with chromosomal aneuploidy, have ASC, in

contrast to the prevalence rate of 1% in the general population (16).

In other syndromes with hypogonadism, 11–80% of Prader-Willi

syndromes (PWS) are associated with ASC (15). Fragile X and

Down syndromes also show a high prevalence of ASC along with

other neurodevelopmental disorder (NDD) symptoms and
Abbreviations: ASC, autism spectrum condition; KS, Klinefelter syndrome;

PWS, Prader-Willi syndrome; FXS, Fragile X syndrome; PWP, Prader-Willi

phenotype; TD, typically developed; NDD, neurodevelopmental disorder; IQ,

intelligence quotient; EBM, extreme male brain theory; ADHD, attention deficit

hyperactivity disorder; 2D:4D, 2nd to 4th digit ratio; SCA, sex chromosome

aneuploidy; CAH, congenital adrenal hyperplasia; PCOS, polycystic ovarian

syndrome; GABA, g-aminobutyric acid; NMDA, N-methyl-D-aspartate; DMN,

default mode network; HPG axis, hypothalamic pituitary gonadal axis; AR,

androgen receptor; ER, estrogen receptor; GPER, G protein-coupled estrogen

receptor; DHT, dihydrotestosterone; LH, luteinizing hormone; LSD, lysergic acid

diethylamide; 5-HT, 5-hydroxytryptamine (serotonin); MDMA, 3,4-

methylenedioxymethamphetamine.
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psychiatric status. Hundreds of genes related to developmental or

psychiatric status overlap across different diagnostic categories (17,

18). The diagnostic criteria category is not as typological as

previously believed. The viewpoint of capturing status as a

spectrum covering diverse phenotypes has become predominant

(14). When investigating the effect of sex steroids on cognitive

function, it would be more promising to focus on syndromes with

known physiological factors and common endophenotypes instead

of being bound by the Diagnostic Statistical Manual criteria (19).

Another drawback of the EMB theory in explaining individual

differences in strength and weakness across cognitive domains, in

parallel with general sex differences, is that the prevalence of non-

heterosexuals among the ASC population is nearly twice that of TD

(20–22). At the same time, the prevalence of ASC in male and female

transgender people is approximately 7–10 times than in the general

population (23, 24). Furthermore, mediation analysis suggests that the

non-heterosexuality of individuals with ASD is mediated by a higher

incidence of gender dysphoria (20). Among KS individuals, some of

whom experience hypogonadism in utero, and self-perceived gender

nonconformity tends to co-emerge with NDDs (25). These pieces of

evidence suggest a common underlying mechanism between NDD risk

and atypical gender identity development.

In this paper, we have collected evidence that non-correlative

biopharmacological studies support that hypoestrogenism is a more

robust predictor of NDDs, and a cluster of outstanding abilities. The

apparent correlation between hyperandrogenism and such cognitive

traits can be explained as the result of negative feedback and a pseudo-

relationship (26, 27) (see section 2.1.3). This paper connects evidence

from atypical sexual development with the neurodevelopmental theory

of ASC, which is based on the free energy principle by Karl Friston.

Oxytocin plays an important role in early insular development by

helping neural predictive signals synchronized with external and

internal stimuli (28), leading to a sense of self-integration (29)

(Figure 1). The insula is a central part of integrating external and

internal sensations into self-image (28) and switches between the self-

referential Default Mode and Central Executive Networks in the neural

process of cognition (30). Steroids and oxytocin bidirectionally and

synergistically affect early neural development and function in adults,

and disruption of oxytocin activity has been reported in PWS, which

shows hypogonadism and a strong tendency toward ASC (31, 32). In

the rat brain, estrogen receptor beta (ERb) is distributed over most

cerebral cortex areas, mainly in layer V. Estrogen receptor beta is

abundant in the primary motor and somatosensory fields, and has a

lower density in the insula, followed by the cingulate cortex (33). The

cingulate cortex works together with the insula and connects incoming

sensation with emotional recognition and control. A recent hypothesis

regarding schizophrenia suggested that insufficient estrogen and

oxytocin levels are upstream etiologies. Moderate increases in these

hormones ameliorate the positive and negative symptoms of

schizophrenia by attenuating impairments in prepulse inhibition,

resulting in the facilitation of emotion recognition and social

interaction (34).

The brains of individuals with KS (16), ASC (35, 36), and

schizophrenia (37) commonly show the under-development or

function of the insula. Additionally, KS (16), ASC (38), and also

male-to-female transgender individuals (39) share commonalities
frontiersin.org
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in the overdevelopment of primary sensory areas (Figure 1).

Underdevelopment of the insula can lead to overfocusing on raw

sensory input processed in sensory areas and an inability to abstract

perceptive stimuli, resulting in shortcomings in emotional

regulation, motor coordination, and the processing of

communication signals, including language (28, 40, 41). This

paradigm also helps to focus on the co-occurrence of

endophenotypes across different diagnostic categories, such as

ASC, attention-deficit hyperactivity disorder (ADHD) (42),

schizophrenia, dyslexia, along with atypical self-integration, and

mystical thinking, which might become the source of wild

imagination and creative inspiration (43).
Frontiers in Endocrinology 03
2 Androgyny hypothesis of ASC and
underlying mechanism of
cognitive phenotype

2.1 Estrogen deficiency instead of
androgen excess hypothesis of ASC

2.1.1 Syndromes with hypogonadism known as
risk factors for ASC and other
developmental uniqueness

The most notable drawback of the EMB is the high prevalence

of ASC in several hypoandrogenic populations (44, 45). Klinefelter
FIGURE 1

Integration of information processing theories and endocrinological characteristics underpinning endophenotypes of ASC, KS, and savant/gifted. The
Enhanced Perceptual Functioning model and the neurodevelopmental theory based on the free energy principle, in combination with an
understanding of the functions of brain networks and the interoceptive feedback system, can explain endophenotypes commonly observed across
individuals with NDDs and savants/gifted individuals. The significance of each aspect varies across syndromes and subtypes within them. Brain
images at the bottom. Yellow: the surface expanded areas in infants with high ASC risks. Light green: the thicker cortical areas in male to female
transgenders. Green: the overdeveloped parts common to the two groups (Section 3.1.2). Individuals with KS also show similar overdevelopment
patterns (Section 3.2.3). E/I, excitation/inhibition. (Created with BioRender.com).
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syndrome (XXY and its variations with >2 Xs) is the most prevalent

sex chromosome aneuploidy (SCA), with a high end of prevalence

rate of ≈1:500 in males (46). The lifetime diagnosis rate of KS is low,

for example UK, 36% (47) and 23% (48); Australia, 50% (49); and

Denmark, 25% (50), and approximately one-tenth of them are

diagnosed prenatally (47). While typically known for tall stature,

eunuchoid physique, learning difficulties, and impulsivity, the

emergent phenotypes of KS are diverse. In a population who had

been diagnosed irrespective of symptoms, the prevalence of

gynecomastia and delay in school achievement did not differ from

that in a control population (51). Common and robust

characteristics include microorchidism, hypergonadotropic

hypoandrogenism, and infertility (16). Hypoandrogenism is

observed in > 75% of the diagnosed cases (16).

Among individuals diagnosed with KS, 30–50% are affected by

ASC (16), and 63% are diagnosed with ADHD (52). The incidence of

schizophrenia has been reported to be high; however, this observation

was based on a small clinical sample (53). Psychosocial atypicality is

generally considered to emerge together with hypogonadism features

(54), whereas there have been case reports of ASC manifestation

together with typical androgen production (55). A greater number of

X-chromosomes leads to more pronounced physiological and

cognitive characteristics (56, 57). In KS, ASC characteristics are

mild, and restrictions of interest do not emerge (58). Verbal

intelligence quotient (IQ) is typically in the low-normal range,

whereas performance IQ measuring visuospatial ability is not

impaired (59) and sometimes reaches a gifted range (>130) (60).

Boys with KS show relative strength in arithmetic (59), although

some report weakness in arithmetic problem solving. Executive

function is affected by diminished cognitive flexibility and reduced

working memory (53, 61). Testosterone supplementation improves

language skills and concentration (53) (Table 1), but not visuospatial

ability, which is generally considered to be promoted by androgens.

Hypoandrogenism develops after puberty; however, speech and

motor delays appear before that. Androgen secretion in the

peripheral and central neural systems prenatally (165) and infantile

mini-puberty (166) tends to be low, implying its influence on early

developmental stages. Prenatal androgen production rate is diverse,

as manifested in the micropenis manifestation in 10–25% of

diagnosed cases (16). Hypogonadotropic hypogonadism cases are

included in such a phenotype, and the percentage is as low as two in

160 KS individuals (167). Decrease in bone mineral density is

observed in <40% individuals, indicating lower estrogen

function (16).

The XYY karyotype is rare, with approximately 1:1,000 males.

They are characterized by tall stature, hypotonia, and cognitive

problems; however, apparent symptoms are rare. Therefore,

diagnosed individuals comprise a minority, with 0.7% (48), 5.9%

(47), or at most 20% of XYY cases (168). Circulating testosterone

levels are comparable to those in controls (48); however, infertility

rate is higher than that in typical males (169, 170). There are

sporadic reports of intersex states (testicular feminization) (171,

172) and transgender individuals (173) living as females. Among

diagnosed individuals, cognitive and psychiatric profiles are similar

to those of individuals with KS (53), but impairments in language

and social responsiveness are more severe (58). To assess subtle
Frontiers in Endocrinology 04
differences in testicular function, particularly during prepuberty,

inhibin B is a sensitive measure of testicular function, and lower

inhibin B levels are associated with more autistic and problematic

behaviors. Interestingly, pubertal rise in inhibin B is blunted, and

prepubertal anti-Müllerian hormone levels are high, similar to those

in KS. In XYY individuals, higher inhibin B or testosterone levels

predict better cognitive, academic, and behavioral outcomes (126),

contrary to the old expectation that XYY individuals are super-

males and aggressive. Estradiol levels are low-normal (174, 175),

and the osteoporosis rate is not high (48), suggesting that peripheral

estrogen action is typical.

Individuals prenatally diagnosed with XYY show a higher-than-

average IQ, in contrast to those who are postnatally diagnosed

because of physiological/psychobehavioral problems. Postnatally

diagnosed individuals with XYY show lower than average IQ and

more ASC symptoms; however, physiological symptoms are

comparable between the two groups. Although KS is

characterized by shrunken testes, XYY males tend to exhibit

macroorchidism, indicating a disrupted hypothalamic pituitary

gonadal (HPG) axis (174).

Another genetic condition that connects hypogonadism and

autistic cognitive predisposition is PWS. This is a genomic

imprinting disease that lacks a paternally imprinted 15q11-q13

gene region due to mutations or maternal disomy. In contrast to the

KS variations and XYY, but similar to XXXXY (57), the stature is

short. Disruption of food intake regulation leads to obesity. Both

males and females are since prenatally hypogonadal, adrenarche

starts early, and the ASC prevalence rate is 11–80% (15). Personality

problems are severe, with multiple learning difficulties and an IQ of

30–70 (176). Distinct from SCA is the inclination toward obsessive-

compulsive disorders. Language delay is typical, as observed in the

case of syndromic ASC, whereas special characteristics of PWS

include the numbness to pain, vomiting stimuli, and temperature

sensation. Additionally, individuals with PWS are very good at

jigsaw puzzle (177). Therefore, locus 15q11-q13 has been

considered to be responsible for savant syndrome (178), which

includes relevant genes, such as gamma-aminobutyric acid type A

receptor subunit gamma3 (GABRG3). Mutation of the gene affects

the activity of the GABAA receptor subunit, hindering inhibitory

signaling in response to GABA. However, this finding was not

replicated (179), implying that this region only explains a certain

subtype of savant syndrome. Interestingly, individuals with PWS

tend to be fond of caring for animals and babies (180), suggesting

that they are not indifferent to their interactions with

animate agents.

Fragile X syndrome (FXS) is a triplet repeat disease caused by

the extension of CGG repeats in the fragile X messenger

ribonucleoprotein 1 (FMR1) gene, which resides in the 5′ end

noncoding region on the X chromosome. This is the most

common cause of mental retardation in males, and the most

common single genetic cause of ASC. Affected individuals show

an elongated face, large ears, other physical malformations, and

difficulty in swallowing food. The FMR1 protein (FMRP) is one of

the most abundant proteins in the brain and is crucial for synapse

formation, regulating mRNA translation within dendrites. The

mutation of FMR1 targets GABA receptor subunits and
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TABLE 1 Sex steroid effects on cognitive domains with observed sex-differences.

Sense/
cognitive domain

General
gender
bias

Responsible areas
and receptors

Facilitating factor Undermining factor

Olfactory sensitivity/
discrimination ability

Female
favor (62)

Medial amygdala (63) on
significance evaluation
AR (64) and ERb (65)

Women in morning sickness (66)
Ovulatory period in midcycle
women (67)
ASC (68, 69)
Epileptic seizures (70)

Discrimination ability in women in
morning sickness (71)
ASC (72–76)

Visual memory
(copying complex figure)/
visual attention

Hippocampus
AR and ERb (77)

Androgen supply to FtM (78)
E2 to androgen-deprived males
(79)
Oxandrolone to KS (80, 81)

ASC and other NDDs (82–85)
TS, despite E2 supplementation (86)
KS (87)

Spatial memory
(localization, remembering
where thigs are located)

Female favor Hippocampus
AR and ERb (77)

DHT to hypogonadal men (88)
Androgen in KS (80), might be
partially mediated by ERb (89)
Oxandrolone to GDX male mice,
partially through ERb (89)

ERb-KO in female mice (90)
KS (80)
Androgen deprived men (91)

Mental rotation/problem
solving (paper-folding)

Male
favor (92)

Frontal cortex for TD
Visual cortex for ASC (93–95)

CAH women (96)
Short AR CAG repeat lengths in
TD men (97)
Longer AR CAG repeat and larger
2D:4D in gifted boys (98)
T levels intermediate of TD men
and women (99–101)
Heterosexual and gay men without
childhood gender nonconformity
(102)
Low E2 in men (103)

CAH men (96, 104)
High salivary T in TD men (97)
High salivary E2 in women (105)

Visual imagery Inferior parietal lobule esp. in non-
dominant sphere (106, 107)
Decreased activity of the Salience
Network (insula and cingulate)

ASC (68), Savants (68, 108–113)
Synesthesia (114, 115)
Gastaut-Geschwind syndrome (112,
116, 117)
Psilocybin on 5-HT2A (118–120)

Spatial imagery “Where” pathway, dorsal posterior
parietal cortex

Savants in ASC (121) High salivary T in TD men (97)

Object imagery: extracting
patterns from visual noise

“What” pathway, ventral inferior
temporal cortex

Dyslexia (106, 122)

Language ability Female favor Left occipital-temporal region
Left frontal gyrus

ASC, KS (52, 123), dyslexia
Diagnosed XYY (58)

Verbal fluency Female favor T to KS (53, 124) and hypogonadal
men (88, 125)

ASC, KS, TS (86)

Verbal memory TS, Methyltestosterone or
Oxandrolone to TS (86)
E2 to androgen-deprived males
(79)
T to hypogonadal men (88)

Social skills:
in deficiency, ASC symptoms

Female favor Higher inhibin B in XYY (126)
GABAB agonist to FXS (127)
T to KS (128)

PWS (15), FXS esp. PWP (127)
ASC, KS and other SCAs, esp. with
many X-chromosomes (56–58, 129)
Diagnosed XYY (53, 58), TS (86)
Down syndrome (130–132)
PCOS in women and in the subjects’
mothers (133, 134)
High androgen markers in women
(135)
Estrogen deficiency in the middle
frontal gyrus (136)
ESR1 SNPs in ASC (137)
Low estriol and high maternal serum
alpha-fetoprotein in pregnant mothers
(138)

(Continued)
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downregulates GABAA receptors. The protein is not synthesized

when the number of CGG repeats exceeds 200, leading to obesity

and behavioral problems. Anxiety, ADHD, and sensory

hypersensitivity are frequent symptoms. The perseverance on

topics is also frequent, sometimes meeting the criteria for

obsessive-compulsive disorder. The abnormal enlargement of the

testes begins at puberty. Significant to the current argument is the

Prader-Willi phenotype (PWP) of FXS, which comprises 10% of all

affected individuals; individuals with PWP have a syndrome similar

to PWS, with heightened prevalence of ASC (54%) compared to

30% among males with FXS (127). The imprinting pattern of

15q11-q13 is normal; however, the cytoplasmic FMRP interacting

protein 1 encoded by CYFIP1 in 15q11-q13 colocalizes and works

together with FMRP in dendrites to form neuronal structures, and

the downregulation of CYFIP1 results in this phenotype. In PWP,
Frontiers in Endocrinology 06
congenital hypogenitalism and hypogonadism emerge in 6 of 13

cases, with later development of macroorchidism in general (127).

The full-scale IQ, including verbal and performance IQ ranges from

to 36–49. In the molecular biological exploration of the common

factors between FXS and ASC, the delay in synapse maturation,

under-regulation of GABAA receptors and subsequent imbalance of

glutamine/GABA neural systems are considered primary

causes (127).

Additionally, chromosome 21 trisomy (Down syndrome) shows

comorbidities with ASC (1–42%) (130–132) and ADHD (34%)

(130). Individuals with Down syndrome show characteristic facial

features, low IQs, hypotonia, and poor motor coordination. In

males with Down syndrome, approximately one-fourth show

cryptorchism and 10% show hypospadias (181). Infertility is

prevalent, and hypogonadism is also reported to be high;
TABLE 1 Continued

Sense/
cognitive domain

General
gender
bias

Responsible areas
and receptors

Facilitating factor Undermining factor

Prenatal progestin and suppression of
ERb (139)
High amniotic estrogen (11, 140)
Prenatal dioxins and herbicides (141)

Fine motor-skills/visual-
motor integration

Androgen in KS (53, 142) ASC, KS, XXY (53), TS (86)

Interoception Posterior insula: sensory
integration
Anterior insula and anterior
cingulate gyrus: social self-
recognition (143)

Oxytocin in human (29, 30, 144)
E2 infusion in rat brain activates
insula (145, 146)
Generalized anxiety disorders (147)

ASC (28, 40, 41), KS (128)

Self-awareness Cortical mediomedial structure in
the DMN (148)

ASC (149, 150), schizophrenia

Executive function Frontal lobe T to KS, for concentration (53) KS in cognitive flexibility (59)
Hypogonadism in men (151)
Manipulated X-chromosome numbers
and GDX (77)
ASC and other NDDs

Working memory ASC, KS (152)

Behavioral inhibition:
opposite of impulsivity

Prefrontal cortex (153) E2 to androgen-deprived males
(79)
Increase with age (154)

KS, ASC, ADHD, and gifted (155)
Androgen deprivation in TD
men (156)

Perseverance, risk-seeking
towards rewards:
Sensation-seeking

Male
favor (157)

Reward system (158) Adolescent men (154)

Impulsive action
(go/no-go task)

Male
favor (159)

Dopamine system E2 in female rodents (160)

Impulsive choice
(delay discounting)

Female favor Dopamine system
Hippocampus

Orchiectomy (161)
ADHD, addiction
Hypogonadism, male prevalent
NDDs
Insufficient E2 in developmental
stage (162)

Supraphysiological T administration
(163)
Women in follicular phase with E2
rise (164)
Gray shaded lows correspond to cognitive domains that are regarded as stronger in males.
2D:4D, 2nd to 4th digit ratio; 5-HT, 5-hydroxytryptamine (serotonin); ADHD, attention deficit hyperactivity disorder; AR, androgen receptor; ASC, autism spectrum condition; CAH, congenital
adrenal hyperplasia; DHT, dihydrotestosterone; DMN, the Default Mode Network; E2, estradiol; ER, estrogen receptor; FtM, female-to-male transgender individuals experiencing significant
body dysphoria (transsexuals); FXS, Fragile X syndrome; GABA, g-aminobutyric acid; GDX, gonadectomized; KS, Klinefelter syndrome; NDD, neurodevelopmental disorder; PCOS, polycystic
ovarian syndrome; PWP, Prader-Willi phenotype; PWS, Prader-Willi syndrome; SCA, sex chromosome aneuploidy; SNP, single-nucleotide polymorphism; T, testosterone; TD, typically
developed; TS, Turner syndrome.
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however, sex steroid levels are relatively normal in the

postpubescent population. Approximately one-third of the

individuals show elevated LH or FSH levels, indicating primary

gonadal dysfunction (181, 182). Some individuals show savant

skills, such as music (183), but considered to be rare.

Symptomology related to ASC has eluded research attention in

this syndrome.

In the general population, registry-based studies in Sweden

demonstrated that individuals of both sexes with hypogonadotropic

hypogonadism or delayed puberty showed a significant increase in

the prevalence of ASC, ADHD, and intellectual disabilities compared

to matched controls (184). The impact of hypogonadism remained

significant even after excluding individuals with chromosomal

abnormalities from the analyses. Kallman syndrome is a genetic

disorder that manifests with outcomes associated with congenital

hypogonadism. Affected individuals show hypogonadotropic

hypogonadism, anosmia, an elongated face, large ears, and an

increased risk of osteoporosis, hearing loss, mental handicap, and

schizophrenia (151). Gonadotropin-releasing hormone-1 (GnRH-1)

neurons originate from the nasal placode, and atypical development

at this earliest neural development stage leads to disorganization of

HPG axis. Subsequently, several ASC risk genes require the

facilitation by androgen or estrogen to fulfill their typical

neurodevelopmental functions, as discussed in the next section.

Additionally, testosterone (185) and estrogen (see Section 2.1.3)

directly modulate GABAA receptor function, and their deficiency

leads to destabilized excitation in the limbic system.

Androgen deficiency affects hypogonadal populations mainly

on impairing communication abilities. Weaker activation of the

dopaminergic reward circuit (see section 3.3) and the amygdala (see

section 2.1.3) likely induces interpersonal anxiety and weaker

interpersonal motivation. Impairment in executive control of

behavior through weaker control of the prefrontal cortex (see

section 3.3.2) and in spatial memory through hippocampal

underdevelopment (3.2.1) are also possible outcomes. The effect

of androgen is partly through AR and partly through ERb in non-

aromatized or after aromatized form.

2.1.2 Cognitive characteristics explaining ASC-
savant traits and major possible target gene
expressions triggered by sex-steroid deficiency

The free energy principle is a broad theory in computational

neuroscience that explains the formation of neural circuits and

cognitive processes as the minimization of gaps between the

expectation of signals and reception of input. As a comprehensive

theory similar to Hebb’s rule, the free energy principle tries to explain

how the information from stimuli is joined with the inner process

representing phenomena in neural systems, and the closing gaps

updates neural wiring. The principle was originally formulated to

explain NDD phenomena, such as ASC and schizophrenia, and

explains the characteristics of these two apparently different

symptoms in the same model with different parameters. This

principle has been demonstrated to be applicable to the decision-

making process through the modulation of dopamine receptors (186),

and to the learning process through cholinergic neuromodulation (187).
Frontiers in Endocrinology 07
The neurodevelopmental hypothesis derived from the principle

posits that a major causal factor of ASC symptoms is the disruption of

GABA shift in early development (41) (Figure 2). The oxytocin-

induced GABA shift changes GABAergic neuronal function from

excitatory (depolarizing) to inhibitory (hyperpolarizing). Estradiol,

especially its work on ERb, is essential for organizing neural

distribution in the developing brain (188, 189). Excessive estradiol

delays GABA shift (190–192), and steroidogenesis dysfunction also

delays this shift. For example, high concentrations of environmental

disruptors, such as bisphenol A or bisphenol S hinder oxytocin

function and GABA shift, likely by disrupting endogenous estradiol

function (193). The delay or elimination of the shift leaves the brain

in an immature state, leading to inflation of excitation/inhibition (E/

I) ratio and a delay in closing the critical period postnatally, that is

supposed to prune excess synapses, affecting neuronal plasticity (194).

This leads to microstructural atypicality and hypoconnectivity of

neural circuits around the amygdala, insula, and cingulate cortex, as

well as psycho-behavioral atypicality. The GABA shift is an event that

changes the brain from an organizational neural distribution phase to

a synapse pruning phase in accordance with external sensory

input (195).

In contrast, the major psychological explanations of the

cognitive characteristics of ASC, covering communication

deficiency and higher performance in certain visual tasks, have

been: 1) the Weak Central Coherence (196, 197); 2) the Enhanced

Perceptual Functioning (EPF) (198, 199); 3) systemizing the brain

through the EMB (7); and in a classic form, 4) the Geschwind–

Galaburda hypothesis, which attributes the cause to the imbalance

of hemispheric development (5, 6). The Geschwind–Galaburda

hypothesis explains that higher prenatal androgen levels cause a

delay in the development of left cerebral hemisphere, as manifested

by an increase in non-right-handedness and atypical brain torque in

individuals with ASC (200). The neurodevelopmental hypothesis

indicates the order of development of these phenomena: the

difficulty in closing gaps between internal and external perceptive

stimuli and the expectation of received signals leads to non-optimal

attenuation of perception, as manifested in hyper/hypoesthesia 2),

and difficulty in summarizing perceived information 1), resulting in

skewed strength/weakness in cognitive domains 3) and the skewed

development of corresponding brain areas 4). Steroid deficiencies in

early development and adulthood are possible causes of failure to

attenuate neural signals. This could be manifested by overexcitation

over primary perceptual input (201), overdevelopment of the visual

cortex and primary sensory areas (38), glial cell atypicality

perturbing synapses and neural circuit maturation (202–204).

Delays in synapse maturation, reduced synapse pruning, and

atypical neural networks of glutamine and GABA (205, 206) are

hallmarks of ASC.

In higher-level cognitive processing, insular malformations are

key to understanding the hindrance to integrating higher-order ego

recognition and naming emotional experiences of self and others

(36). The insula integrates multimodal sensations from the outside

world and inner body into self-awareness. The posterior insula is an

integral part of passing interoception to the brain, and it comprises

visceral feelings and feedback from the autonomous nervous
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system. Disconnection from the interoception network leads to

alexithymia (207). The inability to anticipate one’s own bodily

responses leads to easy panicking and shyness (128). Although

ERs are not densely distributed, estrogen infusion into the insula of

the rat brain excites neurons by suppressing GABA release in this

area and activates descending sympathoexcitatory pathways (145,

146). On the other hand, higher oxytocin concentrations

correspond to stronger feelings of body ownership (29),

sensitivity to the social environment (144), and emotional

empathy in humans, possibly by strengthening the interoceptive

network and attenuating physiological reactions to negative stimuli.

Testosterone supplementation in individuals with KS improves
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communication and interpersonal skills, possibly by smoothing

the expectation of perceptual input and helping integrate socially

relevant information, thereby reducing anxiety about interacting

with others (128, 208).

Major ASC-susceptible genes are modulated by estrogen and

androgen, and steroid deficiencies can cause diverse cognitive

symptoms. Forkhead box protein P2 gene (FOXP2), originally

discovered in a family line with language developmental

disorders, and its paralog, FOXP1, the fifth major risk factor for

ASC and a common risk factor for other NDDs (209), are among

them. FOXP2 is expressed in earliest-born cortical neurons in the

subplate, and the protein binds to DNA to facilitate neural
FIGURE 2

Endocrinological environment affecting the timing of GABA shift. Perturbation of ERb activity hinders neural and glial cell development and adhesion.
This also interrupts the function of oxytocin (right pane) and delays the timing of the GABA shift. The extended immature phase of the brain
corresponds to weaker GABA inhibition and the skew to the serotonergic system compared to the dopaminergic system. Also, excessive estradiol
doses by endogenous/exogenous causes a delay in GABA shift and can induce epilepsy, with possible subsequent distortion of steroidogenesis and
functional pathways. ASC: autism spectrum condition; BPA: bisphenol A; BPS: bisphenol S; ER: estrogen receptor; GABA: g-aminobutyric acid; KCC:
K+-Cl- cotransporter; NKCC: sodium-potassium-chloride cotransporter. (Created with BioRender.com).
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development and cell-type differentiation (210). Non-aromatizable

androgens are necessary for normal expression and function of

Foxp1 and Foxp2 in rats (211). Foxp2 is expressed in the sensory

and motor-related cortices, cerebellum, and medial amygdala.

Knockdown of Foxp2 in mice compromises social behavior

processed in the medial amygdala, in dopamine-dependent

manner (63). In female zebrafish, Foxp2 deficiency leads to

disruption of the HPG axis (212), and FOXP2 is overexpressed in

human prostate cancer cells (213). These results suggest that

FOXP2 funct ions in the feedback on es t rogen and

androgen pathways.

Additionally, SH3 and multiple ankyrin repeat domains 3

(SHANK3) is another major gene factor against ASC, regulating

neuronal and synaptic excitability (214). In line with SHANK1 and

SHANK2, it functions on the N-methyl-D-aspartate (NMDA) and

glutamate receptors, and is involved in dendritic spine maturation

(215). SHANK3 is crucial for fixing and guiding the actin

cytoskeleton of neurons before synaptic transmission; knockdown

of SHANK3 reduces neuronal soma size, growth cone area, neurite

length, and branch numbers (216). In macaque monkeys with the

ASC-type mutant SHANK3, behavioral outcomes include sleep

disturbances, motor deficits, repetitive behaviors, and social and

learning impairments. Neuronal networks were also altered into

hypo-connectivity in the Default Mode Network (DMN: see section

2.2.1) and local hyper-connectivity in areas including the

somatosensory and posterior cingulate cortices (217). In human

cell culture, dihydrotestosterone (DHT) increased the expression of

SHANK by 35% and estradiol by 15%, indicating that both AR,

ERa, and ERb contribute to regulation (218). In contrast,

Srancikova et al. found that testosterone downregulates SHANK1

and SHANK3, and that gene expression was lower in the

hippocampus of male than of female rats (219).

In rodents, estrogen regulates sexual characteristics, puberty, and

neurobiological reproductive systems through ERa. Contrary,

estrogen modulates non-reproductive systems, such as anxiety,

locomotion, fear, memory, and learning, through ERb. If the action
of estrogen on these neural systems during developmentally critical

stages is insufficient, the typical development of neurons, synapses,

and glial cells is hindered (220). The action of ERb is not necessarily

estrogen-dependent (188); the androgen metabolite androstanediol is

also suggested to promote oxytocin function through ERb (221). In

human brain, areas with especially abundant ERb are somatosensory

cortex, hippocampus, thalamus, and cerebellum (222). Insufficient

estrogen action is a possible causal factor for various psychiatric and

NDDs that emerge with different sex ratios after puberty. In women,

psychiatric syndromes, including schizophrenia, ASC, ADHD, and

general anxiety disorders are exacerbated when estrogen levels are

low (222).

2.1.3 Estrogen deficiency sometimes emerges
with an increase in androgen markers in males

Differentially expressed gene analysis across different phenotypes

of ASC revealed that both androgen and estrogen signaling pathways

are related to these conditions. Androgen signaling is associated with

the emergence of a savant tendency (223, 224). Among ASC related

genes, scavenger receptor class B type 1 (SCARB1) which codes a
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membrane protein regulating cholesterol usage in cells is also

involved in sexual differentiation, and 5a-reductase type 1

(SRD5A1) gene controls cellular cholesterol intake and testosterone

metabolism (224). However, these two genes have relatively small

explanatory power among ASC-related genes (209). An apparent

increase in steroid biomarkers may be secondary to a deficiency in sex

steroid action during critical developmental periods and the

subsequent disruption of steroidogenesis. Additionally, steroids

functions not only trigger genetic expression cascades through

classical actions on nuclear steroid receptors. Instead, many

estrogenic neuromodulating mechanisms seem to depend on

receptors on the membrane, which directly and rapidly modulate

the strength of GABA or glutamate signal transmission in neurons

(225, 226), and the activities of glial cells (98, 227–229), which guide

neural extension, synapse modulation, and information transmission.

The G protein-coupled estrogen receptor (GPER) is a major

estrogen membrane receptor expressed in primate LH-releasing

hormone neurons in the olfactory placode and hypothalamus,

modulating the HPG axis (230). Male HPG axis negative

feedback loop is mainly controlled by estrogen instead of non-

aromatized androgen in pituitary, suggesting the insufficient

estrogen action behind the gonadotropin increase (231). GPER

plays an important role in the control of spermatogenesis in the

testes (231). Individuals with KS typically show hypergonadotropic

hypogonadism, and their testicular tissue shows a 12-fold increase

in GPER and a decrease in ERb mRNA expression compared to

control males, indicating insufficient estrogen control for testicular

function in this population (232). GPER is expressed in both the

central nervous system and peripheral tissues, including the

cardiovascular system. Among children with ASC, serum GPER

levels decreased with an increase in symptom severity. However,

serum estradiol levels did not correlate with GPER levels (233).

During the developmental phases in men, excess androgen

levels trigger negative feedback or are buffered within the high-

normal range, which does not necessarily deliver unique

developmental characteristics, as expected in women. For

example, fetuses with congenital androgen hyperplasia (CAH) are

exposed to androgens at supranormal concentrations in the adrenal

glands because of a lack of metabolic pathways. This causes

physiological and psychological masculinization (234, 235) only

in females, but does not increase the odds of ASC, according to a

recent meta-analysis (133).

When mothers suffer from polycystic ovary syndrome (PCOS)

and androgen production is elevated, the conceived babies’ risk of

developing ASC increases (134). Animal models suggest that in

girls, the elevation of prenatal exogenous androgen levels is likely to

induce postnatal upregulation of androgen production and activity,

whereas in males, this induces a decrease in luteinizing hormone

(LH) and underdevelopment of the testes (236). Estrogen

concentrations in affected mothers and offspring are not

consistently altered, but aromatase activity decreases in the

placenta of mothers (237). In mice, the offspring of androgen-

exposed mothers show downregulation of AR or ERa in a sex-

dependent manner in the hypothalamus, hippocampus, and

amygdala, showing anxiety symptoms. The expression of

serotonergic and GABAergic genes tends to increase in a sex-
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dependent manner (238). A survey of gifted boys, who would have a

common physiological background with savants reported that they

had smaller 2D:4D finger ratios, suggesting the influence of higher

androgens in the prenatal environment. However, salivary

testosterone levels were significantly lower, and performance on

reading in the eye test was poorer (239). This case might correspond

with the case of offsprings who have been exposed to exogenous

androgen in utero, while in male neonates, the association between

amniotic testosterone levels and the 2D:4D ratio is questioned

(240). Additionally, an initial report of smaller 2D:4D ratios in

individuals with autism (241) was not replicated (12), or was limited

to syndromic cases among men (242).

In an attempt to distinguish adults with Asperger’s syndrome

from those typically developed with 24 serum biomarkers, only four

markers were common between men and women. An increase in

LH and free testosterone levels was observed only in women; among

men, the main characteristics were higher levels of cytokines and

other inflammatory measures (135). Geschwind et al. pointed that

ASC and gifted are often suffering from autoimmune diseases (5).

Autoimmune diseases are more prevalent in females compared to

males in the general population. However, long-term aromatase

deficiency induces autoimmune diseases in mice (243).

Congenital estrogen deficiency results from the deletion of the

aromatase gene cytochrome P450 family 19 subfamily A member 1

(CYP19A1) or abnormal function of ERs (estrogen resistance). The

PWP of FXS, who are at high risk of ASC (127), shows aromatase

deficiency, with eunuchoid proportions, early onset metabolic

syndrome, and oligozoospermia, similar to KS, in combination

with cryptorchidism or macroorchidism (see section 2.1.1).

Among various endocrinological diseases with the depression of

estradiol levels, aromatase deficiency causes a large drop in estradiol

levels; testosterone levels are low in some cases, and high in others

(26). Mothers with fetuses affected by aromatase deficiency show

virilization during the third trimester. Congenital estrogen

deficiency in women leads to virilization of the genitalia,

decreased estrogen levels, and increased androgen levels (27). In

rats, prenatal exposure to synthetic progesterone in the form of oral

contraceptives results in ERb suppression in the amygdala and

ASC-like behavior (244). Estrogen deficiency leads to insulin

resistance, which hinders synaptic plasticity and dopaminergic

function in the ventral striatum, thereby inducing anxiety and

depression. Hypoactivation of the mesocorticolimbic and

nigrostriatal dopamine pathways has been suggested to

correspond to low social interaction motivation and stereotyped

behavior (245).

Deficiencies in ERb, CYP19A1, and ER coactivators in the

middle frontal gyrus can be a direct cause of ASC (136). Acid-

related orphan receptor alpha (RORA) is a transcription factor that

induces aromatase expression through a feedback loop at sex steroid

concentrations (246). In ASC population, RORA and aromatase

expression are greatly decreased (247, 248). In a survey of the

Japanese population, single nucleotide polymorphisms (SNPs) of

ESR 1/2 were found to be related to the severity of symptoms in

ASC. Human ER genes, ESR1 and ESR2, encode receptors that are
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homologues of ERa and ER b respectively, and ESR1 was concerned
with the impairment of social interactions, and ESR2 with

emotional regulation. However, ESR1/2 SNPs did not predict the

severity of social communication problems, stereotypies, or sensory

abnormalities (137). Among male and female transgender

populations, which tend to co-emerge with ASC, many gene

variants correspond to estrogen signaling pathways in sexually

dimorphic brain areas, but none to androgen pathways (249).

In the prenatal environment, low concentrations of

unconjugated estriol (uE3) and high concentrations of maternal

serum alpha-fetoprotein (MSAFP) in the maternal serum increased

the odds ratio of ASC prevalence in offspring (138). A low uE3

concentration is an indication of insufficient production of adrenal

steroid (dehydroepiandrosterone and others) in infants, and

MSAFP suppresses estrogen activity. Additionally, prenatal

exposure to progestin, which is prescribed to prevent threatened

miscarriage, has been reported to suppress the expression of ERb in

the fetal brain, thereby increasing the risk of ASC in rat experiments

and epidemiological studies (139).

The above evidence suggests that one of the main factors that

induce ASC is the depression of estrogen action; if the potential for

steroidogenesis in the fetus is intact, the androgen production rate

would be increased to compensate for estrogen deficiency. In

another case, an increase in exogenous androgen circulation

downregulates endogenous androgen genesis in the fetus, that will

cause estrogen deficiency subsequently; however, using a Danish

cohort sample, Baron-Cohen et al. showed an increase in various

estrogen and progesterone concentrations in amniocentesis fluids of

boys with ASC (11, 140).

In addition to syndromic ASCs that lack steroid hormones

during early development, there are known cases of externally

caused shortages of sex steroids that induce ASC. The responsible

environmental disruptors are dioxins and herbicides (141). An

analysis of umbilical codes suggests that exposure to high levels of

dioxins suppresses androgen production in male fetuses (250).

Bisphenol A (BPA) is a blocker of AR (251) and ER, affecting the

expression of multiple ASC related genes. Bisphenol A exposure in

pregnant rats increased neurite length and the number of neurite

branches in offspring of both sexes, while an increase in neuronal

cell death, the impairment of neuronal development in the

hippocampus and learning ability were observed only in male

offspring (252). The prefrontal cortex of adult Long-Evans rats

prenatally exposed to high concentrations of BPA showed an

increase in the number of neurons and glia in layers 5/6, but only

in males (253). In contrast, an epidemiological test using a public

human cohort demonstrated that the effect of BPA on ASC

susceptibility was more apparent in girls (254).

Studies have reported the disruption of steroidogenesis in

individuals with ASC, particularly alterations in metabolic

pathways before steroids are converted into sex hormones (255).

Along with estrogen, neurosteroids such as the progesterone

metabolite allopregnanolone, are crucial for neural cell

proliferation, migration, myelination, synapse formation, and

modulation of GABAA receptors in the cerebral cortex, thalamus,
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and hippocampus (256, 257). This function persists from the

earliest stages of brain development to maturity. Androgens show

similar functions or work in consort with estrogen, but their

importance in early neural development and cognitive

modulation seems to be secondary, as direct pharmacological

evidence of the effects of developmental androgen alteration is

limited. Such reasoning resolves the discrepancy, especially in

affected males, where researchers have largely failed to find an

increase in androgen markers prenatally or postnatally (133, 255).

One epidemiological support for the early idea that an

abnormal increase in steroidogenesis causes ASC comes from the

fact that peripubertal (15–19 years) individuals with ASC have a

higher incidence of genital/ovarian cancer. Mothers of individuals

with ASC also frequently experience sex hormone-responsive

cancers (258). The increased vulnerability to disease, likely

derived from the abundance of sex steroids, is more evident in

female ASC than that in male ASC cases. Some ASC-related genes,

such as FOXP1 and copy number variation, are known to suppress

tumors or cancer if they are intact, requiring further examination to

explore how such a genetic background interacts with steroid excess

contributing to cancer risk.
2.2 Extreme success in “masculine”
artistic-academic fields inversely correlate
with masculinity indices among men

2.2.1 Connection between developmental
disorders, savant/gifted, and atypical
sexual differentiation

Approximately 50% of individuals with savant ability are from

the ASC population (259), and the emerging ratio of sex differences is

approximately three men to one woman (260). Savant ability is

independent of total IQ scores. In the general population, prodigious

savants who show distinguished talents that are difficult to interpret

with common sense, are very rare, with only approximately 50

individuals worldwide. If the definition is expanded to talented

savants who show some distinguished abilities relative to other

domains of talent of their own, the prevalence among the ASC

population is estimated to be from 28.5% (260) to 42% (261) or nearly

50% (262). In the early stages of academic notice, savant art was

considered as an emotionless repetition of the gross amount of

memory without original creativity. This notion was later corrected;

savant art has its own originality, and is considered a model of the

root of creativity (262, 263).

In contrast, gifted individuals are defined as “those who show

exquisite talents in one or several fields (logical thinking, learning

ability, etc.), or those who show abilities of top 10 scores of a

population (264).” The greater the extraordinary ability, the greater

tends to be the developmental unevenness across cognitive domains

and social maladaptation. The behavioral output of gifted

individuals is often difficult to distinguish from or co-exists with

ADHD, obsessive-compulsive disorder, ASC, schizophrenia, and

avoidant personality disorders (155). Whether an individual is
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judged as savant or gifted is largely influenced by the academic

background of the report.

Using the Bayesian explanation of the free energy principle,

hypopriors (having fewer internal models prior to processing

stimuli) can explain hypersensitivity to sensory input, immunity

to being distracted by contextual information (better at copying

impossible figures), and incompetency in communication

dependent on summarized inference (265) (Figure 1). Therefore,

the EPF model in combination with the free energy principle does

not require supposing a lack of empathic motivation in the first

place, but suggests that the characteristics of perceptual processing

are the basis of both unevenness in the strength of cognitive

domains and communication inaptness.

The main premise of the EBM theory is that higher androgen

action on the prenatal brain increases ASC traits between and

within sexes. However, ASC traits are more observable among

hypoandrogenism conditions, contrary to expectations, except for

females with PCOS and offspring of mothers with PCOS (133). The

effects of maternal PCOS on offspring are under debate, with

complications from epigenetic effects, genetic inheritance, insulin

resistance (266, 267), and the effects of metformin administration

on mothers (268). Additionally, Baron-Cohen et al. admit that MRI

voxel-based morphological ASC-TD brain differences within sex are

not parallel between sexes, and the difference within men is

especially discordant with TD sex differences (13). They also

reported in adults, blood serum biomarkers, such as high LH and

free androgen index could distinguish between women with

Asperger’s syndrome and controls; however, the same marker set

did not have discrimination power for men (135).

The DMN is the functional connection of brain areas involved

in self-referential mind wandering, which becomes active when a

person is not focused on performing tasks. Researchers have

become increasingly interested in the DMN because of its ability

to discriminate atypical cognitive statuses. Baron-Cohen et al.

compared the connectivity strength of the DMN between sexes in

TD and within sexes across ASC and TD groups. They reported that

TD males and individuals with ASD had weaker connectivity in the

DMN (269). In contrast, in an analysis of whole-brain connectivity

without presupposed theories, the connectivity between social brain

areas (fusiform gyrus, superior temporal sulcus, inferior parietal

cortex, insula, and posterior cingulate cortex) and other areas was

stronger in female ASC (male-like), but weaker in male ASC

(female-like) (270). They argued that this result supports the

atypical sexual differentiation theory of ASC genesis instead of the

EMB theory.

Do gifted individuals tend to be hypermasculine or gender

neutral? Several studies support the latter tendency. The fields of

interest and strengths of gifted individuals tended to be gender-

neutral instead of following stereotyped gender categories (155,

271). Their gender identities also tend to be neutral (272). Another

survey showed that neutral gender identity was more evident

among gifted women than in men (273). Additionally, more

students in gifted classes recognized themselves as sexual

minorities than their non-gifted counterparts (274).
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3 Expectation mismatch on perceptual
input will lead to uneven development
of perceptual processing and difficulty
in information integration

3.1 Oversensitive perceptual input as the
basis of weak central coherence, extreme
systemizing, and
communication deficiency

3.1.1 Hyperacuity and overexcitability over
sensory input likely start at early development

Widely observed cognitive underpinnings among ASC and

other NDDs are the dominance of primary and local sensory

information processing, the weakness of abstracting from that

information, and having a global view. They also have difficulties

combining information of different modalities over time. The

peculiarities of vision perception have been extensively studied.

This can lead to excellence in information processing in certain

domains, such as in savants, and at the same time, difficulties in

real-time responses needed for communication (201, 275).

Perceptual distinctiveness observable daily is the inflation or

suppression of senses in response to external stimuli (149, 276), a

characteristic shared by the gifted (277). The high excitability of

neurons because of insufficient suppression by GABA, and

increased glutamine concentrations are considered physiological

factors (201).

Brain development starts from lower-level sensory areas;

subsequently, integration functions in the association areas and

prefrontal lobes develop over a long period. The peculiarities of

developmental trajectory in individuals with ASC are observable

immediately after birth; their brain size is larger than that of TD

individuals in the early stages of life (278), especially in the visual

cortex and primary sensory areas, followed by the inferior temporal

cortex (38) (Figure 1). Dominance of local visual processing seems

to start in infancy (279), indicating that peculiarity in perception

begins at the earliest development of primary sensory receptive

fields, inducing the overdevelopment of certain perception-oriented

information processing neural network traits, and neural

excitability (280). Hypersensitivity of receptive fields and sensory

processing in ASC individuals seems to be underlined by the

peculiar density in neural cell packing; in ASC postmortem brains

from infancy to young adults, mini-columns in the cerebral cortex

were narrower in Brodmann area 3 (primary sensory area), 4

(primary motor area), 9 (prefrontal association area), 17 (V1), 21

(temporal visual association area), and 22 (temporal auditory area)

(202, 281). In other specimens, ASC did not differ in cell structure in

area V1 (Brodmann area 17), and narrowing of the mini-columns

was most prominent in the ventral and orbitofrontal prefrontal

lobes (282).

The function of estradiol on ERb seems to be critical for early

neural/glial distribution and closing the immature phase shifting to

stimuli-dependent synapse modification (Figure 2). The time

phases and pathways of neural maturation differ across

perception modalities. In embryonic stem cell lines in which
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SHANK3 was mutated into the ASC type, olfactory placodal

neurons first emerged at the earliest stage of neurogenesis, and

then developed smaller cell bodies and more and longer neurites

compared to those in controls. These shifts were not observed in

cortical neurons, except for the shortening of neurites (283). Similar

changes were observed in the auditory areas, but in the opposite

direction, with a wider interval between mini-columns compared to

that in controls in the primary auditory and association fields. This

difference was particularly significant in the primary auditory field

in younger populations (284).

As stated previously, hyperacuity in the visual senses appears to

be underlined by differences in neural cell structures. Notable

characteristics of individuals with ASC include larger numbers of

near-distance neural connections (285), a larger proportion of

intra-hemispheric in contrast to inter-hemispheric neural

connections, an inclination to excitation in the neural E/I balance,

and heterogeneity of development between brain areas. The

incoherence of processing and communication speed across

modalities makes it difficult to combine information in real-time,

resulting in the creation of unique information-processing networks

that detour neurotypical processing in language areas, which may

manifest as a unique brain torque (200) or non-right-handedness

(286) in parts of the population.

3.1.2 Visual imagery and synesthesia as the bases
of savant ability

Typically appearing cognitive skills in savants are categorized as

follows: 1) calendar calculation; 2) music; 3) art; 4) mathematical

and number skills; 5) mechanical or spatial skills; and 6) “other

obscure skills” which include exceptional multilingualism, sensory

discrimination abilities, synesthesia, and knowledge in specific fields

(121, 287). For ASC individuals, Temple Grandin grouped

characteristic cognitive styles into the following: 1) visual

thinkers; 2) music and math thinkers (pattern thinkers); and 3)

verbal logic thinkers (288). Distinct cognitive strategies observable

in high-functional ASC, savants, and gifted are calculation,

architecture, and art creation by manipulating vivid visual

imagery (68, 108–113). Enhanced pattern detection is likely to

develop through exceptional sensory acuity and veridical mapping

across isomorphic structures (289).

Individuals with ASC tend to preferentially use the visual

cortex, in contrast to neurotypicals who use the prefrontal cortex

to solve visuospatial tasks, such as mental rotation, under

experimental conditions (93, 94). Furthermore, even in non-

spatial tasks, such as the N-back working memory task which is

typically processed verbally in neurotypicals, ASCs tend to use the

right hemisphere and posterior cerebral regions, including the

inferior temporal area and occipital lobe, indicating that they

solve tasks visually (95). Inferior temporal gyrus comprises

“what” ventral pathway in visual processing and responsible for

object imagery handling color, texture, and patterns. The area stores

single cells which index long-term memory, connecting semantic

significance to the images, and also processes letters and

manipulates numbers. Among individuals with ASC, visual

imagery itself, focus on detail, and low communication ability

were not related to savant abilities; however, high spatial mental
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imagery predicted a larger number of savant abilities (121). Spatial

imagery is processed in the dorsal visual pathway leading to the

occipito-parietal regions.

Synesthesia is another key to understanding savant phenomena

through atypical sensory processing. In synesthesia, the senses of

the different modalities are jointly perceived. Synesthesia is

relatively common in ASC populations and closely associated

with the emergence of savantism (290). Mental imagery ability is

closely associated with sequence-space synesthesia, leading to

savant abilities, such as calendar calculation (114, 115). The

inferior temporal cortex and areas adjacent to the fusiform gyrus

are responsible for grapheme-color synesthesia (291). In contrast, a

survey of a larger population reported that the emergence of

synesthesia was independent of the strength of visual imagery,

and that individuals with weak visual imagery could possess

synesthesia (292). Connectivity in the superior parietal or frontal

cortex is responsible for the synesthesia irrespective of its subtype

(291). Absolute pitch recognition is an aspect of veridical mapping

and sound-related synesthesia that sometimes hinders language

recognition, which requires the abstraction of information from

similar phoneme patterns (289, 293).

In summary, the endophenotype connecting the cognitive

characteristics commonly observed among ASC and other NDDs,

savant and gifted individuals is heightened sensory sensitivity (121).

The overdeveloped cortical parts in ASC high-risk infants overlap to

those in male-to-female transgender individuals experiencing

significant body dysphoria (transsexuals), in contrast to their

cisgender counterparts in the postcentral gyrus (primary sensory

area), left inferior temporal gyrus, and right lingual gyrus,

respectively (38, 39). The other overdeveloped regions in the

frontal and parietal occipital regions are located adjacent to each

other (Figure 1). Lingual gyrus is responsible for visual imagery and

creative thinking, in combination with other occipito-temporal-

parietal complex areas (294). Another indicator that possibly

reflects the early overdevelopment of sensory processing network

is eidetic memory and memories from the early stages of life.

Individuals with ASC have memories from an earlier age, not in

an episodic form, but with sensory details (295).

3.1.3 Untypical olfactory sensitivity
Olfactory sensitivity is another cognitive domain in which

individuals with ASD do not simply exaggerate their TD male

traits. Among TD individuals, olfactory sensitivity is superior in

females, and some individuals with ASC individuals are obsessed

with smell stimuli (68). Among the sensory symptoms, atypical

sensitivity to taste and smell is the most prominent in ASC, and is a

strong predictor of social deficits (72). Experimentally, some studies

supported heightened sensitivity in trace smell perception threshold

tasks in ASC (69), while others did not find differences from TDs

(296, 297) or found blunter olfactory sensitivity (hypotonia) (73)

and lower activity in the olfactory cortex (74), leaving the argument

inconclusive (298).

In TDs, arousal in the autonomous nervous system is increased

by the sniffing of human sweat during fear, but the response of

ASCs was the opposite (299). The authors argued that social

dysosmia (the inability to discriminate socially relevant
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chemosensory signals) is a causal factor in ASC’s incorrect

reading of others’ emotions (298). Experiments using general

odorant substances have shown that ASCs are rather impaired in

the discrimination ability of odorants, and that the evaluation of

smell stimuli is atypical (72, 75, 76).

In any standardized olfactory perception task to identify

sensitivity threshold, discrimination ability, and identification with

known stimuli, TD females outperform TD males, and the

difference is most evident at the threshold (62), culminating in the

ovulatory period when estrogen and androgen concentrations are

the highest (67). In contrast, hyperosmia in women (strong sense of

smell) is associated with morning sickness, but the emergence of

morning sickness does not coincide with fluctuation of sex steroids,

but with an increase in human chorionic gonadotropin (66).

Pregnant women with morning sickness perceive the smell of

food to be unpleasant. This does not necessarily correspond to a

lowered threshold of olfactory senses; discrimination ability is

undermined for some odorant stimuli (71). Unusual olfactory

perception in ASC seems to be similar, reflecting a hyperreaction

to perceived stimuli, but not necessarily the manifestation of

heightened sensitivity (76).

Notable changes in the olfactory sensitivity have been observed

in patients with epileptic seizures. In some cases, olfactory

hypersensitivity and phantom odors are perceived as precursors

or aftereffects of epilepsy (70). Epilepsy is found in 4–46% of

individuals with ASC, and is also common in syndromes that

contribute to ASC. An imbalance between excitatory and

inhibitory neural activity is thought to be a common mechanism,

and excessive estradiol activity in the brain during the critical period

is a risk factor for epilepsy (192). Synesthesia sometimes emerges

after epilepsy, drug intake, or brain trauma which cause the

shuffling of neural sensory mapping in cortical layer V. Brain

trauma converts neural environments into immature patterns,

resulting in atypical neural circuitry in adults. Excitation of

pyramidal neurons with the serotonin receptor, 5-HT2A, induces

destabilization of the thalamus, possibly resulting in reinnervation

with neural inputs from different modalities (300). Researchers have

suggested similarities between hyperosmia, phantom odor, and

synesthesia (301). Weakened inhibition from the frontal lobe due

to a lesion in the right inferior parietal lobule is suggested as a

trigger of hyperosmia (302).
3.2 Savants/gifted individuals excel in visual
imagery processing, but are poor in
spatial memory

3.2.1 Cognitive and neurological profiles of
individuals with SCA in reference to ASC

Brain morphology and cognitive characteristics in SCAs overlap

with those in ASC. In studies on KS, the total cerebral volume was

reduced, but the gray matter volume in the parieto-occipital and

sensorimotor cortices were significantly increased (16, 303) or at

least preserved (304), whereas the inferior frontal and temporal

areas, especially in the dominant hemisphere, were reduced. A

reduction in the frontal lobe corresponds to attenuated executive
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function, which is mostly evident in impaired mental flexibility (61).

In the general male population with hypogonadism, there is

evidence of an association between androgen deficiency and

compromised executive function (151).

Although androgen therapy in adult KS is ineffective in

improving mental flexibility, a mouse model suggested a

combined negative effect of the number of X chromosomes and

gonadectomy on the cognitive domain (77). Skews in cognitive

domains (performance IQ>verbal IQ) overlap with other SCAs,

except for Turner syndrome (karyotype XO) (53, 305). The ASC-

like tendency was more severe in other SCA (XYY and XXYY) (58,

129) than in KS. Therefore, the general assumption is that the

duplication of sex chromosomes, rather than sex steroid action

mainly affects cognitive atypicality in SCAs (306). However, as

suggested in Section 2.1.1, even XYY individuals which are generally

categorized to possess typical steroid levels share some phenotypes

suggestive of disruption of the steroid metabolism-feedback

pathway, similar to other syndromes with hypogonadism.

Chromosome-manipulated mouse models also suggest that the

effect of chromosome number on cognitive differences is

negligible, except when choosing same-sex conspecifics for

mating, but is moderated by the organizational effect of sex

steroids (307). A more comprehensive view is that the

activational function of steroids is altered in individuals with

SCA, as reported in animal models (308) and humans, probably

through the alteration of organizational pathways. For example, the

effect of CAG repeat on AR might be inverted in naturally

hypogonadal populations, such as KS and female populations; in

TD women, a longer CAG repeat, implying less active AR receptors,

is associated with a higher circulating androgen concentration

which is typically considered to be the marker of stronger

masculinization (99).

Individuals with Turner syndrome are females with estrogen

deficiency, characterized by superior verbal and poor visuospatial

abilities (53). This pattern appears to be in contrast with KS and

XYY, supporting the notion that sex chromosome allocation is

crucial for cognitive deficiency and strength patterns. However,

examination of task scores shows that they are more alike than the

first look; impaired visual memory and visual attention are also

observed in NDD with performance IQ strength, such as in

individuals with ASC without superior IQ (82–84) or at older age

(85). Visual memory corresponds to drawing complex figures

through recall, using such as the Rey-Osterrieth complex figure

test as a typical measuring tool. Androgen supplementation

improves the scores in female-to-male transgender individuals

experiencing significant body dysphoria (transsexuals) (78), and

estradiol improves the scores in hypogonadal males (79), but is

ineffective in women with Turner syndrome (86). In Turner

syndrome, superior verbal ability is limited to certain domains,

such as word knowledge, receptive/expressive abilities, verbal

memory, coemerging with lower verbal fluency, articulation, and

social skills. The prevalence rates of ASC, ADHD, and

schizophrenia are greatly increased compared to those in TD

women. Such overlaps of cognitive characteristics with KS and

XYY suggest Turner syndrome’s similarity to ASC with

hypergraphia (language production-strong subtype) (86).
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A lack of optimal estrogen supply through critical periods

throughout life leads to the suppression of verbal fluency, verbal

memory, and executive function, and increases the risk of

schizophrenia, ASC, ADHD, general anxiety disorder, and

depression (222). Such cognitive profiles correspond to KS, XYY,

and Turner syndromes. The general cognitive benefits of

testosterone supplementation in KS (124) and general

hypogonadal men (88, 125) are an increase in verbal fluency, but

not in visuospatial ability. In a comparison between testosterone

and DHT supplementation in hypogonadal men, only DHT was

effective in improving spatial memory (route and spatial array

learning tests), whereas testosterone improved verbal memory

(story recall), suggesting that the latter effect occurs after

conversion to estradiol (88).

Decreased brain volume in KS is known to occur in the

hippocampus, insula, striatum, and amygdala (16). However,

some studies did not find a reduction in the hippocampus (304).

Spatial memories of complex figures and places can be attributed to

the hippocampus. The hippocampus is abundant in both AR and

ERb (290), and estrogen deficiency impairs hippocampal

development. In female mice, ERb-KO causes a decrease in

visuospatial learning ability (90). In KS, oral supplementation of

the androgen, oxandrolone, in boys of 4–12 years was effective in

increasing hippocampal volume to the TD range (80). The volume

of the hippocampus positively correlated with scores on the Recall

of Designs subtest of the Differential Ability Scale (81).

Oxandrolone is a non-aromatizable androgen, but sometimes

causes gynecomastia through an unknown loop. Sex steroid

administration in gonadectomized male rats has revealed that the

cognitive-enhancing effect of androgen on the hippocampus is at

least partly through its action on ERb (89).

A comprehensive review of the effect of estrogen on androgen-

deprived males showed that estradiol treatment improved visual/

verbal memory and behavioral inhibition (79). It should be noted

that in the comparison of visuospatial tasks between animal models

and humans, the latter depends on the manipulation of visual

images, whereas the former depends on localization in actual

spatial environments.

3.2.2 Effect of steroid hormones across different
components of visuospatial abilities

The EBM theory gives the impression that visuospatial abilities,

such as mental rotation, are derived from higher androgen levels,

and that female-favored verbal abilities are more facilitated by an

increase in estrogen levels. Although previous reports have

supported these ideas, recent findings have refuted such a simple

relationship. The most robust sex differences in cognitive ability

have been found in mental rotations using two-dimensionally

depicted polygons (92). Lesbians and women with CAH exposed

to high levels of androgens during fetal life have higher scores for

mental rotation among women, whereas men with CAH have lower

scores than typical men (96). Two explanations are possible for the

latter association: androgen negative feedback may be in effect,

resulting in lower androgen action and visuospatial ability, or the

highly androgenic environment in the early male developmental

period reduces the capacity for mental rotation. Animal models
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have also shown inconsistent results regarding the effects of CAH

on males, and it cannot be determined which model is more

appropriate (104). Additionally, in a meta-analysis of CAH

studies, 2D:4D digit ratio was found to be an ineffective predictor

of spatial ability (96).

A notable finding was that although boys with CAH were

masculinized in hobby choice compared to their siblings, their

spatial and mechanical abilities were lower (104), suggesting that

higher prenatal androgen levels compromised their spatial and

mechanical abilities. Boys with androgen excess disorders

(Familial male precocious puberty) did not show an ability

difference in a virtual water maze task compared to controls

(309). A study of adult TD males found that mental rotation and

spatial visualization scores (paper folding and MacQuarrie blocks)

were negatively correlated with salivary T levels, whereas shorter

AR CAG repeat polymorphisms (stronger androgen action) were

associated with higher scores on spatial visualization tasks (97).

Visuospatial abilities, such as mental rotation, may be best in

populations with testosterone levels intermediate between those of

women and men (99, 100). A longitudinal investigation of cycle

effects for eight weeks reported a quadratic association between

salivary T and mental rotation scores within each sex (101). Among

boys, gifted individuals had superior mental rotation ability, and

higher scores were associated with lower prenatal androgen action,

as suggested by longer AR CAG repeat lengths and larger 2D:4D

ratios (215). Contradictory to this picture is a report that

heterosexual and gay men without childhood gender

nonconformity scored better in mental rotation than those with

childhood gender nonconformity (102).

Although various reports have found no association between

circulating androgen levels (103, 239, 310–312) or androgen

administration and visuospatial ability, particularly among men

(313), a robust relationship has been reported in which high

circulating estrogen levels suppress mental rotational capacity.

The mental rotation scores of naturally cycling women increase

during periods of low estrogen concentration (314), correlating

negatively with salivary estradiol levels (105). In men, lower

estrogen concentrations were associated with higher mental

rotation scores (103).

In contrast, spatial memory, which uses visuospatial working

memory to remember where things are located, is better in women,

and higher estrogen levels are more advantageous. Androgen-

suppressed, TD men undergoing androgen deprivation therapy

for prostate cancer, and long-term abusers of exogenous

androgens have reduced visuospatial working memory (91),

which can be caused by estrogen deficiency.

3.2.3 Similarity of visual processing
endophenotypes of dyslexia to ASC and savant/
gifted in reference to KS

The most robust and prevalent cognitive profile of KS is a

slightly inferior language ability, with dyslexia occurring in 50–70%

of cases (52, 123); auditory processing and verbal memory are the

weakest components (315). The cognitive characteristics of

individuals with dyslexia have similarity with those of savants and

gifted. A person may be gifted in mathematics, but has difficulty
Frontiers in Endocrinology 15
with sequential calculations and memorizing formulas (316). They

also excel in various artistic activities and are superior at extracting

patterns from visual noise (a measure of object imagery). Art

students showed a higher rate of dyslexia (106, 122) and weaker

speech perception skills.

In dyslexic brains, hypoactivation of the left occipital-temporal

region during language tasks (317) and underdevelopment of the

left frontal gyrus have been observed, especially among populations

that use logographic letters, such as Chinese (318). Brains of KS

have been reported to show a similar lack of dominance when

processing language tasks (319, 320), although not all (321).

The total brain volume in KS is smaller than that in TD (322),

with smaller volumes in the insula, frontal and temporal lobes, and

subcortical regions, such as the amygdala, hippocampus (16, 51, 94,

95), and cerebellum (see Section 3.2.1). In contrast, the sensorimotor

and parietal-occipital areas are enlarged, and the whitematter volumes

of the left cuneus and precuneus are the most robust, and extending to

the inferior parietal regions in some cases (152, 303, 323). The inferior

parietal lobule, which includes the angular gyrus (Brodmann area 39),

is important for problem-solving through visual imagery, and is

enlarged in mathematicians (107) and artists, especially in the non-

dominant hemisphere (106). This region is responsible for connecting

bodily sensations to spatial self-images. Stimulation of the angular

gyrus induces out-of-body sensations, as is often observed in ASC,

schizophrenia, and dissociative disorders (324).

It has been assumed that the blockage of language development

and general intelligence might be complemented by other routes of

information processing and outlets, as reported in the early cases of

savants excelling in dancing or music (183). Well-known examples

of paradoxical functional facilitation include acquired damage to

the left hemisphere, resulting in savant-like abilities, including

temporal lobe epilepsy, stroke in the dominant hemisphere, and

frontotemporal dementia (287). It has been implied that damage to

the frontal lobes enhances the function of the sensory areas in the

posterior part of the brain (325).

A decrease in fine motor skills and visual-motor integration is

also manifested in KS and XYY (53), and is ameliorated by androgen

supplementation (142), which is probably also associated with

improvements in verbal fluency. As observed in ASC, individuals

with KS are weak at working memory (152), and they make more

errors when presented with visual patterns that are difficult to

discriminate, especially when presented sequentially (87). These

phenotypes underlie the difficulties in language manipulation.

Autism spectrum conditions and predisposing syndromes of ASC

often include a history of epilepsy (ASC: 4–46%, KS: 5–17%). Epileptic

seizures alter neurotransmitter efficiency; however, only a few cases of

acquired savants are directly attributable to epileptic seizures (325).

Instead, endophenotypes that induce ASC, savant, or gifted

individuals, in addition to syndromes with chromosomal

abnormalities (326) and hypogonadism, should be considered to

share a predisposition common to epilepsy. Atrophy of various

brain regions has been observed in individuals with a long history

of epilepsy (327). Epilepsy is caused by neuronal hyperexcitation, and

astrocytic abnormalities are among its main factors. Sex steroid

concentrations affect the severity and frequency of epileptic seizures.

Notably, an overdose of estrogen aggravates neural overexcitation
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(328). Additionally, valproic acid, a major antiepileptic drug whose

intake by the mother induces ASC in the fetus, disrupts the fetal HPG

axis and causes autoimmune diseases in males (329).
3.3 High sensitivity to social cues, shyness,
and impulsivity

3.3.1 Shyness and high social anxiety, weaker
interoception network, and alexithymia lead to
insufficient communication skills

Contrary to the impression that individuals with autistic

tendency are “mind-blind” and inattentive to social cues, the

narrative of affected individuals support the view that they shut

down the flow of social information, because they are afraid of

getting panicked by emotional disturbance caused by involvement

with others and their gazes (330). Individuals with KS (128) and at

least subsets of ASC (331, 332) show increased physiological arousal

in response to social cues, such as the human eye and mouth, but

less activation of the amygdala and insula (333). It is difficult for

them to assess and label affective responses, that underlies

alexithymia (128). This makes them easily panicked by social

stimuli; thus, they avoid them.

When individuals perceive their own emotions, information

from the peripheral nerves inside the body, including visceral

sensations such as heartbeat and temperature, are input via the

insular cortex to the cingulate gyrus or the ventral medial frontal

cortex. Conscious access to internal receptive sensation

(interoception) is carried by the anterior insula and anterior

cingulate gyrus, and is central to simulating the emotional states

of others (143), thereby enabling to empathize with others.

Alexithymia does not necessarily mean that affected individuals lack

an interoceptive sense or emotion; however, it makes it more difficult to

explicitly identify emotions and communicate one’s feelings to others,

thereby reducing the capacity to empathize with others (28, 143, 332).

The insular cortex and cingulate gyrus are atrophied in KS (334), which

corresponds to difficulty in social interaction and language development.

Insular volume in ASC is not different from that in TD, whereas

hypoactivation in emotional empathy task corresponds to higher levels

of alexithymia (36). For KS (333) and ASC (36), the identification of

stimuli with negative emotional valence is difficult or hypoactivates

brain areas for processing emotions, which might also correspond to a

reduction in amygdala volume. To complicate the interpretation, the

insula in ASC shows hyperactivation in different types of tasks.

The most robust cognitive profiles in KS are shyness,

unassertiveness, withdrawal, impulsiveness, and anxiousness (306).

That is similar to that of ASC (335). Androgen replacement therapy

for KS improves verbal IQ, and evidence suggests that this is largely

due to reduced social anxiety (208). The reasoning is opposite to

general human population, whose right anterior insula is overactivated

in generalized anxiety disorders and in cases with high neuroticism,

and these individuals show high interoceptive sensitivity (147).

In contrast to the fear of evolutionarily relevant stimuli, which is

adaptive, anxiety is a high-vigilance response to undefined threats.

Oxytocin acts to reduce anxiety in humans and animals, which

helps to discriminate between actual danger and safety (336), and
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the candidate for its major activation site is bed nucleus stria

terminalis (220, 337, 338). In TD participants, intranasal oxytocin

administration during imaging social embarrassment situation

experienced by self or others reduced physiological arousal and

activation in the right amygdala and insula, especially among

participants with high trait anxiety. This also increases the

empathic ratings of others’ embarrassment and their own

embarrassment, supporting the idea that attenuation of

maladaptive vigilance to social stimuli attenuates alexithymia and

helps empathy with others (144). Although it is debatable how

circulating oxytocin levels correspond to its activity in the brain,

those with high concentrations of salivary oxytocin experience

stronger body ownership during the rubber hand illusion,

suggesting that oxytocin facilitates to joint top-down model of

self and interoceptive awareness of one’s own body (29, 30).

Oxytocin receptors exist in the insula, but their numbers are not

large, and their expression corresponding to social behaviors is

more apparent in the anterior cingulate cortex and amygdala (339,

340). With regard to control by sex steroids, although ERs are

relatively sparse in the insula, estrogen directly facilitates

descending sympathoexcitatory information transfer by affecting

GABAergic neurotransmission (145). In the majority of oxytocin

receptors in the brain, such as in the paraventricular nucleus (PVN),

the receptors are co-expressed with ERb and facilitated by estrogen

action (220). Additionally, the dihydrotestosterone metabolite, 5

-androstane-3,17 -diol (3 -diol), also activates the oxytocin

promoter through action on ERb (221). This could explain the

pathway by which androgen supplementation in KS reduces anxiety

and improves verbal ability.

3.3.2 Steroid deficiency decreases impulsive
action, but increases impulsive choice

Impulsivity and aggression are generally considered greater in

males and male prevalent NDD. Androgens are known to function

in the limbic system to regulate reproductive function, aggressive

behavior, and homeostasis. Specifically, AR is expressed in the brain

reward system, which includes the mesocorticolimbic ventral

tegmental area and nucleus accumbens, as well as the medial

prefrontal cortex, in male and female rodents, non-human

primates, and humans. Steroid hormone concentrations in the

mesocorticolimbic system are more than double those in the

circulatory system, and are still present six weeks after

gonadectomy, indicating an important role for local androgen

synthesis in the central nervous system (341). Androgens enhance

perseverance toward activities for greater rewards and risk-oriented

behaviors. Testosterone enhances tolerance to large uncertain

rewards. In contrast, the predominant personalities of KS and

ASC are shyness, social withdrawal, and clumsiness, and their

impulsivity is the opposite of that of bold risk seekers.

Several theories have attempted to dissect the conceptualization

of impulsivity. Sensation seeking by Zuckerman concerns the

inclination toward reckless behavior to increase reproductive

chances, and is higher in males (157), culminating in adolescence,

and then decrease (154). The sensation-seeking behavioral list

matches “masculine” risk-seeking behavior, and is suggested to be

more strongly connected to reward processing than impulsivity
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(158). In contrast, impulsivity refers to a lack of self-control or

deficiencies in response to inhibition. Impulsivity linearly decreases

with age in the general population from approximately 10 years of

age (154). Deficits in inhibitory executive function are commonly

observed in patients with KS, ASC, ADHD, and gifted individuals.

Typically developed males undergoing androgen deprivation

therapy experience emotional lability and impulsivity (low

inhibition) (156); a decrease in volume and neural activity in the

prefrontal cortex likely underlies this effect (153).

In the experimental paradigm, impulsivity is measured separately

using impulsive action and impulsive choice tasks (342). Both link to

the dopamine system; impulsive action is assessed with stop signal

and go/no-go tasks, which measure the reaction time that subjects

must respond to ‘go’ stimuli, while inhibiting responses to occasional

no-go/stop signals. In animal models, impulsive action is stronger in

males (159) and impulsive action in females is positively correlated

with circulating estradiol levels (160).

In contrast, impulsive choice concerns delay discounting,

corresponding to a skew toward choosing an immediate small

reward, in contrast to a delayed or uncertain larger reward. This is

a model of ADHD and addiction, in which impulsive choices are

stronger in females. This type of disinhibition is a model of

impulsivity observed in syndromes with hypogonadism and male-

prevalent NDD, and is attenuated by sex steroids. In laboratory

animals, orchiectomy increases, and supraphysiological testosterone

administration decreases impulsive choice in males (161). Although

ovariectomy and estrous cycle do not affect the performance in

female animals, women show a decrease of “now” bias in follicular

phase, indicating dopamine signaling facilitated by estradiol rise,

which speeds up subjective time perception and decrease impulsivity

(164). In other words, the results suggest that estradiol deficiency

affects frontoparietal circuits supporting working memory, and

makes the subject feel that the passage of time is slower, combined

with the effect on the hippocampus that is linked to discounting

behavior, leading to impatient decision-making.

The developmental theory of ADHD also suggests that insufficient

estradiol at the developmental stage leads to a hypofunctioning

mesolimbic dopamine system and inefficient reinforcement,

inducing the affected person to seek stronger stimulation (162). The

authors suggested that suboptimal estrogen and dopamine activity

decreases the opening time of NMDA receptors and hinders the

development of association and behavioral learning.
4 Mismatch between top-down
expectation and bottom-up
perceptive input leads to
unstable identity

4.1 Blockade of interoception leads to
hallucination and diffusion of
self-boundaries

The similarity between reports of unusual sensory/spiritual

experiences and visual thinking of savant-gifted individuals was
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noted early in Gastaut–Geschwind syndrome (112, 116, 117). The

inclination toward mysticism and excessive religiosity, which have

often been seen in great individuals with special talents, are also

characteristic of temporal/frontal lobe epilepsy, and some have

suggested that these are features of ASC (68, 343–346). There is a

category named the “hard-to-explain, paranormal sensations”

among savant abilities (287), and gifted children show a tendency

to have a precocious interest in self-transcendent questions and

report hard-to-explain experiences (347).

As described in 3.3.1, KS and ASC show atypical activities of the

insula and cingulate cortex, that joint internal perception

(interoception) and the top-down concept of self, and constituting

the Salience Network, which switches attention between executive

function and internal mind-wandering. A decrease in activity in

these regions has also been observed in individuals with

schizophrenia, with an increase in the severity of hallucinations and

heightened functional connectivity between the DMN and the Central

Executive Network (37)(Figure 1). This implies that failure to switch to

the executive network while attending to external stimuli constitutes

the core mechanism that induces positive symptoms in schizophrenia

(30, 348). In a typical conscious state, the projection pathway of

interoceptive perception works independently of the neural pathways

from the primary somatosensory cortex. Functional coupling between

these factors using the hallucinogen, psilocybin, is a model of the

unique perceptual experiences of savant-gifted individuals (118–120).

Bioactive compounds which work as psychedelics, such as

serotonin, lysergic acid diethylamide (LSD), psilocybin, and

dimethyltryptamine (DMT), act on the serotonin receptor, 5-HT2A,

and mainly induce visual hallucinations and mystical feelings.

Cortical hyperactivation of 5-HT2A has been suggested to disrupt

the thalamic gating of sensory and cognitive information (349, 350).

Approximately one-third of the autistic population show 50–70%

increase in blood serotonin levels (351, 352), which is called

hyperserotonemia. Hyperserotonemia is more prevalent in the

prepubescent and male populations. The density of serotonin

transporters and 5-HT2 is decreased in adult ASC brains, especially

in the anterior cingulate cortex (353, 354), suggesting the

dysregulation of serotonin function. Selective serotonin reuptake

inhibitors work on subsets of individuals with ASC to ameliorate

adverse behaviors (352). Serotonin dysregulation is also observed in

individuals with FXS (355). A delay in GABA shift disturbs the shift

from serotonergic to dopaminergic neurons (Figure 2).

Whi le indiv iduals wi th schizophrenia exper ience

depersonalization feeling and the sense of being manipulated by

others, ASC has the sensory peculiarity as “difficulty in

understanding the boundaries between self and others” (149). The

central area that generates the subjective awareness of “self” as a

reference to the surrounding environment is the cortical

mediomedial structure within the DMN, which is active during

self-resuming mind wandering (148). Activity in the DMN (medial

prefrontal cortex, anterior/medial cingulate, and inferior parietal

lobule), while performing self-referential tasks was consistently

lower in the ASC in various experimental paradigms, suggesting

that the highest-order self-concept is difficult to form (150).

The Bayesian brain model based on the free energy principle

suggests that disruption of the interoception/Salience Network
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results in overfocusing on sensory input, and vice versa (28, 40, 41),

which manifests as sensory oversensitivity in various NDDs and

savants/gifted individuals (155). At the same time, the failure to

select and hand over that external information to internal

references, that form the concept of the world and self, results in

a conscious state similar to that under the effect of sensory

deprivation and hallucinogens.
5 Discussion and future direction

In this paper, we reviewed the evidence supporting that ASC is

likely to co-occur with atypical sex differentiation, androgyny,

contrary to the prediction by the EMB. We discussed its

physiological factors and specificity of perceptual processing

shared by savants and gifted individuals, with reference to the

conditions of various sex differentiation diversities.

Although different neurosteroids affect the regulation of GABA

shift (Figure 2) and subsequent behaviors in a unique manner (257),

estradiol and ERb seem to be among the main upstream factors that

control early neural cell development and distribution, and the

maturation timing of the developing brain. Theoretically, excess

estrogen during early development can delay this shift; however, the

observation of syndromic NDD cases and emergence patterns of

giftedness suggest that hypogonadism is a more prevalent cause of

such atypicality. Apparent hyperandrogenism can be explained by a

reflection of deficiency in estrogen regulation in animal studies and

human clinical cases. Combining the neurodevelopmental

hypothesis with the psychological EPF model, we suggest a new

paradigm to explain putative sex differences in strength/weakness in

cognitive traits. They might be influenced by the balance of steroid

actions, but not in a simple dichotomized manner, such as male-

favor/female-favor. As it is indicated by strong neurosteroid

function of estradiol, many apparent “male-favor” cognitive

function is likely to be affected by estrogen or ERb action (Table 1).

Variations in the endophenotypes of NDDs can be explained by

alterations in shift timing and weight differences in each neural

factor, caused by genetic and environmental influences. For

example, the same SCA states show diverse manifestations of

symptoms, ranging from none to ASC, schizophrenia, ADHD,

and their combination. The insufficient functionality of androgen

and estrogen is known to hinder the typical function of ASC-related

genes, such as FOXP2 and SHANK3, which can lead to an ASC-like

phenotype. If only EPF is apparent, difficulties in language

processing and symptoms of dyslexia may be more pronounced.

If the imbalance between disinhibition of neural activity, control of

executive function, and attention switching is more pronounced, it

would lead to more ADHD-like features than ASC (356).

In humans, the critical period for the GABA shift extends

postnatally to the first 12 months. The primary cause of shift

delays and various NDDs is considered to be the downregulation

of Potassium Chloride Cotransporter 2 (KCC2) (194). Steroid

regulation of the shift varies across brain areas and with the

subject’s sex, requiring a thorough examination of each
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endophenotype. Sex differences appear even before the peak of

androgen secretion from the testes, suggesting a genetic background

that affects endocrinological influences. Additionally, toxicological

analysis has shown that the primary critical period for ASC is very

early, starting from the time of neural tube closure to the end of

second trimester. This occurs slightly later in schizophrenia,

culminating between first and second trimesters (357). The risk

periods extend to over three years of age for ADHD (357). The first

and second trimesters are time windows for neurogenesis and

neuronal migration (358). If estrogen deficiencies are critical in

deriving NDD endophenotypes in hypogonadal individuals, as we

suggested, the primary factor to produce ASC-like symptoms would

be the insufficiency of ERb functions in neural cell development,

while each manifestation type will be later modified by the

maturation shift in each neural system for individual timing.

The free energy principle suggests that in ASC, sensory

perception is too precise, while top-down inference is weak,

inducing a large Bayesian surprise at every time of perception,

requiring recalculation (41). In contrast, perceptive information is

less precise in schizophrenia, allowing inner models to go astray and

elude from correcting inferences (359). Further studies are required

to clarify when and how receptive precision diversifies across these

two conditions.

The formation of an inner image and its extension to an atypical

sensation, such as a feeling of dissociation or synesthesia, is a cue for

understanding underlying mechanisms. Pharmacologically and

epidemiologically, serotonergic hyperactivation of 5-HT2A induces

a mismatch between top-down self-image inference and bottom-up

perception, transcending the boundaries of input source areas,

leading to deep hallucinations, including ego dissolution (119).

Thus, ASC and gifted individuals, not only those with

schizophrenia, tend to have unusual beliefs. Serotonergic

regulation is disrupted in ASC, while intracellular concentration

of 5-HT is high in many of them. The extended immature phase

before the GABA shift may be the cause of the atypicality of the

serotonergic pathway; however, its interaction with steroids and

oxytocin function is yet to be elucidated.

Recent progress in the therapeutic use of psychedelics is likely to

open the way for answering this question. A drug called ‘ecstasy,’

3,4-Methylenedioxymethamphetamine (MDMA) promotes

affiliative feeling toward others. While MDMA does not bind to

the 5-HT2 receptor, it induces the release of serotonin and oxytocin.

This drug is effective in alleviating anxiety in individuals with ASC

or post-traumatic stress disorder, opening a critical period for social

reward learning neural circuits for reinnervation (360). A rodent

study demonstrated that the critical period opening characteristic is

not limited to MDMA, but is shared with LSD and psylocibin,

which worked on 5-HT2 (361). Psychedelics with various activating

targets result in the modulation of extracellular matrix, such as

fibronectin, receptors, and proteases, allowing the re-wiring of the

social reward learning system. The extent to which such after-

corrections have a durable effect in individuals with altered

endocrinological environments, such as hypogonadism, requires

further investigation.
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