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Background: Diabetic ketoacidosis (DKA) is a frequent acute complication of

diabetes mellitus (DM). It develops quickly, produces severe symptoms, and

greatly affects the lives and health of individuals with DM.This article utilizes

machine learning methods to examine the baseline characteristics that

significantly contribute to the development of DKA. Its goal is to identify and

prevent DKA in a targeted and early manner.

Methods: This study selected 2382 eligible diabetic patients from the MIMIC-IV

dataset, including 1193 DM patients with ketoacidosis and 1186 DM patients

without ketoacidosis. A total of 42 baseline characteristics were included in this

research. The research process was as follows: Firstly, important features were

selected through Pearson correlation analysis and random forest to identify the

relevant physiological indicators associated with DKA. Next, logistic regression

was used to individually predict DKA based on the 42 baseline characteristics,

analyzing the impact of different physiological indicators on the experimental

results. Finally, the prediction of ketoacidosis was performed by combining

feature selection with machine learning models include logistic regression,

XGBoost, decision tree, random forest, support vector machine, and k-nearest

neighbors classifier.

Results: Based on the importance analysis conducted using different feature

selection methods, the top five features in terms of importance were identified as

mean hematocrit (haematocrit_mean), mean hemoglobin (haemoglobin_mean),

mean anion gap (aniongap_mean), age, and Charlson comorbidity index

(charlson_comorbidity_index). These features were found to have significant

relevance in predicting DKA. In the individual prediction using logistic regression,

these five features have been proven to be effective, with F1 scores of 1.000 for

hematocrit mean, 0.978 for haemoglobin_mean, 0.747 for age, 0.692 for

aniongap_mean and 0.666 for charlson_comorbidity_index. These F1 scores

indicate the effectiveness of each feature in predicting DKA, with the highest

score achieved by mean hematocrit. In the prediction of DKA using machine

learning models, including logistic regression, XGBoost, decision tree, and

random forest demonstrated excellent results, achieving an F1 score of 1.000.

Additionally, by applying feature selection techniques, noticeable improvements
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were observed in the experimental performance of the support vector machine

and k-nearest neighbors classifier.

Conclusion: The study found that hematocrit, hemoglobin, anion gap, age, and

Charlson comorbidity index are closely associated with ketoacidosis. In clinical

practice, these five baseline characteristics should be given with the special

attention to achieve early detection and treatment, thus reducing the incidence

of the disease.
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1 Introduction

Diabetic ketoacidosis (DKA) is a potentially life-threatening

metabolic complication associated with diabetes mellitus (DM).

DKA is characterized by a severe lack of insulin and increased levels

of counter-regulatory hormones, which can cause the accumulation of

ketones in the body. If not promptly diagnosed and treated, DKA can

lead to serious complications and even death. Therefore, it is critical to

closely monitor DM and take appropriate measures to prevent DKA

from developing or to swiftly manage it (1). DKA can develop rapidly,

often taking place within 24 hours (2). It can even occur earlier in

patients treated with short-acting insulin, such as Humalog, with

metabolic changes potentially occurring 1.5 to 2 hours sooner (3).

Infection is a frequent precipitating factor for DKA worldwide and

accounts for approximately 30-50% of DKA cases. Among potential

infections, urinary tract infections and pneumonia are among themost

commonly associated with DKA. Other factors that can trigger DKA

include concurrent health conditions such as surgical procedures,

trauma, myocardial ischemia, and pancreatitis. Psychological stress

andmedication non-compliance, particularly with insulin therapy, can

also contribute to the development of DKA (4).

One of the main triggers for DKA is insufficient insulin. In the

absence of adequate insulin, blood glucose levels rise, leading to

increased breakdown of triglycerides in adipose tissue and release of

a large amount of free fatty acids. More free fatty acids enter the

kidneys through the liver, causing an increase in gluconeogenesis in

the liver and releasing more glucose into the bloodstream. In an

environment of high blood glucose and insufficient insulin, the liver

begins to excessively produce ketone bodies, including beta-

hydroxybutyric acid, acetoacetate, and acetone. The accumulation of

ketone bodies in the blood results in increased blood acidity,

ultimately leading to ketoacidosis. Ketoacidosis is one of the most

significant physiological effects of DKA. Excessive ketone bodies cause

an increase in blood acidity, affecting acid-base balance and potentially

leading to an acidotic state. Due to increased urine output caused by

high blood glucose and ketoacidosis, patients may experience severe

dehydration. This can lead to electrolyte imbalances, reduced blood

volume, and blood concentration. Dehydration and hyperglycemia
02
may result in disturbances of sodium, potassium, and other

electrolytes, potentially triggering arrhythmias and other severe

physiological problems. DKA can negatively impact multiple

organs, including the heart, kidneys, and nervous system. Recent

progress in medical technology has led to significant advances in

treatment options for DM. However, despite these developments, the

incidence and mortality rates associated with DKA remain high. As

the global prevalence of DM continues to rise, the incidence of DKA is

also increasing year by year (5). A study involving 28,770 individuals

under the age of 20 with DM found that among these participants,

94% did not experience DKA, 5% had a single episode of DKA, and

1% had at least two episodes of DKA (6). The mortality rate for DKA

varies between 1% and 5%, with the highest mortality rates typically

observed among elderly individuals and those with complications

related to their diabetes (7). It is worth noting that cerebral edema, a

complication that can occur as a result of DKA, is the leading cause of

death among individuals under the age of 24 with DM (8).

Research has shown that there are 100,000 hospitalization cases

of DKA in the United States every year, accounting for 4-9% of all

discharge records of diabetic patients (4). The treatment of DKA

requires a significant amount of healthcare resources. In adult type

1 diabetes patients in the United States, direct medical care costs

account for 1/4 of the total expenses (9). Indeed, effective control

and prevention of DKA are paramount in reducing healthcare costs.

The emergence of computer technology has opened up new avenues

for utilizing machine learning techniques to support doctors in

disease diagnosis. By leveraging these technologies, healthcare

professionals can potentially enhance their diagnostic accuracy

and efficiency, leading to improved patient care and cost-

effectiveness. Furthermore, given the high risk and poor prognosis

associated with DKA, the development of a risk prediction model

specifically for this condition is of great importance. Such a model

can aid in identifying patients who are at higher risk of experiencing

DKA, allowing for targeted interventions and preventive measures.

By implementing a risk prediction model, healthcare providers can

potentially reduce the incidence of DKA episodes, improve patient

outcomes, and mitigate the economic burden on both the

healthcare system and patients (10).
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This study combines the existing public dataset MIMIC-IV with

machine learning techniques for healthcare analysis. By employing

feature selection methods (random forest, Spearman correlation

analysis), baseline characteristics are optimized to identify five

baseline characteristics highly correlated with DKA. Based on the

abnormality of these five highly correlated baseline characteristics,

early warning can be given in the early stages of the disease, assisting

clinicians in clinical diagnosis, providing more effective treatment

plans, and reducing the incidence of the disease and patients’ suffering.

Meanwhile, this study utilizes six machine learning methods to

establish a risk prediction model based on DKA, including logistic

regression, XGBoost, decision tree, random forest, support vector

machine, and k-nearest neighbors classifier. Experimental results

demonstrate the effectiveness of feature selection, as the five

optimized baseline characteristics can accurately predict the risk of

DKA. The research process of this paper is as depicted in Figure 1.
2 Method

2.1 Databaset

The MIMIC dataset was established in 2003 with the support of

the National Institutes of Health in the United States. It was jointly

created by the MIT Laboratory for Computational Physiology, the

Beth Israel Deaconess Medical Center (BIDMC) affiliated with

Harvard Medical School, and Philips Healthcare (10). The dataset

utilized in this study is known as the ‘Medical Information Mart for

Intensive Care IV’ (MIMIC-IV). It encompasses a wide range of

data, including demographic information, disease diagnoses, vital

signs, laboratory tests, treatment details, survival status, and other

comprehensive clinical records. Compared to its predecessor,
Frontiers in Endocrinology 03
MIMIC-III, the scope of the MIMIC-IV dataset has been

extended to cover the period from 2008 to 2019, providing a

broader range of data for analysis and research.
2.2 Participant selection criteria

In this study, a total of 2379 patients were chosen from the

MIMIC-IV dataset. Among them, 1193 patients had DKA and

1186 patients had DM without ketosis. The participants in this

study were required to meet the following criteria: The

participants in this study needed to meet the following criteria:

(1) Age over 18 years. (2) First admission and first admission to

the ICU. (3) Absence of other serious organic diseases. (4) Exclude

late-stage disease. (5) Non-pregnant patients. (6) Minimal missing

characteristic information.
2.3 Selection of indicators and
data preprocessing

This study excluded baseline characteristics with missing data

greater than 30% in MIMIC-IV, such as C-reactive protein,

procalcitonin, height, and serum albumin. At the same time,

Structured Query Language (SQL) was used to extract data of

DKA patients from MIMIC-IV. The baseline characteristics

selected in this study included demographic features, vital signs,

laboratory indicators, comorbidity indicators, and scoring system

indicators. Demographic features included gender, age, weight, and

ethnicity. Vital signs included heart rate (heart_rate_mean),

respiratory rate (resp_rate_mean), body temperature (temperature_

mean), peripheral oxygen saturation (SPO2_mean), systolic blood
FIGURE 1

Flow chart of this study.
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pressure (SBP_mean), diastolic blood pressure (DBP_mean), and

mean blood pressure (mbp_mean). Laboratory indicators included

blood urea nitrogen (bun_mean), creatinine (creatinine_mean),

u r i n e ou t pu t , s od i um ( s od i um_mean ) , p o t a s s i um

(potassium_mean), calcium (calcium_mean), anion gap

(anioinga_mean), hematocrit (haematocrit_mean), hemoglobin

(haemoglobin_mean), white blood cell count (wbc_mean), absolute

neutrophil count (abs_neutrophils_mean), absolute lymphocyte

count (abs_lymphocytes_mean), platelets (platelets_mean), mean

corpuscular hemoglobin (mch_mean), red blood cells (rbc_mean),

red cell distribution width (rdw_mean), glucose (glucose_mean), and

chloride (chloride_mean). Comorbidity indicators included

hypertension, obesity, myocardial infarction, congestive heart

failure, peripheral vascular disease, chronic pulmonary disease,
Frontiers in Endocrinology 04
liver disease, and renal disease. Scoring system indicators included

lods, charlson, and oasis.

All data were analyzed using IBM SPSS Statistics 25. Two-sided

statistical analyses were conducted, and a significance level of p ≤

0.05 was used for interpretation of statistical significance. Normality

was assessed for continuous variables, which were presented as

mean ± standard deviation (SD), while categorical data are

summarized as counts or percentages. Group comparisons were

performed using the chi-square test for categorical variables and

analysis of variance, and the Kruskal-Wallis test for continuous

variables. The detailed baseline characteristics are shown in Table 1.

The LODS (Logistic Organ Dysfunction System) is a medical

scoring system commonly used to assess the degree of organ

dysfunction in patients. This scoring system evaluates and
TABLE 1 Baseline characteristics between DKA and non-DKA group.

Baseline Characteristics Total (n = 2379) DKA (n = 1193) NO-DKA (n = 1186) Statistic P Value

Age 58.92 ±18.80 47.93 ±17.26 69.97 ±12.86 t=-35.332 ≤0.001

Weight 82.36 ±24.14 76.49 ±20.79 88.26 ±25.78 t=-12.255 ≤0.001

Heart Rate Mean 87.83 ±15.37 91.85 ±14.15 83.79 ±15.48 t=13.250 ≤0.001

Sbp Mean 122.07 ±17.05 123.37 ±17.73 120.76 ±16.24 t=3.747 ≤0.001

Dbp Mean 64.59 ±11.58 67.48 ±11.93 61.68 ±10.44 t=12.632 ≤0.001

Mbp Mean 79.45 ±11.47 81.34 ±12.03 77.55 ±10.55 t=8.174 ≤0.001

Resp Rate Mean 19.05 ±3.65 19.10 ±3.64 19.01 ±3.65 t=0.592 0.554

Temperature Mean 36.84 ±0.51 36.87 ±0.45 36.81 ±0.56 t=2.900 0.004

Spo2 Mean 97.22 ±1.90 97.61 ±1.70 96.83 ±2.01 t=10.195 ≤0.001

Bun Mean 28.45 ±21.56 28.38 ±22.16 28.51 ±20.94 t=-0.145 0.885

Creatinine Mean 1.56 ±1.69 1.73 ±2.11 1.38 ±1.11 t=5.092 ≤0.001

Urineoutput X 2044.34 ±1469.52 2287.17 ±1669.55 1800.09 ±1187.70 t=8.203 ≤0.001

Hematocrit Mean 54.92 ±26.50 76.57 ±20.71 33.16 ±5.71 t=69.760 ≤0.001

Hemoglobin Mean 43.87 ±35.93 76.57 ±20.71 11.02 ±1.96 t=108.807 ≤0.001

Aniongap Mean 17.15 ±4.92 19.86 ±4.78 14.43 ±3.27 t=32.382 ≤0.001

Calcium Mean 8.41 ±0.79 8.39 ±0.76 8.43 ±0.81 t=-1.079 0.280

Sodium Mean 137.46 ±5.03 136.77 ±5.42 138.16 ±4.51 t=-6.806 ≤0.001

Potassium Mean 4.38 ±0.67 4.47 ±0.71 4.29 ±0.61 t=6.822 ≤0.001

Wbc Mean 12.11 ±6.23 12.59 ±6.18 11.63 ±6.26 t=3.781 ≤0.001

Abs Lymphocytes Mean 112.51 ±185.07 87.42 ±82.36 137.75 ±246.25 t=-6.694 ≤0.001

Abs Neutrophils Mean 823.62 ±591.64 694.22 ±643.94 953.80 ±501.50 t=-10.973 ≤0.001

Platelets Mean 239.49 ±108.61 261.78 ±107.41 217.06 ±105.18 t=10.260 ≤0.001

Mch Mean 29.79 ±2.56 29.63 ±2.56 29.95 ±2.55 t=-3.018 0.003

Rbc Mean 3.77 ±0.72 3.85 ±0.75 3.70 ±0.67 t=5.118 ≤0.001

Rdw Mean 14.64 ±2.00 14.24 ±1.97 15.05 ±1.95 t=-10.028 ≤0.001

Glucose Mean 271.95 ±2783.01 272.15 ±1536.30 271.75 ±3628.83 t=0.003 0.997

Chloride Mean 103.29 ±6.22 102.67 ±6.75 103.90 ±5.58 t=-4.850 ≤0.001

(Continued)
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TABLE 1 Continued

Baseline Characteristics Total (n = 2379) DKA (n = 1193) NO-DKA (n = 1186) Statistic P Value

Lods 4.28 ±2.98 3.83 ±2.87 4.73 ±3.01 t=-7.454 <.001

Charlson Comorbidity Index X 5.70 ±3.05 4.54 ±3.07 6.87 ±2.53 t=-20.233 ≤0.001

Oasis 29.81 ±9.20 27.35 ±8.80 32.29 ±8.93 t=-13.605 ≤0.001

Gender, n (%) c2=17.387 ≤0.001

female 1147 (48.21) 626 (52.47) 521 (43.93)

male 1232 (51.79) 567 (47.53) 665 (56.07)

Ethnicity, n (%) – ≤.001

AMERICAN INDIAN/ALASKA NATIVE 7 (0.29) 2 (0.17) 5 (0.42)

ASIAN 61 (2.56) 25 (2.10) 36 (3.04)

BLACK/AFRICAN AMERICAN 466 (19.59) 323 (27.07) 143 (12.06)

ethnicity 1 (0.04) 0 (0.00) 1 (0.08)

HISPANIC/LATINO 105 (4.41) 63 (5.28) 42 (3.54)

OTHER 103 (4.33) 50 (4.19) 53 (4.47)

UNABLE TO OBTAIN 29 (1.22) 5 (0.42) 24 (2.02)

UNKNOWN 169 (7.1) 50 (4.19) 119 (10.03)

WHITE 1438 (60.45) 675 (56.58) 763 (64.33)

Mechvent, n (%) c2=134.582 ≤0.001

No 1861 (78.23) 1050 (88.01) 811 (68.38)

Yes 518 (21.77) 143 (11.99) 375 (31.62)

Hypertension, n (%) c2=109.433 ≤0.001

No 1290 (54.22) 774 (64.88) 516 (43.51)

Yes 1089 (45.78) 419 (35.12) 670 (56.49)

Obesity, n (%) c2=46.636 ≤0.001

No 2096 (88.1) 1105 (92.62) 991 (83.56)

Yes 283 (11.9) 88 (7.38) 195 (16.44)

Cad, n (%) c2=142.136 ≤0.001

No 1714 (72.05) 990 (82.98) 724 (61.05)

Yes 665 (27.95) 203 (17.02) 462 (38.95)

Myocardial Infarct, n (%) c2=13.257 ≤0.001

No 1933 (81.25) 1004 (84.16) 929 (78.33)

Yes 446 (18.75) 189 (15.84) 257 (21.67)

Congestive Heart Failure, n (%) c2=98.902 ≤0.001

No 1778 (74.74) 997 (83.57) 781 (65.85)

Yes 601 (25.26) 196 (16.43) 405 (34.15)

Peripheral Vascular Disease, n (%) c2=14.902 ≤0.001

No 2139 (89.91) 1101 (92.29) 1038 (87.52)

Yes 240 (10.09) 92 (7.71) 148 (12.48)

Chronic Pulmonary Disease, n (%) c2=88.380 ≤0.001

(Continued)
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quantifies the functional status of multiple organ systems based on

clinical indicators such as blood pressure, respiratory rate, and

oxygen saturation to determine the presence of organ dysfunction

in patients.

In the field of home healthcare, OASIS (Outcome and

Assessment Information Set) commonly refers to an assessment

tool used to collect and document clinical information and

functional status data of patients in a home care setting. OASIS

assessment covers multiple domains, including activities of daily

living, medical history, pain assessment, medication management,

emotional status, and more.

The Charlson Comorbidity Index is a scoring system used to

assess the burden of comorbidities or other chronic medical

conditions in a patient. It assigns a score to various comorbidities

based on their association with one-year mortality. The scores are

summed to calculate a total score, which is used as an indicator of

the patient’s overall health status and the risk of future

complications or mortality.

Before carrying out feature selection and developing a DKA risk

prediction model, we used mean imputation to handle missing

values in the data set. Mean imputation is a commonly used method

where the missing values are replaced with the mean or mode of the

available data. The formula (Equation 1) for mean imputation can

be represented as:

�y = o
n
i=1biyi
ni

(1)
The symbols indicating whether an answer is provided

represent the number of samples. In this study, mean

imputation was performed for missing values in neutrophil and

lymphocyte counts.
2.4 Feature selection

The study employed two feature selection methods to screen

important baseline characteristics related to DKA, including

Spearman correlation analysis and random forest. Spearman

correlation analysis is used to assess the monotonic relationship

between two continuous or ordinal variables. It is used to describe
Frontiers in Endocrinology 06
the correlation between two variables that have ordinal variables or

distribution characteristics that cannot be described by mean and

standard deviation. The formula (Equation 2) can be represented as:

rx,y = oN
i=1(xi − �x)(yi − �y)

oN
i=1(xi − �x)2oN

i=1(yi − �y)2
� �1

2

(2)

Where N represents the total number of observations, r ranges

from -1 to 1. [-1, 0) represents a negative correlation, and (0, 1]

represents a positive correlation. A correlation of 0.8-1.0 indicates a

very strong correlation, 0.6-0.8 indicates a strong correlation, 0.4-

0.6 indicates a moderate correlation, 0.2-0.4 indicates a weak

correlation, and 0.0-0.2 indicates a very weak or no correlation. It

is worth noting that to better reflect the correlation, we took the

absolute value of all correlation coefficients. The top 20 baseline

characteristics in terms of correlation strength are shown in Table 2.

To enhance the reliability of the experimental results, we also

incorporated a feature selection method based on random forests.

Random forest is a collection classifier composed of multiple

decision trees. The classifier ensemble of the random forest is RF

= {h(X, qk),k = 1,2,3,···K}, where K is the number of decision trees,

and qk is a random variable that follows an independent

distribution. Under the known conditions of the independent

variables, all classifiers are weighted to obtain the optimal

selection result. We had a total of 10,000 decision trees, with a

training set to test set ratio of 8.5:1.5. Random forest performed

repeated sampling on the replaced dataset to obtain 10,000 data

subsets, and each subset generate a corresponding decision tree,

ultimately forming the DKA important baseline characteristics

ensemble. The importance of random forest in selecting relevant

indicators is shown in Table 3.

After conducting correlation analysis using two feature

selection methods, it was discovered that certain baseline

characteristics exhibited high levels of correlation. By combining

the importance rankings of baseline characteristics from the two

feature selection methods, the top five strongly correlated baseline

characteristics were selected based on their smallest sum of

importance rankings. These five baseline characteristics include

hemoglobin_mean, haematocrit_mean, aniongap_mean, age, and

Charlson_comorbidity_index.
TABLE 1 Continued

Baseline Characteristics Total (n = 2379) DKA (n = 1193) NO-DKA (n = 1186) Statistic P Value

No 1818 (76.42) 1009 (84.58) 809 (68.21)

Yes 561 (23.58) 184 (15.42) 377 (31.79)

Liver Disease, n (%) c2=115.167 ≤0.001

No 2001 (84.11) 1078 (90.36) 923 (77.82)

Yes 378 (15.89) 115 (9.64) 263 (22.18)

Renal Disease, n (%) c2=217.075 ≤0.001

No 1893 (79.57) 868 (72.76) 1025 (86.42)

Yes 486 (20.43) 325 (27.24) 161 (13.58)
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2.5 Establishing a risk prediction model
for DKA

The study utilized supervised machine learning models for the

prediction of DKA risk. The experiments were divided into two

parts: the first part focused on risk prediction using logistic

regression with a single baseline characteristic, while the second

part utilized xgboost, decision trees, random forests, support vector

machines, and k-nearest neighbors classifiers with multiple baseline

characteristics for risk prediction. The complete dataset for the

study was divided into training and testing sets, with a ratio of

0.85:0.15. The experiments were then conducted using five-fold

cross-validation. The performance evaluation metrics used for the

experiments included the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve, accuracy, and F1-

score. These metrics were utilized to assess the predictive

performance of the models, overall accuracy, and the balance

between precision and recall in predicting DKA risk.
2.5.1 Risk prediction based on logistic regression
with a single baseline characteristic

The study aimed to predict DKA risk independently for each

baseline characteristic using logistic regression. Based on Table 4,
Frontiers in Endocrinology 07
the experimental results were categorized into three levels

according to the F1 score: F1 scores higher than 80, F1 scores

between 80 and 60, and F1 scores lower than 60. A total of two

baseline characteristics, hematocrit mean and hemoglobin_mean,

achieved an F1 score greater than 80. There were 20 baseline

characteristics (Age, weight, heart_rate_mean, resp_rate_mean,

temperature_mean, anioingap,dbp_mean, abs_neutrophils_mean,

congestive_heart_failure, platelets_mean, glucose_mean, obesity,

myocardial_infarct, peripheral_vascular_disease, chronic_

pulmonary_disease, renal_disease, oasis, cad, mechvent,

charlson_comorbidity_index) with F1 scores between 60 and 80.

The prediction results demonstrated a significant similarity with

the feature selection results, highlighting the strong performance

of hematocrit mean and hemoglobin_mean compared to other

baseline characteristics. This indicated the importance of these

two features in predicting DKA risk.
2.5.2 Risk prediction based on multiple baseline
characteristics using xgboost, decision trees,
random forests, support vector machines, and k-
nearest neighbors classifiers

To predict DKA, we utilized all 42 baseline characteristics and

employed various machine learning algorithms, including xgboost,
TABLE 2 Top 20 baseline characteristics based on Spearman correlation analysis.

Baseline
Characteristics

Relevance Baseline
Characteristics

Relevance

haemoglobin_mean 0.912 obesity 0.140

haematocrit_mean 0.819 potassium_mean 0.139

age 0.586 sodium_mean 0.138

aniongap_mean 0.552 abs_lymphocytes_mean 0.136

charlson_comorbidity_index 0.383 renal_disease 0.134

oasis 0.269 rbc_mean 0.105

heart_rate_mean 0.262 creatinine_mean 0.104

dbp_mean 0.251 chloride_mean 0.099

cad 0.245 gender 0.085

weight 0.243 peripheral_vascular_disease 0.080

mechvent 0.238 liver_disease 0.079

abs_neutrophils_mean 0.219 wbc_mean 0.077

hypertension 0.214 sbp_mean 0.076

platelets_mean 0.206 myocardial_infarct 0.076

spo2_mean 0.205 ethnicity 0.063

congestive_heart_failure 0.204 mch_mean 0.062

rdw_mean 0.201 temperature_mean 0.059

chronic_pulmonary_disease 0.193 calcium_mean 0.021

urineoutput 0.166 resp_rate_mean 0.012

mbp_mean 0.165 bun_mean 0.002

lods 0.151 glucose_mean 0.002
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TABLE 3 Top 20 baseline characteristics based on feature selection method using random forest.

Baseline
Characteristics

Relevance Baseline
Characteristics

Relevance

haemoglobin_mean 0.3573 bun_mean 0.0028

haematocrit_mean 0.2903 lods 0.0026

aniongap_mean 0.0659 temperature_mean 0.0026

age 0.601 chloride_mean 0.0025

glucose_mean 0.0371 mbp_mean 0.0023

abs_lymphocytes_mean 0.0349 rbc_mean 0.0023

abs_neutrophils_mean 0.0335 sbp_mean 0.0020

charlson_comorbidity_index 0.0223 resp_rate_mean 0.0020

weight 0.0089 urineoutput 0.0020

heart_rate_mean 0.0079 mch_mean 0.0018

oasis 0.0068 potassium_mean 0.0016

rdw_mean 0.0060 hypertension 0.0015

platelets_mean 0.0056 renal_disease 0.0015

dbp_mean 0.0055 calcium_mean 0.0015

liver_disease 0.0045 congestive_heart_failure 0.0011

sodium_mean 0.0040 ethnicity 0.0009

mechvent 0.0037 chronic_pulmonary_disease 0.0008

spo2_mean 0.0035 obesity 0.0006

cad 0.0032 gender 0.0003

wbc_mean 0.0029 myocardial_infarct 0.0003

creatinine_mean 0.0029 peripheral_vascular_disease 0.0001
F
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TABLE 4 Characteristic at baseline between DKA and non-DKA group.

Baseline Characteristics AUC Acc Spe Sen F1

gender 0.588 0.593 0.544 0.534 0.539

age 0.771 0.773 0.740 0.754 0.747

weight 0.631 0.621 0.558 0.723 0.630

ethnicity 0.541 0.571 0.538 0.264 0.354

heart_rate_mean 0.637 0.619 0.549 0.805 0.653

sbp_mean 0.504 0.484 0.448 0.685 0.542

dbp_mean 0.632 0.633 0.582 0.622 0.601

mbp_mean 0.579 0.579 0.526 0.572 0.548

resp_rate_mean 0.503 0.453 0.447 0.962 0.610

temperature_mean 0.622 0.607 0.543 0.754 0.631

spo2_mean 0.561 0.560 0.505 0.572 0.536

bun_mean 0.579 0.582 0.530 0.547 0.538

creatinine_mean 0.501 0.518 0.448 0.352 0.394

urineoutput 0.547 0.557 0.503 0.452 0.476

(Continued)
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decision trees, random forests, support vector machines, and k-

nearest neighbors classifiers. The specific algorithm parameter

details for xgboost were as follows: a learning rate of 0.01, 3000

iterations, a tree depth of 4, and a minimum sum of leaf node

sample weight of 5. The decision tree classifier used the Gini

coefficient as the splitting criterion and was constructed with a

maximum depth of 50. The random forest classifier employs 8

decision trees, each with a maximum depth of 50.The support

vector machine classifier used the radial basis function (RBF)

kernel. The k-nearest neighbors classifier was configured to use 5

nearest neighbors, and the algorithm for selecting the nearest

neighbors was the automatic optimization algorithm available in

the scikit-learn library.
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The experimental resulted in Table 5 indicate that xgboost,

decision trees, and random forests achieve an AUC, accuracy,

and F1-score of 1, which demonstrates their ability to accurately

identify DKA patients. However, the performance of the

support vector machine and k-nearest neighbors classifiers was

comparatively weaker.

We believe that the reason support vector machines and k-

nearest neighbors classifiers cannot accurately identify DKA is due

to some baseline characteristics interfering with the model’s

decision-making. To further predict DKA, we used feature

selection to select five baseline characteristics (namely

hemoglobin mean, hematocrit mean, aniongap mean, age, and

Charlson comorbidity index).
TABLE 4 Continued

Baseline Characteristics AUC Acc Spe Sen F1

haematocrit_mean 0.980 0.980 0.975 0.981 0.978

hemoglobin_mean 1.000 1.000 1.000 1.000 1.000

aniongap_mean 0.724 0.728 0.698 0.685 0.692

calcium_mean 0.493 0.487 0.440 0.553 0.490

potassium_mean 0.537 0.549 0.492 0.427 0.457

sodium_mean 0.643 0.649 0.611 0.584 0.598

wbc_mean 0.527 0.529 0.473 0.509 0.490

abs_lymphocytes_mean 0.591 0.605 0.568 0.471 0.515

abs_neutrophils_mean 0.697 0.686 0.613 0.798 0.694

platelets_mean 0.611 0.602 0.541 0.698 0.609

mch_mean 0.545 0.526 0.479 0.717 0.574

rbc_mean 0.525 0.529 0.472 0.490 0.481

rdw_mean 0.593 0.596 0.546 0.559 0.552

glucose_mean 0.698 0.700 0.656 0.685 0.670

chloride_mean 0.564 0.574 0.524 0.471 0.496

mechvent 0.631 0.602 0.531 0.899 0.668

hypertension 0.608 0.605 0.548 0.641 0.591

obesity 0.523 0.481 0.458 0.905 0.608

cad 0.604 0.577 0.515 0.855 0.643

myocardial_infarct 0.530 0.493 0.463 0.874 0.605

congestive_heart_failure 0.596 0.568 0.509 0.849 0.636

peripheral_vascular_disease 0.531 0.487 0.462 0.937 0.619

chronic_pulmonary_disease 0.588 0.560 0.503 0.849 0.632

renal_disease 0.551 0.515 0.476 0.880 0.618

liver_disease 0.563 0.602 0.673 0.207 0.317

lods 0.565 0.551 0.497 0.685 0.576

charlson_comorbidity_index 0.714 0.725 0.725 0.616 0.666

oasis 0.666 0.663 0.608 0.685 0.645
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The experimental resulted in Table 6 demonstrated a significant

improvement in the performance of support vector machines and

k-nearest neighbors classifiers, validating the effectiveness of the

feature selection method and the five important features.We also

provided accuracy change plots for support vector machines and k-

nearest neighbors classifiers based on both the full set of features

and the important features. These plots, labeled as Figures 2–5,

demonstrate the variation in accuracy for the different feature sets.

The learning curve illustrated the impact of the number of training

samples on the model’s performance. The results indicated that the

machine learning approach adopted by the research institute did

not exhibit overfitting or underfitting phenomena. The model had

essentially reached a performance bottleneck, and there was no

need to supplement the data for further training.
3 Discussion

Discussion on the importance of
baseline characteristics

The occurrence of DKA is attributed to the relative or absolute

deficiency of insulin, along with the presence of excessive counter-

regulatory hormones such as glucagon, cortisol, catecholamines,

and growth hormone. These factors lead to hyperglycemia,

glucosuria, dehydration, acidosis, and varying degrees of

hyperosmolarity (11). When blood glucose levels elevated,

especially in individuals with diabetes, the body is unable to

effectively utilize glucose as energy and instead begins to break

down fats to provide energy. One of the byproducts of this process

is acetoacetic acid. Acetoacetic acid is a ketone body, and when

it accumulates excessively in the body, it can lead to ketonemia,

which triggers DKA (12). DKA can affect the chemical balance of

the blood, including the acid-base balance. It also impacts
Frontiers in Endocrinology 10
various parameters related to the blood, such as hemoglobin

and hematocrit.

Hemoglobin_mean refers to the mean value of hemoglobin

(Hb). Hb is a protein presenting in red blood cells, primarily

responsible for carrying and delivering oxygen to various tissues

in the body (13). In the state of DKA, due to insufficient insulin or

resistance to insulin by cells, is blood glucose levels rise. High blood

glucose can lead to excessive urine production by the kidneys,

causing significant loss of fluids in the body (14). Inadequate insulin

prevents cells from properly utilizing glucose as an energy source.

As a result, the body resorts to breaking down fats, leading to an

excessive production of ketones in the liver (13). These excess

ketones are excreted in urine along with a significant amount of

urine, resulting in fluid loss. Glucose is an osmotically active

substance, and in a state of high blood glucose, the osmotic

pressure of the blood increases, leading to further dehydration of

cells. These changes in the body can cause blood to become
TABLE 5 DKA risk prediction based on all baseline characteristics.

Model AUC Acc F1

xgboost 1 1 1

Decision trees 1 1 1

Random forests 1 1 1

Support vector machines 0.800 0.806 0.773

k-nearest neighbors classifiers 0.820 0.815 0.808
TABLE 6 DKA risk prediction based on feature selection.

Model AUC Acc F1

xgboost 1 1 1

Decision trees 1 1 1

Random forests 1 1 1

Support vector machines 1 1 1

k-nearest neighbors classifiers 1 1 1
FIGURE 2

Accuracy change plot of support vector machines based on
all features.
FIGURE 3

Accuracy change plot of k-nearest neighbors classifier based on
all features.
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concentrated, resulting in an increase in the concentration of

hemoglobin per unit volume of blood (15). In DKA state, there is

a significant increase in acidic substances in the blood. The body

utilizes the buffering agents in the blood to neutralize the excess

acid, thereby maintaining the acid-base balance of the blood (16).

Hemoglobin, a basic protein, can serve as a buffer and increase

compensatively in response to acidosis. Thus, changes in HB can

effectively reflect the condition of DKA.

Hematocrit_mean represents the mean value of hematocrit

(Hct). Hct refers to the proportion of red blood cells in the

volume of blood. In clinical practice, Hct is an important

indicator for assessing blood concentration and determining

blood volume status (17). DKA’s hyperglycemia and ketoacidosis

characteristic result in osmotic diuresis and significant depletion of

fluid and electrolytes in the intracellular and extracellular fluid

compartments (18). The elevated blood glucose and increased urine

output caused by DKA lead to dehydration within the body (14)

(13). Dehydration-induced blood concentration can cause an

increase in Hct. In DKA, the elevated blood glucose and

increased concentration of glucose in the blood lead to increased

blood viscosity, resulting in an elevated Hct. Therefore, there is a

close relationship between Hct and the state changes in DKA.

Hemoglobin and hematocrit are both based on whole blood and

therefore depend on plasma volume. If a patient is severely

dehydrated, the hemoglobin and hematocrit levels will be higher

compared to the normal blood volume (18). An increase in

hemoglobin and hematocrit may indicate dehydration and blood

concentration (19). Hematocrit and hemoglobin can play a

supportive role in evaluating DKA. Given the data from these

hematological parameters, such as an increase in red blood cell

volume and hemoglobin concentration, they may be useful

indicators of inadequate extracellular fluid volume in DKA.

Meanwhile, it had been mentioned earlier that cerebral edema

was a crucial factor contributing to the increased mortality rate in
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DKA, primarily due to the most severe complication of excessive or

rapid fluid administration. Therefore, accurately assessing the

degree of dehydration before initiating fluid therapy in DKA

patients was of paramount importance. However, this is not a

straightforward estimation, as dehydration did not directly correlate

with the severity assessment of DKA based on blood gas values. In

this context, hematological parameters can be employed, and two

examples were hematocrit (Hct) and hemoglobin (Hb)

concentration (10). However, they have limitations in predicting

the occurrence of DKA (20), but physiologically, it is reasonable to

consider them as useful indicators.

The term ‘anion_gap_mean’ refers to the mean value of anion

gap, w hich is used to measure the difference between undetermined

anions and undetermined cations in the blood. It is calculated by

measuring the concentrations of anions (such as chloride ions) and

cations (such as sodium ions, potassium ions) in the blood (21). The

formula for anion gap is as follows: Anion Gap = [Na+]-([Cl-] +

[HCO3-]) (22). In normal conditions, the anion gap typically falls

between 8-16 mmol/L. The anion gap is commonly used to evaluate

acid-base balance, and it can be easily calculated from routine

laboratory data. It has the widest application in the diagnosis of

various forms of metabolic acidosis (23). DKA possesses its unique

physiological characteristics, including the generation and

elimination of ketones, hyperglycemia, and fluid loss. This

combination directly influences the biochemical parameters of

patients with DKA, particularly the anion gap and total carbon

dioxide levels Mifsud and Salem (11). In the state of DKA,

metabolic disturbances in the body lead to the production and

accumulation of a large number of ketones, such as beta-

hydroxybutyrate, acetoacetate, and acetone. Ketones are metabolic

byproducts of fatty acid metabolism, and their breakdown

metabolism generates anions, especially beta-hydroxybutyrate.

These anions are not accounted for in routine electrolyte analysis

and are not included in the sum of cations (such as sodium,

potassium) or measured anions (such as chloride) (24). D-lactic
FIGURE 4

Accuracy change plot of support vector machine based on
important features.
FIGURE 5

Accuracy change plot of k-nearest neighbors classifier based on
important features.
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acid is a product of methylglyoxal (MG) metabolism through the

glyoxalase pathway (25). In a state of hyperglycemia, the production

of MG can significantly increase (26). Therefore, in hyperglycemic

conditions, the blood concentration of D-lactic acid should also

increase significantly. Research has shown that in the state of DKA,

the increase in D-lactic acid also contributes to the generation of

anion gap during acidosis. Therefore, in DKA, the increase in

ketones and D-lactic acid leads to the accumulation of

unmeasured anions, r esulting in an increase in the anion gap

(24). Therefore, measuring changes in the anion gap can be helpful

in diagnosing and monitoring the severity of DKA.

A significant correlation exists between an individual’s age and

the likelihood of developing DKA. A study analyzing 4,807 cases of

DKA revealed the incidence rate was 14% for those above 70 years

old, 23% within the age group of 51 to 70 years, 27% within the age

group of 30 to 50 years, and 36% for individuals under 30 years old

(5). Based on this data, it is evident that younger patients have a

higher incidence rate, with DKA commonly being observed in

children and adolescents with both type 1 and type 2 diabetes

(27). This is believed to be due to several factors commonly found in

patients within this age group, including a higher rate of growth and

development, increased metabolic rate, and greater insulin

requirements. Furthermore, children and adolescents may have

less developed self-management skills for diabetes and may be

more susceptible to neglecting or inadequately controlling their

blood glucose levels, thus increasing the risk of developing DKA.

DKA can affect individuals of all age groups, with older individuals

who have additional comorbidities often experiencing higher

mortality rates. However, DKA is the leading cause of death

among diabetes patients younger than 24 years old, with cerebral

edema commonly induced by DKA being the most common cause

(8). Middle-aged and elderly patients in this age group may have

coexisting chronic conditions such as hypertension, coronary heart

disease, and renal failure. These conditions may increase the risk of

mortality in DKA and can affect treatment options. Furthermore,

elderly patients may have decreased physiological reserves and

require careful monitoring of fluid balance and insulin therapy

(5). Healthcare providers should develop personalized treatment

plans for patients of different age groups, taking into account their

physiological characteristics, medical history, and risk of

complications. As a result, age plays a crucial role in guiding the

management and treatment strategies for DKA. Relevant studies

indicate that a mixed state of ketoacidosis and hyperosmolarity is

observed in 30% of presentations of hyperglycemic emergencies in

diabetes. While both age and the degree of hyperosmolarity

influence the mortality rate, only age emerges as an independent

predictor of mortality Feldman (12). Poor blood glucose control

disproportionately affects young patients with a detrimental impact

on DKA. Hence, we emphasize the need for a better understanding

of the role of age in diabetes intervention, especially in the context

of DKA.

The Charlson Comorbidity Index (CCI), also known as the

Charlson Index, is a frequently used instrument for evaluating the

burden and risk of comorbidities in patients. It assigns scores to

various diseases, depending on a patient’s medical history and
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diagnoses, and these scores are then combined to generate a

composite score (28). CCI offers useful insights into a patient’s

overall health status and can assist healthcare professionals in

assessing and anticipating the effects of comorbidities on patient

outcomes. A high CCI score indicates that the patient is

significantly affected by multiple diseases, indicating a greater

burden of comorbidities and a higher risk of illness (29). It is

widely recognized that many adults with diabetes also experience

concurrent chronic conditions such as chronic heart failure, chronic

obstructive pulmonary disease, renal disease, and depression (30).

In a comprehensive study on medical insurance, it was discovered

that the presence of multiple comorbidities can complicate a

patient’s condition. The study identified congestive heart failure

(CHF), pneumonia (CKD), and chronic obstructive pulmonary

disease (COPD) as the most frequent conditions leading to

readmission within 30 days after discharge (31). As a result, the

proportion of DKA patients with comorbidities such as CHF, CKD,

and COPD may be higher, indicating that these conditions

commonly coexist in individuals with diabetes, potentially leading

to a higher readmission rate for DKA patients. Furthermore,

research has suggested that a Hospital Admission Index (HAI)

with a CCI score of 3 or higher can serve as a predictive factor for

DKA readmission. As previously mentioned, the presence of

comorbidities complicates the treatment of diabetes patients,

thereby increasing the risk of readmission. Thus, active

monitoring and treatment of DKA patients with comorbidities

can contribute to enhancing DKA management (32).

The diagnosis of DKA itself is prone to misdiagnosis, and the

indicators used are often influenced by the underlying diabetes,

making early prediction challenging. The five features we have

selected exhibit strong stability, contributing to a comprehensive

assessment of the patient’s overall physiological status, not just the

diabetes-related physiological changes. In the prodromal stage of

DKA, when the values of blood glucose and ketone bodies have not

reached diagnostic thresholds, we can complementarily analyze the

five features to achieve a comprehensive analysis and provide

assistance in predicting DKA. Our intention is not to replace the

diagnostic indicators for DKA but rather to serve as an auxiliary

indicator to help doctors diagnose more quickly and accurately.

For young patients or those with multiple complications, it is

crucial to provide enhanced education and guidance on insulin or

medication therapy (33). During the diagnostic and treatment

process, it is essential to promptly monitor indicators such as

hemoglobin, hematocrit, anion gap, age, and Charlson comorbidity

index in DM patients who present with relevant symptoms.Early

intervention should be implemented to reduce the incidence of the

disease. By closely monitoring these indicators and promptly

intervening, the occurrence rate of the disease can be reduced.
4 Conclusion

This study was based on the MIMIC-IV dataset and utilized

feature selection and machine learning methods to construct a risk

prediction model for DKA. Five potential baseline characteristics
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highly correlated with DKA have been identified, which include

hemoglobin_mean, haematocrit_mean, aniongap_mean, age, and

Charlson_comorbidity_index. Furthermore, we utilized machine

learning methods to accurately predict the incidence of DKA in

patients and demonstrated the effectiveness of important baseline

characteristics. This study holds the following significant values: (1)

Early warning: DKA typically develops gradually rather than

occurring suddenly. By continuously monitoring important

baseline characteristics and utilizing a machine learning prediction

model, it is possible to identify the risk of DM patients progressing to

DKA at an early stage, thereby providing early warning signals. This

enables doctors to intervene in a timely manner, adjust the patient’s

treatment plan, and prevent the occurrence of DKA. (2)

Optimization resource allocation: Establishing a DKA risk

prediction model can assist hospitals and healthcare institutions in

better allocating resources. For instance, for high-risk patients, more

attention and resources can be allocated to their monitoring and

treatment to reduce the risk of DKA occurrence. This targeted

allocation of resources ensures that those at higher risk receive the

necessary support and intervention, optimizing the overall healthcare

delivery system. (3) Reduction healthcare costs: Treatment for DKA

typically requires hospitalization and is associated with high medical

expenses. By utilizing important baseline characteristics and

predictive models, it is possible to effectively reduce the frequency

of DKA episodes, resulting in significant cost savings for patients with

recurrent DKA. This cost reduction is achieved through proactive

management and prevention strategies based on risk assessment,

ultimately improving the overall economic efficiency of

healthcare delivery.

There are some limitations associated with this study: (1) Data

Quality: The model’s performance heavily relies on the quality of

the data used. If there are errors, missing information, or biases in

the input data, the model may be influenced by quality variations,

impacting its predictive capabilities. (2) Sample Bias: If the samples

in the training data are insufficient or do not adequately represent

the diversity in the real world, the model may exhibit bias in future

practical applications. The representativeness of the samples is

crucial for the model’s generalization ability. (3) Concept Drift: If

the data distribution changes over time or space, the model may

struggle to effectively adapt to the new data distribution. This could

result in a decline in the model’s performance in real-world

applications. (4) Uncertainty: Machine learning models typically

provide probabilities or scores for predictions rather than

deterministic outcomes. In the medical field, for certain

situations, patients and doctors may prefer to understand the

uncertainty of the model rather than just binary predictive results.
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