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CIMT: a Mendelian
randomization study of the U-
shaped influence mediated
by apolipoproteins
Ming-zhu Zhang1†, Cong Zhao1†, Xiao-ming Xing2† and Jie Lv1*

1Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese
Medicine, Beijing, China, 2Department of Respiratory Disease, Dongzhimen Hospital, Beijing University
of Chinese Medicine, Beijing, China
Background: Carotid Intima-Media Thickness (CIMT) is a key marker for

atherosclerosis, with its modulation being crucial for cardiovascular disease

(CVD) risk assessment. While thyroid function’s impact on cardiovascular

health is recognized, the causal relationship and underlying mechanisms

influencing CIMT remain to be elucidated.

Methods: In this study, Mendelian Randomization (MR) was employed to assess

the causal relationship between thyroid function and CIMT. Thyroid hormone

data were sourced from the Thyroidomics Consortium, while lipid traits and

CIMT measurements were obtained from the UK Biobank. The primary analysis

method was a two-sample MR using multiplicative random effects inverse

variance weighting (IVW-MRE). Additionally, the study explored the influence of

thyroid hormones on lipid profiles and assessed their potential mediating role in

the thyroid function-CIMT relationship through multivariate MR analysis.

Results: The study revealed that lower levels of Free Thyroxine (FT4) within the

normal range are significantly associated with increased CIMT. This association

was not observed with free triiodothyronine (FT3), thyroid-stimulating hormone

(TSH), or TPOAb. Additionally, mediation analysis suggested that apolipoprotein

A-I and B are involved in the relationship between thyroid function and CIMT. The

findings indicate a potential U-shaped curve relationship between FT4 levels and

CIMT, with thyroid hormone supplementation in hypothyroid patients showing

benefits in reducing CIMT.

Conclusion: This research establishes a causal link between thyroid function and

CIMT using MR methods, underscoring the importance of monitoring thyroid

function for early cardiovascular risk assessment. The results advocate for the
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consideration of thyroid hormone supplementation in hypothyroid patients as a

strategy to mitigate the risk of carotid atherosclerosis. These insights pave the

way for more targeted approaches in managing patients with thyroid dysfunction

to prevent cardiovascular complications.
KEYWORDS

thyroid hormones, Mendelian randomization, carotid intima-media thickness,
apolipoprotein A-I, apolipoprotein B
1 Introduction

Atherosclerosis, the primary cause of global mortality,

constitutes a chronic inflammatory disease affecting large and

medium-sized arteries, leading to conditions such as ischemic

heart disease, strokes, and peripheral vascular disease collectively

termed cardiovascular disease (CVD) (1). The prevalence of total

CVD cases nearly doubled from 271 million in 1990 to 523 million

in 2019, resulting in 18.6 million CVD-related deaths in 2019, as

reported by the latest Global Burden of Disease (GBD) study (2).

Carotid intima-media thickness (CIMT) is a widely used surrogate

marker for atherosclerosis, providing a simple, reproducible,

sensitive, and noninvasive measure, and a robust predictor of

future cardiovascular events (3). Identifying modifiable risk

factors for CIMT is paramount.

Thyroid function is recognized for its multifaceted impact on

the cardiovascular system (4). Elevated circulating thyroid hormone

levels have been linked to hypertension and hypercoagulation, while

decreased thyroid hormone levels may lead to hyperlipidemia and

inflammation. Observational studies have consistently associated

variations in thyroid function within the normal range with an

increased risk of atherosclerosis (5), atrial fibrillation (6), stroke (7),

heart failure, and mortality (8). The underlying mechanisms involve

factors such as endothelial dysfunction (9), disorders of hemostasis

(10), hemodynamic changes (11), and direct effects of thyroid

hormones on the myocardium (12). Despite these associations,

previous research on the link between thyroid dysfunction and

CIMT has yielded inconsistent conclusions (13–16). There is a

pressing need to explore the relationship between thyroid function

and CIMT, enabling the early assessment of atherosclerosis

and CVD.

Mendelian randomization (MR) is an innovative approach

employing genetic variations, typically single-nucleotide

polymorphisms (SNPs), associated with modifiable exposures (or risk

factors) to assess their potential causal relationship with clinically

relevant outcomes. MR aims to mitigate biases arising from

confounding and reverse causation, especially in situations where

randomized controlled trials are impractical and observational

studies may introduce biases (17–19). Over the past decades, MR has

emerged as a time-efficient and cost-effective tool for prioritizing
02
potential factors influencing human biology and disease. In this

study, we investigate the existence of a causal relationship between

thyroid function and CIMT. Additionally, we employ multivariate MR

to analyze potential mediating mechanisms.
2 Methods

2.1 Study design

The study employed a two-sample univariate MR design, as

depicted in Figure 1, to elucidate the causal relationships between a

comprehensive array of thyroid function indicators and CIMT. These

indicators included thyrotropin (thyroid-stimulating hormone

[TSH]), thyroxine (free tetraiodothyronine [FT4]), free

tr i iodothyronine (FT3), total tr i iodothyronine (TT3)

concentrations, FT3/FT4, TT3/FT4, thyroid peroxidase antibodies

(TPOAB), hyperthyroidism, hypothyroidism. The research

framework aimed to provide a detailed examination of the impact

of these thyroid function indicators on CIMT, which included

assessing the effects of levothyroxine treatment in hypothyroid

patients. Recognizing the established association between lipids,

thyroid function, and CIMT, the study also incorporated a

multivariate MR analysis to evaluate the influence of serum lipid

profiles, such as apolipoprotein B (apoB), apolipoprotein A-I (apoA-

I), high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), and triglycerides (TG), thereby

exploring their potential role as mediators in this relationship.

Adhering to the three core assumptions of MR studies, the

research ensured that the selected instrumental variables (SNPs)

were associated with the corresponding phenotype, not linked to

confounding factors affecting exposure and outcomes, and

influenced outcomes exclusively through their impact on

exposure. A meticulous screening process was implemented to

select SNPs, with a particular focus on eliminating those with

potential pleiotropic effects. Multiple sensitivity analyses were

conducted to affirm the robustness of the study’s conclusions. The

utilization of published abstract data from human participant

studies negated the requirement for additional ethical approval

and patient consent, streamlining the research process.
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2.2 Source of data

The study integrated genome-wide association study (GWAS)

datasets for TSH, FT4, T3, and the T3/FT4 ratio, obtained from 46

independent cohorts within the Thyroidomics Consortium.

Participants under the age of 18, of non-European ancestry, those on

thyroid medication, or with a history of thyroid surgery were excluded

from all analyses. We collected information on the gender distribution,

average age, and thyroid hormone parameter measurements across all

cohorts (refer to Figure 1; Supplementary Table 1) (20, 21). SNPs

representing TPOAB were derived from a meta-analysis of TPOAb

GWAS involving 18,297 individual (22). Data on patients with

hyperthyroidism (3,557 cases/456,942 controls) and hypothyroidism

(30,155 cases/379,986 controls) were obtained from a meta-analysis of
Frontiers in Endocrinology 03
the UK Biobank and FinnGen (23). Data representing levothyroxine

sodium users were sourced from the UK Biobank (18,947 cases/

443,986 controls, id: ukb-b-17918). CIMT measurements were

derived from two-dimensional carotid scans of 45,185 UK Biobank

participants, encompassing a diverse ethnic background (24). Lipid-

related traits, including LDL cholesterol, HDL cholesterol, triglycerides,

apolipoprotein B, and apolipoprotein A-I, were sourced from a GWAS

of circulating lipoprotein lipids by the UK Biobank (25).
2.3 Selection of genetic instruments

The process of selecting genetic instruments encompassed

several steps: (1) screening for SNPs associated with exposure
FIGURE 1

Overview of Study Design and Methodology. This figure illustrates the two-sample univariate Mendelian Randomization (MR) design utilized in our
study to investigate the causal relationships between various thyroid function indicators and Carotid Intima-Media Thickness (CIMT). The analysis
encompassed a wide range of thyroid function indicators, including thyrotropin (TSH), free tetraiodothyronine (FT4), free triiodothyronine (FT3), total
triiodothyronine (TT3), FT3/FT4 ratio, TT3/FT4 ratio, and thyroid peroxidase antibodies (TPOAB), as well as conditions like hyperthyroidism and
hypothyroidism. The study also evaluated the effects of levothyroxine treatment in hypothyroid patients and incorporated a multivariate MR analysis
to assess the role of serum lipid profiles (apoB, apoA-I, HDL-C, LDL-C, and triglycerides) as potential mediators in the thyroid function-CIMT
relationship. This figure was created by Biorender (https://www.biorender.com/).
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factors at genome-wide significance levels (P < 5 × 10−8) for TSH,

FT4, hyperthyroidism, hypothyroidism, and thyroid hormone

users, and a threshold of P < 5 × 10−6 for other thyroid function

indicators to increase the availability of instrumental variables. For

TPOAb, significant loci reported in the original literature were used;

(2) Exclusion of SNPs exhibiting linkage disequilibrium (r2 = 0.001,

kb = 10,000, 1000G EUR population); (3) alignment of the

respective exposure and outcome datasets based on effect allele

frequencies, excluding SNPs for intermediate alleles (EAF > 0.42);

(4) assessment of instrument strength to mitigate bias from weak

instrumental variables, evaluated using F-statistics. F-statistics for

all extracted SNPs were above 10, signifying the absence of

weak instrumental bias. SNPs with potential pleiotropic effects

were identified and excluded using phenoscanner (http://

www.phenoscanner.medschl.cam.ac.uk/) with a threshold of P < 5

× 10-6 (refer to Supplementary Material for details).
2.4 Mendelian randomization analysis

Univariate MR analyses were conducted to examine the causal

effect of each exposure factor on outcomes. The primary analysis

utilized multiplicative random effects inverse variance weighting

(IVW-MRE). Additional MR methods, including MR-Egger

regression and weighted median, were employed to corroborate

IVW estimates and ensure robustness in various scenarios. MR-

Egger regression, useful for detecting directional pleiotropy, and the

weighted median method, offering consistent estimates in the

presence of some invalid instrumental variables (26), were

utilized. Multivariate MR analyses, incorporating lipid profiles,

were performed to assess whether lipid factors mediated the effect

of thyroid function on CIMT. To account for the linear relationship

between LDL and apoB, HDL and apoA-I, the relationship between

lipid profile, FT4, and TSH was corrected using the MVMR-Lasso

method (27).
2.5 Sample independence

Sample independence is crucial to avoid weak instrument bias

in MR analyses (28). We ensured no overlap between subjects in

samples estimating genetic associations between exposure and

results. Although some sample overlap existed between thyroid

disease and carotid intima thickness, the strong statistical strength

of subsequent MR studies (F > 10, see Supplementary Information)

mitigated concerns of weak instrument bias.
2.6 Sensitivity analysis

MR analyses are potentially vulnerable to the influences of

pleiotropy and heterogeneity, which can significantly skew results

and lead to erroneous interpretations. In this study, we employed

MR-Egger regression to detect and adjust for pleiotropy, a method

that identifies and corrects for bias caused by gene variants affecting

the outcome through pathways other than the exposure of interest
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(29). This approach is crucial for ensuring the validity of MR

findings, as it addresses the concern that genetic variants may

have multiple effects that confound the estimated exposure-

outcome relationship. Additionally, Cochrane’s Q-test (30) was

utilized to estimate and quantify heterogeneity among the genetic

instruments. Assessing heterogeneity is essential to evaluate the

consistency of the instrumental variable effects and to ensure the

robustness and reliability of our findings. By addressing these

potential sources of bias, our study enhances the credibility of the

MR approach in elucidating causal relationships.
2.7 Statistical methods

In the primary analysis, Bonferroni correction was applied to

account for multiple testing in two distinct parts of the study. For

the analysis examining the relationship between thyroid function

and CIMT, a Bonferroni-corrected threshold of P < 0.05/9 was

employed. Similarly, for the analysis exploring the association

between thyroid function and lipid profiles, a corrected threshold

of P < 0.05/35 was used. Results achieving these Bonferroni-

corrected thresholds were deemed significant, while correlations

with P values between the corrected threshold and 0.05 were

considered suggestive. MR results were expressed as effects (b)
with corresponding 95% confidence intervals (CI), indicating the

impact of each standard deviation increase in exposure factors on

outcomes. Statistical analyses employed the TwoSampleMR

software package (version 0.5.7) in R (version 4.3.1). Reporting

adhered to STROBE-MR guidelines (18). For detailed information

on instrumental variable screening and MR methods, refer to the

Supplementary Materials.
3 Results

3.1 Instrument variable selection results

Through rigorous instrumental variable screening procedures,

10 SNPs were identified as instrumental variables for FT4, 33 SNPs

for TSH, 2 SNPs for TPOAb concentration, 7 SNPs for

hyperthyroidism, and 50 SNPs for hypothyroidism. Additionally,

27 SNPs were identified for FT3, 11 SNPs for TT3, 37 SNPs for

the FT3/FT4 ratio, and 24 SNPs for the TT3/FT4 ratio

(Supplementary Table 2).
3.2 Thyroid function and CIMT

The IVW-MRE analysis demonstrated a significant association

between elevated FT4 levels and reduced CIMT (beta = -0.069, 95%

CI: -0.120, -0.018, P = 0.008). Conversely, FT3(beta = 0.049, 95% CI:

-0.014 to 0.112, P = 0.130), TSH (beta = 0.025, 95% CI: -0.015 to

0.065, P = 0.221), and TPOAb concentrations (beta = -0.048, 95%

CI: -0.505 to 0.409, P = 0.837) exhibited no significant effect on

CIMT. Other thyroid function indicators did not impact CIMT

(Figure 2). Hyperthyroidism was correlated with an increase in
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CIMT (beta = 0.053, 95% CI: 0.028 to 0.077, P = 2.8 × 10−5),

whereas hypothyroidism did not demonstrate a significant effect on

CIMT (beta = 0.010, 95% CI: -0.011 to 0.032, P = 0.347). Utilizing

multivariate MR methods that accounted for hypothyroidism and

thyroxin treatment, it was observed that hypothyroidism

contributed to an increase in CIMT (beta = 0.106, 95% CI: 0.014

to 0.197, P = 0.023), while thyroxin treatment was associated with a

decrease in CIMT (beta = -2.189, 95% CI: -4.287 to -0.091, P =

0.041) (Table 1).
3.3 Thyroid function and lipid traits

An elevation in FT4 was observed to increase levels of apoA-I

and HDL (apoA-I: beta = 0.037, 95% CI: 0.003, 0.072, P = 0.035;

HDL: beta = 0.032, 95% CI: 0.009, 0.055, P = 0.006). Additionally,

an increase in TSH was associated with a rise in apoB levels (beta =

0.022, 95% CI: 0.006, 0.038, P = 0.007). However, these findings did

not meet the Bonferroni-corrected threshold. No impact of other

thyroid function traits on lipid profiles was observed (Figure 3).
3.4 Results of multivariate MR

After adjusting for lipid traits, FT4, and TSH using multivariate

MR, FT4 was no longer associated with CIMT. Only apoA-I and

apoB were causally associated with CIMT (apoA-I: beta = -0.048,
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95% CI: -0.094, -0.002, P = 0.039, apoB: beta = 0.133, 95% CI: 0.086,

0.180, P = 2.62× 10−8) (Figure 4).
3.5 Sensitivity analysis

Cochran’s Q test revealed heterogeneity in a subset of the

results, particularly in the associations between TSH, FT3/FT4,

and TT3/FT4 with CIMT. To mitigate the impact of this

heterogeneity on the study outcomes, the IVW-MRE was

employed. Additionally, the MR-Egger test, utilized for detecting

pleiotropy, demonstrated intercepts near zero, suggesting an absence

of pleiotropy in these associations (refer to Supplementary Material

for details).
4 Discussion

This study represents the first application of MR methods to

decipher the causal relationship between thyroid function and CIMT.

Our two-sample MR analysis delved into the impact of thyroid

disorders on CIMT. We discovered that lower FT4 levels within

the normal range correlate with an elevation in CIMT. Conversely,

FT3, TSH, and TPOAb exhibited no significant influence on CIMT.

The administration of thyroid hormone supplements in hypothyroid

patients emerged as a beneficial strategy to diminish CIMT, in

contrast to the CIMT augmentation observed in hyperthyroidism.

Further, our exploration into the interplay between thyroid function

and lipid traits revealed a positive association of FT4 with apoA-I and

HDL-C, and of TSH with apoB. Intriguingly, only apoA-I and apoB

demonstrated a causal relationship with CIMT. This finding suggests

a potential U-shaped curve relationship between FT4 levels and

CIMT, mediated by apoA-I, underscoring the potential benefits of

thyroid hormone supplementation in hypothyroid patients. Our

research sheds light on the need to consider the risk of carotid

atherosclerosis in the early routine evaluation of individuals with

thyroid dysfunction.

Thyroid dysfunction, whether overt or subclinical, has been

associated with increased CIMT (31); however, the precise

mechanisms underlying this association remain elusive. It is plausible

that thyroid-related biomarkers such as TSH, FT3, FT4, or TPOAb
FIGURE 2

Causal Relationship Between Thyroid Function and Carotid Intima-Media Thickness. This figure presents the results of the Inverse Variance Weighted
Multiplicative Random Effects (IVW-MRE) analysis, demonstrating a significant association between elevated FT4 levels and reduced CIMT. In
contrast, FT3, TSH, and TPOAb concentrations showed no significant effect on CIMT. The figure also highlights the observed correlation between
hyperthyroidism and increased CIMT, while hypothyroidism did not show a significant effect.
TABLE 1 Thyroid function status and its impact on CIMT.

Thyroid
Status

FT4
Levels

Impact
on

CIMT Notes

Hypothyroidism Low

No
significant
change

Thyroid hormone
supplementation reduces

CIMT thickness.

Normal Range Normal
Decreased
CIMT

Lower levels of FT4 within the
normal range are associated

with increased CIMT.

Hyperthyroidism High
Increased
CIMT

Hyperthyroidism is significantly
associated with an increase

in CIMT.
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may contribute to endothelial dysfunction (32, 33). Moreover, thyroid

dysfunction is often accompanied by metabolic disturbances, such as

hyperlipidemia, obesity, and insulin resistance (34). These factors are

established as clear risk factors for carotid atherosclerosis, leading

clinical studies to primarily focus on patients’ metabolic

abnormalities rather than changes in thyroid hormone levels.

Our findings highlight FT4 as a pivotal independent risk factor

for increased CIMT. In cases of hypothyroidism, the administration

of levothyroxine, a common thyroid hormone replacement therapy,

has been shown to effectively reduce CIMT. We also observed that

decreased FT4 within the normal range is associated with increased

CIMT, aligning with previous clinical research (35, 36). Alessandro

P. Delitala et al. found that higher FT4 levels increase arterial

stiffness in the common carotid artery, possibly related to its effect

on heart rate (37). In our study, we also noted increased CIMT in

hyperthyroid patients. In addition, we discovered that the

relationship between FT4 and CIMT is mediated by apoA-I,

potentially elucidating the mechanism through which FT4

influences CIMT. However, Ayse S Cikim et al. found no

significant difference in CIMT between subclinical hyperthyroid
Frontiers in Endocrinology 06
patients and the general population (38). Our study proposes a U-

shaped relationship between FT4 levels and CIMT, underscoring

the importance of routinely assessing thyroid function in patients to

monitor the risk of carotid atherosclerosis. While our findings

suggest a link between lower FT4 levels within the normal range

and increased CIMT, current guidelines for subclinical

hypothyroidism caution against the use of thyroxine therapy in

individuals with TSH levels below 10 mIU/ml (39).

Previous studies have showed that FT3 is negatively correlated

with coronary artery disease (40, 41), and higher FT3 is cross-

sectionally associated with higher total HDL particle concentration

and with lower HDL particle size in euthyroid individuals (42).

Furthermore, T3 has been found to influence atherosclerosis through

thyroid hormone receptors, which regulate the atherosclerotic process

independently of the lipid profile (43). These findings underscore the

importance of thyroid function in the context of atherosclerotic

cardiovascular disease. Although our study found that FT3 has no

significant effect on CIMT, a finding that may have resulted from data

source limitations, the significance of FT3 for carotid atherosclerosis

risk is still something that warrants careful consideration.
FIGURE 4

Multivariate MR Analysis Incorporating Lipid Factors. Image depicts the results of the multivariate MR analysis after adjusting for lipid traits, FT4, and
TSH. The analysis revealed that only apoA-I and apoB were causally associated with CIMT, indicating their significant mediating role in the
relationship between thyroid function and CIMT.
FIGURE 3

Causal Influence of Thyroid Function on Lipid Profiles. This figure demonstrates the effects of thyroid function on lipid profiles. An increase in FT4 is
associated with higher levels of apoA-I and HDL, while a rise in TSH correlates with increased apoB levels. Notably, in this figure, asterisks indicate
the level of statistical significance: a single asterisk (*) denotes a P-value less than 0.05, and double asterisks (**) denote a P-value less than 0.01.
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Serum TSH levels, sensitive to subtle changes in thyroid

function, may promote atherosclerosis by stimulating the

proliferation of vascular smooth muscle cells (39). Clinical studies

have reported an association between TSH levels and CIMT in

postmenopausal women (33), but no such association was found

before menopause. Our study found no correlation between TSH

levels and CIMT, however, an elevation in TSH was found to be

positively associated with increased apoB levels. Therefore, it is

important to acknowledge the potential impact of TSH on CIMT

within specific subgroups.

TPOAb was associated with autoimmune diseases, and TPOAb

titers correlate positively with high-sensitivity C-reactive protein

levels (44). Prolonged inflammation may damage the process of

endothelial repair, ultimately leading to atherosclerotic lesions.

Shimizu, Y. et al. conducted a prospective study on 1069 Japanese

subjects with thyroid hormones within the normal range, finding

that an increase in TPOAb titers leads to progressive CIMT increase

(45). However, TPOAb elevation often accompanies the onset of

autoimmune diseases, making it challenging to analyze its direct

effect on CIMT clinically. Our study did not find a correlation

between TPOAb and CIMT, but caution is needed in interpreting

this result, possibly due to the limited statistical power

resulting from the inclusion of a small number of SNPs in the

instrumental variable.

Apart from the influence of age and gender, CIMT is determined

by traditional risk factors such as blood pressure and lipid

abnormalities. There is an interaction between thyroid function

and lipid metabolism, with MR studies revealing a causal

relationship between changes in normal-range thyroid function and

the diagnosis of metabolic syndrome and lipid status (46). The apoB/

apoA-I ratio in hypothyroid patients is significantly higher than in

those with normal thyroid function (47, 48). Clinical studies have

shown that thyroid hormone supplementation can reduce lipids in

patients with subclinical hypothyroidism (49), consequently lowering

CIMT (35, 50).

To clarify the impact of the interaction between thyroid function

and lipids on CIMT, we conducted a multivariable MR analysis. The

results indicate that apoA-I, apo B, mediate the effect of FT4 on

CIMT, emphasizing the crucial role of lipids in the process of CIMT

thickening. Lipid-lowering drugs, as a frontline therapy for clinical

prevention of carotid plaque formation and progression, are equally

applicable to hypothyroid patients with increased CIMT. Our study

also suggests that combined supplementation of thyroid hormones

and lipid-lowering treatment may achieve a better reduction in CIMT

for patients with hypothyroidism.

The primary strength of this study lies in its utilization of a MR

design, where SNP assignment is randomized and unaffected by

reverse causality, thereby minimizing potential bias from

confounding factors. Moreover, the extensive sample size derived

from GWAS summary statistics surpasses that of a typical RCT,

enhancing the reliability and, to some extent, the predictiveness of

the study’s outcomes regarding a clinical trial. However, several

limitations should be acknowledged. Firstly, while MR provides

insights into the long-term effects of thyroid hormones on CIMT,

the results may not fully align with the outcomes of short-term drug

interventions. The dynamics of physiological responses to
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exogenous hormones might differ from the prolonged impact of

endogenous hormone levels. Secondly, limitations arise from the

availability of instrumental variables. The scarcity of suitable SNPs

for TPOAb may compromise the statistical power of the

analysis. This constraint emphasizes the need for future research

to identify additional instrumental variables for a more

comprehensive understanding. Thirdly, the absence of individual-

level data hindered a detailed exploration of the potential

nonlinear relationship between FT4 and CIMT. Understanding

such nuances could aid in establishing optimal hormone

supplementation regimens. Fourthly, the study did not delve into

the underlying pathophysiological mechanisms linking FT4

deficiency to CIMT. A deeper exploration of these mechanisms

could enhance our understanding of the causal pathways involved.

Finally, the generalizability of our findings is constrained by the

study’s exclusive focus on populations of European ancestry. The

applicability of our results to other ethnic groups remains uncertain

and warrants consideration in future studies.

In conclusion, our findings suggest that lower FT4 levels may

contribute to increased CIMT through their impact on lipid levels.

While this study provides insights into the potential association

between thyroid function and cardiovascular health, further

investigations are warranted to ascertain the effectiveness of

thyroid hormone supplementation in mitigating cardiovascular

disease risk, particularly among individuals with subclinical

hypothyroidism. These future studies should encompass diverse

populations to ensure the broader applicability of the findings.
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