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Mary, Nanchang University, Nanchang, China, 6Department of Oncology, Jiangxi Maternal and Child
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Background: Poor oocyte quality remains one of the major challenges for

polycystic ovary syndrome (PCOS) patients during in vitro fertilization (IVF)

treatment. Granulosa cells (GCs) in PCOS display altered functions and could

cause an unfavorable microenvironment for oocyte growth and maturation.

Ferroptosis is a new form of programmed cell death, but its role in PCOS has

been largely unclarified.

Methods: Ferroptosis-related differentially expressed genes (DEGs) of GCs in

women with PCOS were identified by bioinformatic analyses of GSE155489 and

GSE168404 datasets. Functional enrichment analyses were conducted using

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Core

ferroptosis-related genes were further screened by random forest, and

evaluated for diagnostic value by receiver operating characteristic curve

analyses. Gene expression was validated by real-time quantitative polymerase

chain reaction of collected GC samples, and analyzed for association with oocyte

quality. In addition, gene regulatory network was constructed based on predicted

RNA interactions and transcription factors, while potential therapeutic

compounds were screened through molecular docking with crystallographic

protein structures.

Results: A total of 14 ferroptosis-related DEGs were identified. These DEGs were

mainly enriched in reactive oxygen species metabolic process, mitochondrial

outer membrane, antioxidant activity as well as ferroptosis and adipocytokine

signaling pathways. Eight core ferroptosis-related genes (ATF3, BNIP3, DDIT4,
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LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6) were further selected in random forest

model, which showed high diagnostic performance for PCOS. Seven of them

were validated in GC samples, and five were found to be significantly and

positively correlated with one or more oocyte quality parameters in PCOS

patients, including oocyte retrieval rate, mature oocyte rate, normal fertilization

rate, and good-quality embryo rate. Gene regulatory network revealed JUN and

HMGA1 as two important transcription factors, while dicoumarol and flavin

adenine d inuc leot ide were pred icted as smal l molecu les wi th

therapeutic potential.

Conclusions: This is the first comprehensive report to study the differential

expression of ferroptosis-related genes in GCs of PCOS and their clinical

relevance with oocyte quality. Our findings could provide novel insights on the

potential role of GC ferroptosis in PCOS pathogenesis, diagnosis, and

targeted treatment.
KEYWORDS

polycystic ovary syndrome, ferroptosis, granulosa cell, oocyte quality, in
vitro fertilization
Background

Polycystic ovary syndrome (PCOS), a common endocrine

disorder, affects 5-20% of reproductive-aged women worldwide

and accounts for approximately 80% of anovulatory infertility (1).

The condition is characterized by a heterogeneous clustering of

androgen excess, ovulatory dysfunction, polycystic ovarian

morphology, as well as metabolic abnormalities including obesity

and insulin resistance (2). During in vitro fertilization (IVF)

treatment, women with PCOS have typically increased oocyte

yield from stimulation, while the maturation, fertilization, and

implantation rates are decreased due to poor oocyte quality (3–6).

As the most abundant cells in ovary, granulosa cells (GCs)

surround and bi-directionally interact with oocytes via paracrine

signals and gap junctions (7, 8). Both types of GCs, mural and

cumulus, coordinate to play essential roles in normal

steroidogenesis and folliculogenesis (9, 10). Previous studies have

shown that GCs in PCOS displayed altered proliferation, apoptosis,
al process; CC, Cellular

Gs, Ferroptosis-related

Omnibus; GnRH-ant,

ne Ontology; IVF, In

Genes and Genomes;

e Gini; MF, Molecular

PCOS, Polycystic ovary

eactive oxygen species;

chain reaction; TF,
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autophagy, mitochondrial function and inflammatory response,

consequently leading to an unfavorable microenvironment for

oocyte growth and maturation (11–15). Therefore, investigating

the dysfunction of GCs and its underlying mechanisms could be

scientifically and clinically crucial to improve oocyte quality of

PCOS patients.

Ferroptosis is a new form of programmed cell death that mainly

relies on iron accumulation, lipid peroxidation, and subsequent

plasma membrane damage (16). Due to the role of iron in

mediating enzyme activity and production of reactive oxygen

species (ROS), ferroptosis is strictly regulated by iron metabolism

involving iron uptake, storage, utilization, and efflux (17). Mounting

evidences have documented excessive or deficient ferroptosis in a

plethora of human diseases and proposed novel targets for

pharmacological therapy (16). In PCOS women, mild iron

overload has been observed possibly due to the iron sparing effect

of menstrual irregularity and decreased hepcidin secretion

facilitating iron absorption (18, 19). By analyzing peripheral

blood CD4+ T cells of PCOS patients, Nasri et al. (20) identified

several differentially expressed proteins that were enriched in

ferroptosis pathway. In PCOS-model rats, Zhang et al. (21) also

found increased gravid uterine and placental ferroptosis, which

could be suppressed by antioxidant N-acetylcysteine (22). Recently,

several in vitro studies have revealed a relationship between

ferroptosis and GCs in PCOS (11, 23, 24), while the

comprehensive regulatory network is still poorly defined and the

clinical relevance remains largely unclear.

Using RNA sequencing data from publicly available Gene

Expression Omnibus (GEO) database, we designed this in silico

study to explore the expression of ferroptosis-related genes in GCs
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of PCOS. Moreover, we evaluated the correlation of core differential

genes with oocyte quality in PCOS patients undergoing IVF cycles.

Our study should provide novel insights on the pathogenesis,

diagnosis and treatment of PCOS.
Methods

Dataset acquisition

Two RNA-seq datasets GSE155489 and GSE168404 were

downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/). The dataset GSE155489 was performed on the GPL20795 (HiSeq

X Ten) platform and included GC samples from 4 PCOS patients and 4

matched controls (25), while GSE168404 based on GPL1679 (Illumina

HiSeq 2500) was made of GC samples from 5 PCOS patients and 5

matched controls (26).
Differential expression analysis

The limma package in R software (version 3.6.1) was used to

identify differentially expressed genes (DEGs), with adjusted P<0.05

and absolute fold change (|FC|)>1.5 determined as the thresholds.

Volcano plots by ggplot2 package and hierarchical clustering heatmaps

by pheatmap package were employed for visualization of DEGs.

A total of 259 ferroptosis-related genes (FDGs) were obtained

from the FerrDb database (http://www.zhounan.org/ferrdb/

index.html), including 108 drivers, 69 suppressors and 111

markers (27). In addition, we assembled another 173 FDGs

through published literatures (28, 29) and the merged set

contained 291 FDGs after deduplication (Supplementary Table

S1). Overlapping genes between DEGs and FDGs were selected

for further analysis using the VennDiagram package.
Functional enrichment analysis

To further assess the biological processes (BP), cellular

components (CC), molecular functions (MF) and pathways

involved in the DEGs associated with ferroptosis, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses were conducted using the clusterpProfiler package in R

software. The results were considered as significantly enriched

with P<0.05.
Identification of core genes by
random forest

Random forest is a supervised machine learning algorithm that

combines multiple decision trees. It not only aggregates bootstrap

samples to build each of the classification trees, but also randomly

utilizes a certain percentage of all features for more accurate

estimation and prediction. Therefore, random forest can provide

a powerful ranking method to select core genes in diseases (30).
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To further filter out ferroptosis-related DEGs of low importance, we

used the randomForest package in R software according to the

criteria of Mean Decrease Gini (MDG) ≥0.05. Receiver operating

characteristic (ROC) curve analyses were performed with the pROC

package to evaluate the diagnostic value of retaining genes,

quantified by the area under the curve (AUC) in both datasets.
Regulatory network construction

ENCORI (https://starbase.sysu.edu.cn/) is an open-source platform

for identifying the RNA interactions from multi-dimensional

sequencing data, from which we obtained the interacted messenger

RNAs (mRNAs), microRNAs (miRNAs) and long non-coding RNAs

(lncRNAs) of core ferroptosis-related DEGs (31). In addition, the

transcription factors (TFs) corresponding to core genes were

extracted from TRRUST v2 (https://www.grnpedia.org/trrust), a

comprehensive reference database of transcriptional regulatory

interactions based on text mining and manual curation (32). A

multi-factor network was constructed and visualized using the

Cytoscape software (version 3.9.1).
Molecular docking

To predict small therapeutic molecules targeting GC ferroptosis

in PCOS, structures of core proteins were retrieved from Protein

Data Bank (https://www.rcsb.org/) (33), while molecular

information of available compounds were downloaded from

DrugBank (https://go.drugbank.com/) (34). Molecular docking

was carried out by AutoDock Vina software (version 1.2.0).

Potential compounds were screened according to binding

affinity ≤-7 kcal/mol, and the results were visualized using

PyMOL software (version 2.5.2).
Clinical sample collection

Ovarian GCs were collected from patients who underwent IVF

treatment with gonadotropin-releasing hormone antagonist (GnRH-

ant) protocol at the Center for Reproductive Medicine, the First

Affiliated Hospital of Wenzhou Medical University. Ten PCOS

patients were enrolled according to the revised 2003 Rotterdam

consensus criteria (35), while the control group included 8 non-

PCOS patients with matched age and body mass index, regular

ovulatory cycle, and infertility caused by tubal or male factors.

Women were excluded in cases of advanced reproductive age (≥38

years), diminished ovarian reserve, endometriosis, ovarian surgery

history, chromosomal abnormalities, autoimmune diseases, and

other endocrine disorders. On the day of oocyte retrieval following

human chorionic gonadotropin triggering, follicular fluid of mature

follicles (>14 mm) was pooled and centrifuged at 400 × g for 10 min.

The pellet was resuspended and incubated with 0.1% hyaluronidase

(Sigma, USA) at 37°C for 20 min, and then added with Ficoll-Paque

(GE Healthcare, Sweden) for density gradient centrifugation at 600 ×

g for 10 min. Purified GCs were isolated from the interlayer phase
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and stored at -80°C until use. The study was approved by the

Institutional Review Board of the First Affiliated Hospital of

Wenzhou Medical University (No. 2021-08), and written informed

consents were obtained from all participants.
Real-time quantitative polymerase
chain reaction

Total RNA was extracted from GC samples using TRIzol

Reagent (Invitrogen, USA), and reverse transcribed into cDNA

with SweScript RT I First Strand cDNA Synthesis Kit (Servicebio,

China) after concentration and purity measurement by NanoDrop

2000 (Thermo Fisher Scientific, USA). RT-qPCR was performed in

triplicates on the StepOnePlus Real-Time PCR System (Applied

Biosystems, USA) using 2 × SYBR Green qPCR Master Mix

(Servicebio, China). The mRNA expression level was quantified

by the 2-△△Ct method, with b-actin used as the internal reference

gene for normalization. The primer sequences of target genes are

listed in Supplementary Table S2.
Assessment of oocyte quality

Fertilization check was performed 16-18 hours after

insemination. Cleavage-stage embryos were graded on day 3

according to the Cummins’s morphological criteria (36). A total

of 4 outcomes related to oocyte quality were assessed, including

oocyte retrieval rate (oocytes retrieved out of ≥14 mm follicles on

trigger day), mature oocyte rate (metaphase II oocytes out of

oocytes retrieved), normal fertilization rate (two pronuclei oocytes

out of oocytes retrieved), and good-quality embryo rate (day 3

embryos with grade I or II out of all day 3 embryos).
Statistical analysis

For continuous variables, data were presented as mean ±

standard deviation and assessed for normality using the Shapiro-

Wilk test. Normally distributed data were compared by Student’s t

test, while nonparametric data were compared by Mann-Whitney U

test. Categorical variables were described as number with

proportion, and Fisher’s exact test was used for comparison.

Univariate correlations between core gene expression and oocyte

competence parameters were calculated by the Spearman’s test. All

statistical analyses were performed using SPSS software (version

26.0). A two-tailed P<0.05 was considered as statistically significant.
Results

Screening of ferroptosis-related DEGs

A total of 2958 DEGs were obtained from the GSE155489

dataset, of which 1935 were upregulated and 1023 were
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downregulated in GCs of PCOS patients compared with control

(Figures 1A, B). Among them, 44 genes were associated with

ferroptosis as shown in clustered heatmap (Figures 1C, D). In the

GSE168404 dataset, we isolated another 528 upregulated and 221

downregulated genes (Figures 2A, B), with 33 genes related to

ferroptosis (Figures 2C, D). After intersection, 14 common

ferroptosis-related DEGs were identified in both datasets

(Supplementary Figure S1).
Functional enrichment analysis

GO and KEGG enrichment analyses were performed to

investigate functions and related pathways of the 14 candidate

ferroptosis-related DEGs (Figure 3). In the GO analysis, genes

were mainly enriched in reactive oxygen species metabolic

process (GO:0072593) and superoxide metabolic process

(GO:0006801) of the BP category; mitochondrial outer membrane

(GO:0005741) and organelle outer membrane (GO:0031968) of the

CC category; and antioxidant activity (GO:0016209) and

oxidoreductase activity, acting on NAD(P)H (GO:0016651) of the

MF category. KEGG analysis revealed that these genes mostly

participated in ferroptosis (hsa04216), peroxisome (hsa04146),

bile secretion (hsa04976), as well as adipocytokine signaling

pathway (hsa04920).
Identification of core ferroptosis-
related DEGs

The random forest model was used to conduct deep learning on

the sample data of GSE155489 and GSE168404. According to MDG

of each ferroptosis-related DEGs, 43.2% (19/44) and 18.2% (6/33) of

candidates with low importance (MDG<0.05) were filtered out

respectively (Figure 4). By taking intersection of retaining genes

in both datasets, 8 core genes were finally identified, including

ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6

(Supplementary Figure S1). ROC curve analysis further

demonstrated that a combination of these 8 genes had high

diagnostic performance for PCOS, with an AUC of 1.000 in

GSE155489 and 0.900 in GSE168404 (Figure 5).
Construction of gene regulatory network

Correlation analysis showed significant correlation among core

ferroptosis-related DEGs in both datasets (Figures 6A, B), implying

synergistic interaction and crosstalk of genes on expression.

Subsequently, a regulatory network of core genes and their

predicted mRNAs, miRNAs, lncRNAs, and TFs was generated on

the grounds of ENCORI and TRRUST databases (Figure 6C). The

results revealed JUN and HMGA1 as two potentially important TFs.

Specifically, JUN could transcriptionally regulate the expression of

ATF3, NOS2 and NQO1, and HMGA1 could regulate the

expression of ATF3, BNIP3, DDIT4, NQO1 and SLC2A1.
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Prediction of potential
therapeutic compounds

Of the 8 core genes, crystallographic protein structures of ATF3,

DDIT4, NOS2, NQO1 and SLC2A1 were available in Protein Data

Bank and were downloaded with code 4UYA, 3LQ9, 5XN3, 2F1O

and 6THA, respectively. These proteins were then subjected for

molecular docking with all compounds from DrugBank database.

As a result, we identified dicoumarol (DB00266) and flavin adenine

dinucleotide (DB03147) as two small molecules with therapeutic

potential (Figures 7A, B). In detail, dicoumarol was docked with
Frontiers in Endocrinology 05
ATF3, DDIT4, NQO1 and SLC2A1, and flavin adenine dinucleotide

had high binding affinity with ATF3, NOS2, NQO1 and SLC2A1

(Supplementary Table S3).
Validation of core gene expression in GCs
and association with oocyte quality

The identified core ferroptosis-related DEGs were further

assayed by RT-qPCR on a sample set of 10 PCOS patients and 8

normo-ovulatory controls. There were no differences in age, body
A

B

C

D

FIGURE 1

Identification of ferroptosis-related DEGs in the GSE155489 dataset. (A) Volcano plot of DEGs. (B) Number of DEGs. (C) Venn diagram showing the
intersection between DEGs and genes associated with ferroptosis. (D) Clustered heatmap of ferroptosis-related DEGs in GSE155489. DEGs,
differentially expressed genes.
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mass index, basal follicle stimulating hormone level, as well as

infertility duration and type between the two populations.

Contrarily, PCOS patients had significantly higher antral follicle

count, anti-Müllerian hormone, basal luteinizing hormone, and

total testosterone than controls (Supplementary Table S4). RT-

qPCR results showed that the expression levels of 7 core genes,

including ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1 and

SLC2A1, were significantly downregulated in GCs of PCOS

patients, whereas no significant difference was detected in

SLC2A6 (Figures 8A–H).

Comparison of IVF laboratory outcomes revealed a poorer

oocyte competence in PCOS patients, as indicated by the lower

oocyte retrieval rate (85.0 ± 19.5% vs. 94.6 ± 9.0%), mature oocyte

rate (85.1 ± 8.2% vs. 92.3 ± 5.8%), normal fertilization rate (65.3 ±

15.8% vs. 72.4 ± 8.6%), and good-quality embryo rate (75.8 ± 13.3%

vs. 85.1 ± 10.7%) relative to controls (Supplementary Table S4). In

the PCOS group, the oocyte retrieval rate was significantly and

positively correlated with BNIP3 (r=0.766, P=0.010), NOS2

(r=0.837, P=0.003), and NQO1 (r=0.692, P=0.027) mRNA levels,

while normal fertilization rate was associated with LPIN1 (r=0.760,

P=0.011) mRNA level. Additionally, the expression of SLC2A1 had

significant correlations with both mature oocyte rate (r=0.664,
Frontiers in Endocrinology 06
P=0.036) and good-quality embryo rate (r=0.851, P=0.002)

(Figures 8A–H).
Discussion

Despite its prevalence in reproductive-aged women, the precise

pathophysiology of PCOS remains incompletely elucidated.

Ferroptosis is an iron-dependent and ROS-reliant regulated cell

death, while both iron overload and increased ROS have been

previously observed in PCOS patients (4, 5, 18, 19). In the present

study, we applied an integrated bioinformatic and experimental

approach to explore the unrecognized role of GC ferroptosis on

PCOS development, thus providing novel biomarkers for its

diagnosis, treatment, and clinical relevance with oocyte quality.

By in silico analysis of GSE155489 and GSE168404 datasets, we

firstly identified 14 candidate ferroptosis-related genes in GCs of

PCOS. GO analysis revealed that these DEGs may influence the

ROS and superoxide metabolic processes by regulating antioxidant

and oxidoreductase activities, which may be the potential

mechanisms by which ferroptosis affects the pathogenesis of

PCOS. KEGG analysis indicated enrichment in the ferroptosis
A

B

C

D

FIGURE 2

Identification of ferroptosis-related DEGs in the GSE168404 dataset. (A) Volcano plot of DEGs. (B) Number of DEGs. (C) Venn diagram showing the
intersection between DEGs and genes associated with ferroptosis. (D) Clustered heatmap of ferroptosis-related DEGs in GSE168404. DEGs,
differentially expressed genes.
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FIGURE 3

GO and KEGG enrichment analyses of ferroptosis-related DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs,
differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular function.
A B

FIGURE 4

Random forest screening of core ferroptosis-related DEGs. (A) Mean Decrease Gini of top 30 ferroptosis-related DEGs in GSE155489. (B) Mean
Decrease Gini of top 30 ferroptosis-related DEGs in GSE168404. DEGs, differentially expressed genes.
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and adipocytokine signaling pathway, suggesting that

adipocytokines may exert crucial roles in mediating ferroptosis in

PCOS. Interestingly, various adipocytokines, including adiponectin,

apelin, chemerin, irisin, vaspin and leptin, have been found to be
Frontiers in Endocrinology 08
differentially secreted in follicular fluid and involved in GC

dysfunction of PCOS patients (37). Recent studies have also

linked adipocytokine with ferroptosis resistance of cancer (38),

while their relationship in PCOS deserves future validation.
A B

FIGURE 5

Diagnostic performance of core ferroptosis-related DEGs for polycystic ovary syndrome. (A) ROC curve of core ferroptosis-related DEGs in
GSE155489. (B) ROC curve of core ferroptosis-related DEGs in GSE168404. DEGs, differentially expressed genes. ROC, receiver operating
characteristic. AUC, area under the curve.
A C

B

FIGURE 6

Correlation analysis and regulatory network of core ferroptosis-related DEGs. (A) Correlation heatmap of core ferroptosis-related DEGs in
GSE155489. (B) Correlation heatmap of core ferroptosis-related DEGs in GSE168404. (C) Construction of gene regulatory network based on
ENCORI and TRRUST databases. The blue nodes represent core ferroptosis-related DEGs, the red nodes represent transcription factors, the grey
nodes represent messenger RNAs, the green nodes represent microRNAs, and the yellow nodes represent long non-coding RNAs. Nodes with
degree ≥5 are shown with name. DEGs, differentially expressed genes.
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After random forest model construction, 8 out of the 14 DEGs

were further selected as core ferroptosis-related genes for

subsequent studies. Among them, NQO1 functions as a

ferroptosis suppressor, ATF3 and LPIN1 serve as ferroptosis

drivers, while BNIP3, DDIT4, NOS2, SLC2A1 and SLC2A6 are

evidenced as ferroptosis markers for both suppressors and drivers in

different biological circumstances (27). Unexpectedly, these genes

were all downregulated in GC samples of PCOS patients, implying

that the ferroptosis regulatory mechanisms in PCOS may be

multivariable and complicated. Since the identified core genes are

not ferroptosis-specific, it is also possible that they may mediate the

crosstalk between ferroptosis and other cellular functions in PCOS

development, such as proliferation, apoptosis and autophagy (16).

Indeed, some core genes have been previously studied with

inconsistent results. For example, Mlinar et al. (39) found that

LPIN1 expression was decreased in adipose tissue of PCOS patients

and associated with insulin resistance, while Nikolić et al. (40)

detected increased LPIN1 paralleled with enhanced glucocorticoid

signaling in dihydrotestosterone-induced PCOS rats. In terms of

NOS2, one study related its overexpression in GCs with

inflammatory ovulation defects of PCOS (15), while another

study concluded that the reduced NOS2 transcripts could

compromise endothelial and immune functions in PCOS via

lowering nitric oxide concentration (41). Therefore, further

studies are needed to clarify the specific regulatory function in

GC ferroptosis via in vivo and in vitro models.

Poor oocyte quality remains one of the major obstacles

encountered by PCOS patients during IVF treatment (3–6). Gene

expressions in GCs reflect the characteristics of oocytes, thus

providing a noninvasive approach to assess oocyte quality (42). In

our study, the expression levels of 5 core ferroptosis-related genes
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were found to be significantly correlated with one or more

parameters of oocyte quality. Among them, SLC1A1 has been

priorly investigated, while the other 4 genes were reported as

prognosis biomarkers in PCOS for the first time. Nevertheless,

the study by Kim et al. (43) found that glucose transporters SLC2As

9, 11 and 12, rather than SLC2A1, were associated with oocyte

competence including maturation rate, fertilization rate, and

implantation rate. This contradictory finding could be possibly

attributed to the use of in vitro maturation without ovarian

stimulation for oocyte collection, contrary to the GnRH-ant

protocol for IVF in current work.

On the basis of molecular docking, dicoumarol and flavin adenine

dinucleotide were screened as two potential therapeutic compounds

corresponding to core ferroptosis-related genes in PCOS. Dicoumarol

is initially used as an anticoagulant for vascular thrombosis, while

recent studies have also documented its gonad-safe anticancer,

antimicrobial, and antiviral activities (44, 45). It can act as an

inhibitor for NQO1 by competing with NAD(P)H, and targets Mrp-

1 to suppress cellular glutathione export (45, 46). Flavin adenine

dinucleotide is an indispensable auxiliary factor for the activity of

several flavoproteins, which regulate ROS production, antioxidant

defense, protein folding, and chromatin remodeling in living systems

(47, 48). It can also stabilize the structure and decrease protease-

mediated degradation of short-chain acyl-coenzyme A dehydrogenase

(49). Accumulating studies have demonstrated its efficacy in metabolic

disorders (49), malignant tumor (47, 48), and hypertensive vascular

remodeling (50). However, whether these two compounds are

applicable in PCOS treatment by targeting ferroptosis remains to be

further explored.

Several limitations should be taken into account when

interpreting the findings of this study. Firstly, the gene expression
A B

FIGURE 7

Potential therapeutic compounds corresponding to core ferroptosis-related DEGs. (A) Molecular docking of dicoumarol (DB00266) with ATF3,
DDIT4, NQO1 and SLC2A1. (B) Molecular docking of flavin adenine dinucleotide (DB03147) with ATF3, NOS2, NQO1 and SLC2A1. DEGs, differentially
expressed genes.
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analysis was based directly on count matrix uploaded in GEO,

which may cause result deviation due to the different RNA-seq data

processing flows in the original reports (51). Secondly, given the

heterogeneous nature of PCOS, the sample size for external

validation was relatively small and may thus limit the power to

detect statistical significances in comparison and correlation

analyses. In this regard, prospective studies with larger cohort size
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need to be carried out in the future. Thirdly, mRNA transcripts and

protein expressions are not consistently correlated because of

various factors such as post transcription machinery. For

proteomic analysis, Zhang et al. (52) collected endometrial

samples from 33 PCOS and 7 control women, and also quantified

5 key proteins associated with ferroptosis. However, data were still

lacking in GCs, and our identified DEGs were not validated at
E

F

G

H

A

B

C

D

FIGURE 8

Validation of core ferroptosis-related DEGs in granulosa cells and association with oocyte quality. (A) ATF3. (B) BNIP3. (C) DDIT4. (D) LPIN1. (E)
NOS2. (F) NQO1. (G) SLC2A1. (H) SLC2A6. DEGs, differentially expressed genes.
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protein level. Finally, the precise regulatory mechanism of

ferroptosis in PCOS development is unclear. A combination of

molecular, cellular and animal experiments is required to validate

the role of these identified core genes.
Conclusions

In summary, this is the first comprehensive report to study the

differential expression of ferroptosis-related genes in GCs of PCOS.

Several core genes were identified and validated, which had high

diagnostic performance for PCOS and significant correlation with

oocyte quality. Our findings contribute to a better understanding

on the potential role of ferroptosis in PCOS pathogenesis, and

lay a theoretical foundation for the discovery of novel

pharmacological therapy.
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