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Over the last decades, thyroid hormones (THs) signaling has been established as

a key signaling cue for the proper maintenance of brain functions in adult

mammals, including humans. One of the most fascinating roles of THs in the

mature mammalian brain is their ability to regulate adult neurogliogenic

processes. In this respect, THs control the generation of new neuronal and

glial progenitors from neural stem cells (NSCs) as well as their final differentiation

and maturation programs. In this review, we summarize current knowledge on

the cellular organization of adult rodent neurogliogenic niches encompassing

well-established niches in the subventricular zone (SVZ) lining the lateral

ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus,

but also less characterized niches in the striatum and the cerebral cortex. We

then discuss critical questions regarding how THs availability is regulated in the

respective niches in rodents and larger mammals as well as how modulating THs

availability in those niches interferes with lineage decision and progression at the

molecular, cellular, and functional levels. Based on those alterations, we explore

the novel therapeutic avenues aiming at harnessing THs regulatory influences on

neurogliogenic output to stimulate repair processes by influencing the

generation of either new neurons (i.e. Alzheimer’s, Parkinson’s diseases),

oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out

future challenges, which will shape research in this exciting field in the

upcoming years.
KEYWORDS

thyroid hormones, adult, adult neurogenesis, adult oligodendrogenesis, SVZ:
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Introduction

Adult neurogliogenesis is a process strictly regulated in all

mammals, including humans. In particular, neurogenesis occurs

throughout the lifespan in specific and restricted areas of the brain.

The subventricular zone (SVZ) lining the lateral ventricles (1, 2) and

the subgranular zone (SGZ) in the hippocampus (3, 4) are the two

main niches in which adult generation of new neural cells has been

extensively described in physiological and pathological conditions.

However, several other brain areas have also been identified as

emerging sites of newly generated neurons and glial cells in adult

mammals, although the origin of progenitors underlying this

process remains controversial. Such niches include the

hypothalamus (5, 6), striatum (2, 7–9), and cerebral cortex (10,

11), among others, such as the amygdala (12, 13). However, even

though neurogliogenesis has already been extensively studied,

mechanisms underlying the generation of new neural cells in the

adult are not completely disentangled up to date.

Among the potential players controlling these processes,

thyroid hormones (THs), T3 (3,5,3’-triiodothyronine) and T4

(thyroxine) arise as top candidates. The role of THs on adult

neurogliogenesis has been well established in mammals, and

especially in rodents, for some time now (14–16), with various

aspects ranging from the control of cell proliferation (17–21),

determination and differentiation (18–22), to cell death (18, 23).

However, mechanisms underlying TH-dependent neurogliogenic

processes are only emerging in the two main neurogenic niches (SVZ

and SGZ), but further research is needed to assess TH action in other

emerging adult neurogliogenic niches. We hypothesize that a

dynamic interaction between TH signaling regulators tightly

modulates intracellular TH action, thus regulating neural stem cell

(NSC) behavior (i.e., proliferation and neuron/glia determination)

and progenitor differentiation. Cell-specific THs availability in the

brain is finely tuned by (i) THs supply to cerebral tissues carried out

by TH-distributor proteins such as transthyretin (TTR) (24) and ii)

transmembrane TH-transporters (THTs) (25). Moreover, TH action

in the brain is regulated by iii) a balance between TH-activating

deiodinases (mainly type 2 deiodinase, or DIO2, in the brain, that

locally converts T4 to T3) and inactivating deiodinases (mainly type 3

deiodinase or DIO3) (26). Finally, to translate the THs signal into

changes in gene expression, iv) the presence of ligand (T3)-dependent

nuclear receptors (TR) (27) such as TRa1, TRb1 or TRb2, is the main

way for THs action.

Besides the obvious interest in understanding the molecular and

cellular aspects of adult neurogliogenic processes and their

interactions with THs, it is also important to note that the

generation of new neural cells in the adult brain has major

functional impacts on health and disease, and a better knowledge

of these TH-dependent mechanisms could lead to new therapeutic

avenues. Hence, in this review, we describe the features of the known,

and lesser-known neurogliogenic niches in the adult rodent brain, as

well as the multiple roles of THs in regulating neurogliogenic

processes in both health and disease. Finally, given the lack of

knowledge on several aspects addressed in this review, we point out

several future challenges, trying to pinpoint the most significant

knowledge gaps, that will most likely drive further research.
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Thyroid hormone action in the SVZ

SVZ-NSCs, also known as B1 cells, are astrocytic-type cells (28,

29) generated during embryonic development. After this embryonic

period, “pre-B” cells enter quiescence until adulthood, where they

can be reactivated (30, 31), especially following a brain injury (1, 32,

33). A fine regulation between quiescent and proliferative NSCs is

required to preserve the NSC pool within the SVZ niche (30, 31, 34,

35). Elegant real-time imaging experiments demonstrated that B1

cells generate actively proliferating Transient Amplifying

Progenitors (C cells or TAP) by asymmetric division (36, 37).

TAPs can divide symmetrically up to three times before

generating neuroblasts (A cells), characterized by their limited

proliferative capacity and the expression of the specific marker

doublecortin (DCX+) (37). DCX+ neuroblasts migrate towards the

olfactory bulbs (OB) along a tangential migration pathway, the

Rostral Migratory Stream (RMS) (38). In the OB, neuroblasts

migrate radially and differentiate into distinct populations of

GABAergic (expressing calbindin and calretinin) and

dopaminergic (expressing tyrosine hydroxylase) interneurons

(39–41) that integrate into pre-existing interneuron networks

(41–43). These newly generated olfactory neurons play a role in

the olfactory function of rodents, particularly in the discrimination

and memorization of odors, which are crucial for the animal’s

adaptation to its environment (for mating and offspring care)

(43–46).

Glial cells, including astrocytes and oligodendrocyte precursors

(OPCs, identifiable by the oligodendroglia lineage marker OLIG2),

are also derived from a subpopulation of SVZ B1 cells (2, 47–49).

OPCs derived from SVZ-NSCs migrate towards white matter tracts

in proximity to the lateral ventricles (i.e., corpus callosum, striatum)

where they differentiate into mature myelinating oligodendrocytes

(2, 21, 50–52). Interestingly, SVZ-OPCs never produce glial cells

located in OBs (53, 54). Functional studies of oligodendrocytes

derived from SVZ-NSCs are limited. SVZ-OPCs are capable of

successfully repairing damaged demyelinated lesions in the corpus

callosum and striatum, close to the lateral ventricle (21, 51, 52).

Thus, SVZ-OPCs constitute an endogenous source of myelin-

enhancing oligodendrocytes in the adult mammalian brain. It is

of particular relevance to stimulate this endogenous production of

SVZ-OPCs in order to improve functional myelin recovery, by

promoting (i) the generation of OPCs from SVZ-NSCs, (ii) the

migration of these OPCs to the injury sites and (iii) the

differentiation of these OPCs into mature myelinating

oligodendrocytes. This question is of particular interest given that

postmortem brain studies in patients who died of multiple sclerosis

(MS) have shown that SVZ-derived OPCs also migrate to lesions

located in the corpus callosum (50). Thus, the recruitment of newly

generated OPCs in adults is conserved between humans

and rodents.

The role of THs in the biology of SVZ-NSCs has been

investigated mainly by Remaud’s group over the past two decades

in the young adult mouse (Figure 1). We first determined the

expression pattern of several regulators of THs action (i.e, TRs,

THTs, TH-distributor proteins, deiodinases) within the adult

mammalian SVZ to identify the cell types that preferentially
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Valcárcel-Hernández et al. 10.3389/fendo.2024.1347802
respond to THs. By immunohistochemistry, we demonstrated that

only the TRa1 isoform is expressed in SVZ cells, and not TRb (18,

55) and that TRa1 is found especially in neuroblasts (55) but not in

OLIG2+ OPC (21) (Figure 1). Interestingly, we found that TRa1
(considered as a neuronal determinant) and EGFR (a TH-target

gene involved in glial determination) are asymmetrically segregated

during NSC/progenitor division, suggesting that one daughter cell

inheriting TRa1 will become a neuroblast whereas EGFR+ sister

cells will be determined toward an oligodendroglial fate (21)

(F igure 1) . Regard ing the express ion of key THTs,

monocarboxylate transporter 8 (MCT8), and organic anion-

transporting polypeptide 1C1 (OATP1C1) are mainly detected in

committed neuronal cells (56) (Figure 1). Altogether, these data

suggest that TH signaling is more active in SVZ-derived neuronal

cells whereas oligodendroglial cells do not seem to harbor the

arsenal of regulators that would allow them to respond to THs

signaling. Accordingly, OLIG2+ and SOX10+ OPCs express high

levels of DIO3 (Figure 1), the THs-inactivating enzyme that is not

expressed in neuronally committed SVZ-cells (21), showing that

OPCs are protected from the effects of THs not only by the

expression of DIO3 but also by the absence of TRa1 expression.

Moreover, Vancamp et al. (2019) reported that, although mRNAs

for the TH-distributor protein Ttr were detected in SVZ, especially

in NSCs and neuroblasts, by RTqPCR, they did not detect the TTR

protein using immunohistochemistry (57). This strongly suggests

that TTR-mediated THs supply could be a key factor favoring

neuronal specification (57). However, the detection of Ttr

transcripts versus the failure to detect TTR protein by

immunohistochemistry requires further investigation to better

determine the action of Ttr within SVZ cells. As the intracellular
Frontiers in Endocrinology 03
action of THs can be regulated at multiple levels in the targeted SVZ

cells, depending on the expression of THTs, deiodinases, TH-

distributor proteins or receptors, two factors that modulate the

intracellular response to TH should be given a more careful

consideration. First, the expression of the TRa2 isoform should

be better investigated in future studies concerning the cellular and

molecular responses to THs signaling, as its putative dominant-

negative role (without T3 affinity) may counteract the intracellular

action of THs. Indeed, TRa2 is highly expressed in the brain,

notably in adult SVZ cells as we demonstrated by RTqPCR

following FACS-dissected murine SVZs (56). Second, to gain an

overview of the regulation of T3 availability in the various SVZ cell

types, it is crucial to define the role and the expression pattern at the

protein level of DIO2 that remains unexplored yet.

We established that fine tuning of intracellular T3 ligand

availability in the different SVZ cell types governs neuron/glia fate

orientation of adult murine NSCs. In particular, we demonstrated

that hypothyroidism, induced by PTU (6-n-propyl-2-thiouracil)

treatment, reduced the number of mitotically active cells in adult

mice, by arresting NSCs and progenitors during the S phase (18). A

similar phenotype was found in Tra0/0 mice (18), lacking all isoforms

encoded by the Thra locus (58). Moreover, a decreased apoptosis was

observed in the SVZ of PTU-induced hypothyroidmice (18, 23). A T3

intraperitoneal injection restored proliferation and apoptosis to levels

similar to the control group, demonstrating that T3 is required for

progenitor proliferation within the adult SVZ. Furthermore, adult

PTU-induced hypothyroid mice also showed a reduction in the

number of migrating neuroblasts along the RMS (18), thus

negatively impacting the generation of new olfactory interneurons.

In line with these findings, we showed that TH signaling acts as a
FIGURE 1

TH signaling modulates the neuronal versus glial fate decision within the SVZ niche of the adult mouse. During NSC division, an asymmetric
segregation of a neural determination factor (TRa1) and a glial determination marker (EGFR) is observed. Moreover, T3 through its receptor TRa1,
drives NSC commitment preferentially towards a neuroblast via downregulating various genes involved in glial determination (Egfr), cell cycle
progression (c-Myc, Cnnd1) and NSC pluripotency (Sox2). Neuroblasts generate olfactory interneurons in the olfactory bulbs that participate in
olfactory behavior that is strongly affected when THs action is impaired. A lack of T3 favors the generation of new SVZ-derived OPCs. These SVZ-
OPCs can repair myelin in the corpus callosum and restore normal nerve conduction after a demyelinating insult using the cuprizone mouse model.
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neurogenic switch by promoting the commitment of NSCs and

progenitors preferentially to a neuronal fate (21, 55). TRa1
overexpression using an in vivo non-viral gene transfer method

(58, 59) increased neuroblast generation in the most dorsal part of

the SVZ. We have shown that T3 - via its receptor TRa1 - promoted

neuronal determination through transcriptional repression of (i)

Sox2, a key gene involved in NSC pluripotency (55) and (ii) crucial

genes involved in regulating cell cycle progression such as Ccnd1 and

c-Myc (18, 59). Furthermore, we also showed in 2017 that T3

promoted neuronal fate at the expense of oligodendroglial fate,

notably through modulation of cell metabolism (15). In particular,

mitochondrial respiration and fission are more active in neuronal

precursors, compared to the situation in oligodendroglial precursors.

While T3 favors a neuronal fate, a TH-free window in contrast

promoted the generation of new OPCs derived from adult murine

SVZ-NSCs (15, 21). We reported in vivo , by immuno

histochemistry, that SVZ-OPCs are protected from the

T3-mediated pro-neurogenic effects via (i) a high expression of

DIO3 (21) (ii) a lack of TRa1 expression and (iii) an absence of two

key THTs, MCT8 and OATP1C1 (18, 21). In contrast, neuroblasts

express TRa1 but not DIO3, suggesting that TH signaling is active

in neuronal cells. Moreover, a transient reduction of Dio3

expression (by in vivo non-viral transfection using a DNA

plasmid expressing a shRNA directed against mRNA encoding

Dio3) induced a significant decline in the number of SVZ-OPCs,

illustrating the importance of this “T3-free window” in SVZ-

oligodendrogenesis. While a transient lack of T3 is required for

SVZ-OPC specification, T3 is also well known for accelerating OPC

exit from the cell cycle and committing them to differentiation via

TRa1, in cooperation with another nuclear receptor, RXRϒ (60,

61). Furthermore, we have recently shown that adult mice deficient

for the TH-distributor protein TTR - exhibiting low levels of T3 and

T4 in the CSF (62) - increased the generation of new SVZ-derived

OPCs at the expense of the production of new neuroblasts (57).

Thus, the neuron/glia balance is shifted once again in favor of

oligodendrogenesis in the context of central hypothyroidism.

Similarly, our latest work revealed increased SVZ-OPC

production in the absence of MCT8 and OATP1C transporters

using the Mct8-/-, Oatp1c1-/- double knockout dKO mice (56). In

turn, the production of mature neuroblasts is diminished and

associated with a migration defect.

What is the functional relevance of the T3-dependent regulation

of the neuron-glia balance? As mentioned previously, T3

preferentially drives NSC fate towards neuroblasts. In various

pharmacological and genetic backgrounds, that reflect a central

hypothyroidism, we have shown that reduced SVZ-neurogenesis is

associated with impaired olfactory behavior in adult mice, and in

particular with a reduced short-term olfactory memory (56)

(Figure 1). We also examined the functionality of the “T3-free

window” in a well-established model of demyelination using

cuprizone, a gl iotoxin that induces death of mature

oligodendrocytes (63) predominantly distributed in the corpus

callosum for a six-week cuprizone treatment period (21).

Transient hypothyroidism was then applied to mice during the
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demyelination phase, a phase during which new SVZ-OPCs are

reported to proliferate, thus promoting myelin repair (64). In that

context, we have shown that these mice efficiently repaired

demyelinating lesions in the corpus callosum, especially just

above the ventricles. Indeed, waves of remyelination originating

in the dorsal part of the SVZ are puzzlingly observed. Unexpectedly,

quantification of myelin thickness by electron microscopy revealed

that myelin sheath at remyelination sites is of normal thickness

around the axons of the corpus callosum (21). Furthermore,

electrophysiological experiments were performed by measuring

compound action potentials (CAPs) in coronal corpus callosum

slices one week after endogenous remyelination (64). We

highlighted that such hypothyroidism, applied during

demyelination, enabled a functional recovery of nerve conduction

(21) (Figure 1). Similarly, TTR null mice also displayed an increase

in oligodendrogenesis during development (65) as well as a thicker

myelin sheath in the corpus callosum following cuprizone

withdrawal (66). Thus, SVZ-derived OPCs constitute an

endogenous source of glial progenitors capable of functionally

repairing a demyelinated lesion localized in the corpus callosum,

close to the lateral ventricles as it has been also demonstrated by

other works (51, 52). However, how a TH-deficient environment

contributes to restoring a myelin sheath of normal thickness is still

an unresolved question.

Our findings on TH action on SVZ-NSCs led to TH signaling

being considered as a potential key signal for stem cell-based

regenerative medicine (67). The regenerative potential of THs has

been well documented in fish, maintaining a large adult pool of

NSCs (68, 69). In contrast, in mammals, which exhibit a neonatal

THs peak [for review, see (70)], CNS regenerative capacities are

drastically diminished after this THs peak. The adult SVZ niche,

which remains sensitive to THs throughout life, provides a potential

source of neural cells that can be mobilized in pathophysiological

conditions requiring the supply of new neurons (as seen in

Alzheimer’s) or oligodendroglial cells (as observed in MS), or

both (as in the case of stroke). Here, we focus on the contribution

of THs in repairing demyelinating lesions that are characteristic of

MS, a chronic inflammatory disease that affects the entire CNS

(brain and spinal cord). It is the first cause of motor disability in

young adults. In addition, the worldwide incidence of this disease

has been unexpectedly increasing over the last twenty years (71) and

therefore represents a major public health issue. MS is associated

with multiple demyelinating lesions (plaques), inflammatory cells,

loss of oligodendrocytes, and decreased axon density (72). A

burning question is to understand how to mobilize the cell type

that favor remyelination. OPCs, which account for 5% to 8% of

adult CNS cells, and the myelin-forming oligodendrocytes derived

from them, are obvious targets for promoting myelin repair [for

review, see (73)]. One approach to boosting myelin recovery is to

enhance the pool of oligodendrocyte progenitors. Two endogenous

sources can be mobilized for MS patients: (i) newly-generated adult

OPCs from NSCs, as discussed above, and (ii) parenchyma-resident

OPCs (pOPCs), generated during development and which persist in

the adult brain. Thus, the SVZ represents an attractive endogenous
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source of OPCs. Postmortem examination of brains from

individuals diagnosed with MS revealed efficient recruitment of

SVZ-derived OPCs to sites of injury in the corpus callosum (50).

The rodent model of cuprizone-induced demyelination, as

mentioned above, has been used to assess the effect of THs on

remyelination. Franco et al. (2008) showed that T3 injections during

the recovery/remyelination period - following 2 weeks of cuprizone-

based demyelination - induced an increase in OLIG2+

oligodendroglial cells exiting the cell cycle in the SVZ along with

increased detection of TRa1 and TRb in SVZ cells by

immunohistochemistry. An increased number of mature

oligodendrocytes expressing hallmark markers (O4, MBP, PLP,

CC1) was observed in the corpus callosum (74). Similarly, an

MRI analysis also showed that T3 injections in mice, during the

recovery weeks after cuprizone treatment, enhanced remyelination

in the corpus callosum (75). In these two studies, however, the

origin of the remyelinating cells (SVZ-derived OPCs or pOPCs) was

not clearly stated. Since then, work several groups including ours

(21, 51, 52), has shown - using cell tracing experiments - that adult

murine SVZ OPCs were able to migrate to myelin damage induced

in the corpus callosum and then differentiate into mature

myelinating oligodendrocytes. Our protocol - based on a transient

hypothyroidism window applied during the demyelination phase

followed by T4/T3 pulses during recovery - allows to restore a

myelin sheath of similar thickness to that of the euthyroid control

group. In contrast, pOPCs did not respond to this transient

hypothyroidism, unlike newly generated OPCs, showing that

these two OPC subpopulations respond differentially to THs

signaling. The underlying challenge would be deciphering the

molecular mechanisms that regulate the differential response to

THs of SVZ OPCs (complete remyelination) and pOPCs

(incomplete remyelination), in order to better understand the

mechanisms responsible for functional myelin repair.
Future challenges:
Fron
- What is the function of some regulators (i.e., DIO2, TTR,

TRa2) in the physiology of adult SVZ-NSCs? In particular,

the role of TTR as a TH-distributor protein in the CSF and/

or a function independent of THs should be better

deciphered. Furthermore, the function of the TRa2
isoform would deserve more in-depth consideration since

TRa2 is highly expressed in adult SVZ cells and may act as

a dominant-negative regulator (with no affinity for T3)

countering intracellular THs effects.

- How do THs differentially regulate the response of SVZ-

derived OPCs versus resident OPCs following a

demyelinating lesion?

- Non-genomic effects, that do not require an interaction

between T3 and its TR, are not yet known on NSC

proliferation and determination within the SVZ niche and

should be assessed in further studies
tiers in Endocrinology 05
Thyroid hormone action in the SGZ

Adult hippocampal neurogenesis is a highly orchestrated

process that continuously generates new granule cell neurons

throughout life. To this end, the SGZ of the dentate gyrus harbors

radial glia-like NSCs that express markers like GFAP or Nestin as

shown in rodents (14, 76, 77). Though they can also differentiate

into astrocytes, NSCs mainly divide asymmetrically thereby giving

rise to rapidly proliferating TAPs that are also referred to as type 2

progenitors (76, 78). Based on their expression profile, this

population is further sub-divided into Nestin positive, type 2a

progenitors, which then develop into DCX positive, type 2b

progenitors (14, 76). Subsequently, these cells form into

neuroblasts, which exhibit a reduced proliferative capacity,

eventually exit from the cell cycle, and differentiate into immature

granule cell neurons (76). Both neuroblasts and immature neurons

continue to express DCX but can be distinguished by the presence

of the calcium-binding protein calretinin in immature neurons (79).

The sequential progression through these distinct stages is a rapid

process and in mice, new immature neurons are derived from NSCs

within three days (79). The final steps encompassing short-distance

migration, maturation, and functional integration of new neurons

into the existing granule cell network take 4-6 weeks in rodents (76).

This continuous generation of new neurons significantly

contributes to the high plasticity of the adult hippocampus.

Several studies have demonstrated a critical role for adult

hippocampal neurogenesis in cognitive flexibility and more

specifically in learning and memory processes, in emotional

regulation, anxiety, and spatial navigation (78, 80, 81). Although

much better characterized in the rodent brain, observations in

humans that demonstrated the presence of DCX+ cells and

detected new neurons in the hippocampus strongly argue for the

existence of adult hippocampal neurogenesis also in humans

(77, 78).

THs constitute an important extrinsic signaling cue for adult

hippocampal neurogenesis and components of the TH signaling

pathway were identified at all stages of the program in mice.

Transcript analyses on isolated neurogenic populations revealed

the expression of the THs transporting amino acid transporters

Lat1 and Lat2 in SGZ-NSCs and type 2 progenitors (19) (Figure 2).

In vitro and in vivo studies highlighted the presence of TRb
isoforms in Nestin positive as well as in proliferating, BrdU

positive hippocampal progenitors whereas TRa1 was mainly

detected in DCX+ neuroblasts and granule cell neurons (82, 83).

Likewise, we demonstrated that the latter two populations are

equipped with the highly specific THT MCT8 while mature

granule neurons further express MCT10, LAT2, and DIO3 (19).

Oatp1c1 promoter activity was detected in subsets of all progenitor

and neuronal populations though the causes and consequences of

this heterogeneity remain to be investigated (84). Together, the

expression patterns of TH signaling components suggest that

progenitor and mature neuronal populations within the adult

hippocampal neurogenic lineage possess the ability to directly

sense and integrate the TH signal.
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A wealth of experimental studies has addressed the

consequences of manipulated THs availability on neurogenesis in

the adult SGZ and demonstrated THs-induced effects

predominantly during the later stages of the neurogenic program

(14, 19, 20, 82, 83, 85, 86). Adult-onset hypothyroidism led to

decreased precursor cell survival and a reduced number of DCX

positive progenitor cells in rodents (20, 22, 83, 85, 87, 88). These

observations, however, were made in animals in which

experimental interventions caused a strong decrease in circulating

THs levels. Low-dose PTU treatment induced adult-onset

hypothyroxinemia (subclinical hypothyroidism) in rats that did

not result in similar alterations in SGZ neurogenesis indicating that

most likely the extent of THs insufficiency is critical (89). T3-

induced, adult-onset hyperthyroidism conversely accelerated

progenitor differentiation in mice (22). Along this line, the level

of TRa1 correlates inversely with the total number of DCX positive

cells. TRa1 null (TRa1-/-) mice harbor elevated numbers of DCX

positive cells, while the same cell population is reduced in TRa2-/-

mice, which overexpress TRa1 6-fold as both isoforms are derived

from the same gene through alternative splicing (82). Rather than to

the absence of the non-TH-binding TRa2 isoform in the latter

model, the reduction in DCX positive cells has been attributed to

the increased concentration of TRa1 that in light of limited cellular

T3 availability generates a condition comparable to local

hypothyroidism. Together, these findings point to a negative

impact of the TRa1 aporeceptor on lineage progression. Our

studies further showed that absence of MCT8 either globally or

specifically in the adult neurogenic lineages using a tamoxifen-

inducible form of Cre recombinase expressed under the Nestin

promoter (Nestin-CreERT2) diminished the differentiation to

immature neurons and the formation of new granule cell neurons

(19). Mechanistically, this has been linked to a delayed cell cycle exit

through decreased expression of the cell cycle inhibitor p27Kip1 in

DCX positive cells in vivo. Similarly, the global absence of
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OATP1C1 impaired progenitor differentiation and program

progression, but whether this reflects a lineage-intrinsic function

remains elusive (84). This is but one example for the future

challenge to identify the lineage-autonomous impacts of TH

signaling components. Likewise, the question as to which

pathways mediate TH effects on hippocampal neurogenesis in

vivo awaits further investigation.

In contrast to the well-established action in later stages, the

potential impact of THs on early progenitor populations in

the adult SGZ remains controversial. While adult-onset

hypothyroidism in rats exposed to PTU or methimazole (MMI)

did not result in altered BrdU incorporation into cycling

progenitors, their number was reduced in adult-onset

thyroidectomized rats, an effect that was rescued by THs

administration to the drinking water (20, 83, 85). Moreover, the

global absence of TRb in mice stimulated progenitor proliferation

and BrdU incorporation in the SGZ indicating a regulatory function

of THs/TRb in NSC activation and progenitor proliferation (90). It

has been suggested that unliganded TRb exerts a repressive function
on NSC turn-over, which would be lifted upon T3 binding (67). This

scenario, however, requires the uptake of THs into SVZ-NSCs

through a yet unidentified pathway. Recent hippocampal single

cell and single nuclei RNA sequencing studies advanced this idea

and highlighted the presence of Oatp1c1 transcripts in NSCs in line

with in vivo Oatp1c1 promoter activity studies (84, 91–93).

Interestingly, these sequencing studies also detected Dio2

transcript expression in murine SGZ-NSCs. Although further

work is still needed, it is a fascinating idea that NSCs are

equipped with the machinery to take up T4 and generate T3 in a

cell-autonomous manner, as has been proposed to take place in

radial glial cells in the prenatal human cerebral cortex (94). At the

same time, super-resolution microscopy revealed that hippocampal

NSC processes contact intimately the blood-brain barrier (BBB) and

are capable of directly accessing blood-born substances (95). In this
FIGURE 2

Overview of adult hippocampal neurogenesis starting from NSCs in the subgranular zone and progression through the different stages. NSCs are in
intimate contact with the endothelium and can either generate type 2 progenitors or differentiate terminally into astrocytes. The cellular expression
of THs transporters and deiodinases within adult hippocampal lineage cells is depicted. Neurogenesis is further regulated by extrinsic factors derived
from astrocytes, endothelial cells, and neurons. Graphic was created with Biorender.
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Valcárcel-Hernández et al. 10.3389/fendo.2024.1347802
context, NSCs were shown to take up BBB-impermeable substances

in an otherwise unimpeded BBB environment stressing how

privileged this access is. It is thus tempting to hypothesize that

NSCs directly take up T4 from the circulation via up-regulation of

OATP1C1 in the activated state, and convert it locally to T3, which

in turn stimulates NSC turn-over. The T4-dependency of such a

scenario may explain the apparent lack of effect in T3-induced

hyperthyroidism (22). Moreover, due to their slow cell cycle kinetics

and high degree of quiescent NSCs, the consequences of altered THs

signaling on NSC activation may be mild and may only become

obvious after a longer time interval than is usually assessed in adult-

onset hypothyroid models (96). Such a regulatory influence on NSC

activation may further explain the preservation of NSC numbers

with age as seen in Mct8 knockout (KO) and Mct8/Oatp1c1 dKO

mice potentially associated with their reduced T4 serum levels and

different degrees of central THs deficit (84, 97). Though acting

through a different pathway, THs feature a similar function on the

regulation of NSC maintenance and activity in the SVZ (16).

Importantly, modulating the thyroidal state in adult rodents

also affects hippocampus-related behaviors that depend on proper

SGZ neurogenesis such as spatial memory or the regulation of

anxiety and mood (80, 81). Adult-onset hyperthyroidism

compromised learning and memory function and increased

anxiety in rats and mice (98, 99). Likewise, hypothyroidism in

adult rodents either by thyroidectomy or administration of PTU or

MMI as well as a low iodine diet resulted in an anxiety-depression-

like state as well as impaired learning and spatial memory

performance (20, 100–103). Why adult-onset hypo- and

hyperthyroidism culminate in similar behavior impairments

remains elusive. Though the underlying molecular pathways

certainly differ, these observations suggest a gatekeeper function

of balanced THs signaling for hippocampal functions. Anxiety-

depression-like behaviors were further observed in TRa1 mutant

mice, in which THs binding affinity is reduced 10-fold, and in global

Mct8 KO mice (84, 104). Whether the behavioral changes in the

latter genetically modified models are solely the consequence of a

perturbed adult hippocampal neurogenic program or if

developmental alterations contribute to it, remains elusive.

Definite answers require the detailed analysis of inducible KO

models that lack TH signaling components specifically in adult

NSCs and, consequently, their progeny.

In addition to these lineage-intrinsic mechanisms, adult

hippocampal neurogenesis is under the control of non-cell-

autonomous signaling cues derived from the stem cell niche.

Within the mammalian SGZ, the niche encompasses astrocytes,

BBB endothelial cells, microglia, and granule cell neurons as

prominent cell types (105). Several lines of evidence suggest that

an altered astrocytic response can mediate parts of the effects of

modulated THs levels on the adult neurogenic program. First,

astrocytes express DIO2 (106) and are thus central in regulating

brain T3 availability and action (106–108). Second, astrocyte-

specific deletion of Dio2 in mice results in an increased anxiety-

depression-like phenotype and thus in a pathological condition

that has been associated with impaired hippocampal neurogenesis

before (109–111). Though BrdU incorporation was not affected in

this mouse model, a detailed characterization of the neurogenic
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stages is still pending. Third, astrocytes secrete TH-regulated

factors like Fibroblast growth factors, Thrombospondin-1,

Neurotrophin-3, or WNT ligands that in turn influence the

neurogenic program (14, 112, 113) (Figure 2). RNA sequencing

studies on cultured astrocytes exposed to T3 revealed alterations in

WNT signaling components with a direct up-regulation ofWnt7a,

which is a known regulator of SGZ progenitor proliferation,

differentiation, and dendritic arborization (113, 114). Astrocytes

and microglia further release cytokines that are involved in

progenitor proliferation and survival (78). Similarly, TH-

regulated signals derived from the vasculature like BDNF or

VEGF, neuronal factors such as SHH and NGF, and neuronal

activity converge on the progression of hippocampal precursors

through the neurogenic program (17, 112, 115–117) (Figure 2).

Yet, we have just begun to decipher the non-cell-autonomous

mechanisms in niche cells by which THs influence progression

through the adult hippocampal program. Inducible and

conditional KO approaches will certainly broaden this exciting

field of research in the future.

Whether adult hippocampal neurogenesis occurs in humans is

still under debate (105, 118, 119). A growing number of studies

demonstrates the presence of DCX+ cells in the human SGZ though

the question as to the comparability of the molecular signature

between rodent and human neuroblast markers has been raised

following the detection of DCX in neurons (120). Single cell and

single nuclear sequencing studies on human hippocampal tissue are

still sparse and often do not depict NSCs and neurogenic

populations while a neurogenic trajectory can be clearly

delineated in the macaque brain (120–123). Until the existence of

adult human hippocampal neurogenesis is unequivocally

demonstrated and a marker repertoire established, it is very

difficult to pinpoint both the expression of THs signaling

components and TH-regulatory effects on adult human

hippocampal neurogenesis.

Despite these difficulties, a wealth of clinical data evidences a

link between an altered thyroidal state and affected hippocampus-

related cognitive functions in humans. Hypothyroidism in

adulthood results in anxiety, depression, specific spatial and

associative memory impairments, and dementia as well as a

decreased hippocampal volume (14, 16, 109, 124–126). T4

supplementation is able to improve cognitive perturbations in

sub-clinically, but not overt hypothyroid subjects in tests

addressing hippocampal functions (126). Interestingly, adult-onset

hyperthyroidism culminates in cognitive impairments, anxiety, and

depression (14, 109, 127). In sum, the pathological alterations seen

in humans align with changes in experimental animals with

abnormal thyroidal states that have been linked to impairments

in adult hippocampal neurogenesis.
Future challenges:
- What are the lineage-autonomous effects of THs within the

adult hippocampal neurogenic program? In particular, is

there a role for THs in the regulation of NSC physiology?
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Fron
- Do TH action in stem cell niche cells contribute to regulating adult

hippocampal neurogenesis in a non-cell-autonomous manner?

- Do THs contribute to the regulation of adult hippocampal

neurogenesis in humans?
Thyroid hormone action outside
canonical neurogenic niches

TH and neurogliogenesis in
the hypothalamus

Neurogenesis in the hypothalamus was first reported two

decades ago (6, 128) and has been stated to occur in different

areas within the hypothalamus with important functions in

metabolism, feeding, and sexual behavior. First, it has been

demonstrated to occur in ependymal cells lining the third

ventricle and more widely also in tanycytes (129). Moreover,

hypothalamic DCX+ neuroblasts have been described in rodents,

sheep, and humans, although with slight variations in distribution

patterns, but mainly in the arcuate nucleus (129–133) with

progenitor cells also producing a variable percentage of astrocytes

(131). As for adult hypothalamic oligodendrogenesis, its existence

had not been proven in rodents until very recently when it was

unequivocally shown that the median eminence of the

hypothalamus can give rise to new OPCs (5, 134).

Implications of hypothalamic neurogenesis are wide, and rank

from repair after tissular lesions to influence on sexual behavior and

weight control (135). As for adult hypothalamic oligodendrogenesis,

in rodents it is associated with the regulation of energy balance and

hypothalamic leptin sensitivity (5).
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Interestingly, the hypothalamus is known to be a strongly THs

regulated brain area in mammals. From early studies reporting the

expression of DIO2 mostly in the median eminence (136), evidence

has accumulated reporting the expression of the different TH

regulators in the rodent brain. In particular, deiodinases (107,

137, 138) and THTs (139) are detected in high abundance in

ependymal cells lining the third ventricle and in tanycytes, with

the latter expressing DIO2, OATP1C1, and MCT8, suggesting that

TH action is important in this cell type (107, 138, 139). Moreover,

this strong expression of various TH regulators, including DIO2

and DIO3, THTs such as MCT8, and receptors TRa and TRb has

also been reported in the human hypothalamus (140, 141).

Neurogenesis in the adult rodent hypothalamus has been also

demonstrated to be controlled by growth factors (GFs) such as

FGF2 (129), BDNF (130), and in a wider fashion by insulin-like

growth factor 1 (IGF1) (Figure 3). While the first GF acts mostly on

ependymal cells, the latter can act also on tanycytes (142) which

could be considered a mostly IGF1-responsive cell population.

Interestingly, apart from the aforementioned link between FGF2,

BDNF, and THs, IGF1 has also been reported to have a strong

interplay with THs (143) (Figure 3). Indeed, depletion of TH-

availability regulators such as DIO3 or MCT8 and OATP1C1

induces increased or reduced IGF1 dynamics, respectively, in

different tissues including the brain (97, 144). Altogether, GFs

influence further supports a potential effect of THs on

hypothalamic neurogenesis. Furthermore, mechanisms underlying

hypothalamic oligodendrogenesis have not been described until

very recently. However, genes consistent with the genomic footprint

of hypothalamic OPCs include MYC and genes involved in the

notch pathway (145). Interestingly, both are known to be TH-

regulated within the adult mammalian SVZ and the postnatal

cerebral cortex, respectively (18, 113), suggesting that THs may
FIGURE 3

Overview of potential THs-effects on adult neurogliogenesis occurring on emerging niches including the hypothalamus, striatum and cerebral
cortex. Generation of neurons and glia in the adult mammal brain is depicted for these niches and THs-influenced areas are highlighted. Potential
genes mediating this THs-effect are also included. Graphic was created with Biorender.
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regulate hypothalamic oligodendrogenesis in a similar way to the

situation in the SVZ and other parts of the brain.

Upon considering the important hypothalamic functions

regarding regulation of energy balance and metabolism, as well as

sexual behavior, and their potential association with THs,

understanding the link between THs and hypothalamic

neurogliogenesis could be crucial to better understand several

pathophysiological processes. Regarding weight regulation,

mediated by hypothalamic neurogenesis, a better understanding

of THs’ role in modulating hypothalamic neurogliogenesis may be a

significant advance in the prevention of pathological weight gain or

loss and metabolic dysfunction usually associated with thyroid-

related disorders (146–148). Furthermore, considering the common

clinical implications of hypothalamic demyelination in fatigue and

weight dysregulation associated to MS, enhancing hypothalamic

remyelination in this region could also improve the quality of life of

MS patients (149).

With al l this in mind, both in physiological and

pathophysiological contexts, THs appear as actors to be studied in

depth in the hypothalamus, not only with the aim of understanding

their role but also to potentially manipulate them to impact

neurogliogenesis and thus lead to therapeutic outcomes.
Future challenges:
Fron
- What is the ontogeny of oligodendroglial progenitors in the

median eminence?

- Does hypothyroidism and/or other changes in TH availability

alter neurogliogenesis in the hypothalamus?

- Would it be possible to manipulate TH availability or TH

downstream effectors expression at the cellular level to

regulate neurogliogenesis as a therapeutic approach for

different pathological conditions, while avoiding the side

effects derived from excessive TH signaling?
TH and neurogliogenesis in the striatum

Although neurogenesis in the adult basal ganglia, particularly in

the striatum, was already suspected towards the end of the past

century, and later stated in rodents (150, 151) it was not until, 2014

that Ernst and colleagues demonstrated it in humans (7), by using

C14 retro-tracing. In the meantime, adult oligodendrogenesis in

this area was also demonstrated (2, 50, 152).

Neurogenic potential in the striatum tends to be overlooked,

however, high DCX expression levels in the striatum have been

reported both by transcriptomic and protein analysis, as shown

previously for other neurogenic niches such as the hippocampus

(153, 154). Neural progenitors in the striatum originate mainly in

the SVZ. SVZ cells exhibit great heterogeneity and are able to

migrate to several areas, including the classical migration to the

olfactory bulbs, but also to the cerebral cortex, amygdala, or the

striatum (8, 155). Moreover, studies in rodents have demonstrated
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active adult gliogenesis in the striatum, independent from SVZ

input (156). Cell fate determination of neural progenitors is

dependent on a plethora of factors and has been proven to be

modulable in several ways (130, 151, 156), however, THs have never

been proposed as one of those ways for striatal neuro-gliogenesis.

Adult striatal neurogliogenesis is not only interesting from a

cellular ontology point of view but also has potential translatable

implications to pathology. Of particular relevance are two

pathological contexts, ischemic/stroke insults and neurodegenerative

diseases. First, brain ischemia damages CNS tissues and in response,

induces neurogenesis, oligodendrogenesis, and angiogenesis together

with astrogliosis (157) to enhance brain repair. After an ischemic

insult, the SVZ has been demonstrated to produce neuronal and

oligodendroglial precursor cells that migrate into the striatal tissue

using blood vessels as guidance and scaffold (158–161) in a process

modulable by GFs (162, 163). These newly generated neurons have

the ability to fully integrate and generate functional synaptic contacts

within striatal neuronal networks (164) although this mechanism has

been observed to be weaker in primates than in rodents (165). As for

post-ischemic striatal oligodendrogenesis, it involves local pOPCs and

SVZ progenitors that are recruited to the lesioned area, where they are

able to exert neuroprotective effects and effectively generate myelin,

althoughmyelin has been reported thinner when produced by pOPCs

(51, 161).

As for neurodegenerative diseases, Huntington’s disease (HD)

outcome is strongly linked to the extent of striatal neurogenesis, as

reviewed by Jurkowsky and colleagues (135). First reports in HD

subjects reported reduced, if not depleted neurogenesis (7)

However, later reports in animal models of the disease,

particularly in rodents, and in human HD samples have reported

increased adult striatal neurogenesis in concurrency of HD (166–

168). This process has commonly been linked to an increase in the

arrival of SVZ-derived progenitors to the striatum (168). However,

it has also been reported to be closely related with local striatal

astrocytes gaining neurogenic function (167), with neurogenesis

from both origins potentially acting as a recovery mechanism for

the cell loss associated to the disease, even in humans.

It is worth noting that the striatum is also strongly influenced by

THs. Expression of some TH-availability regulators was first

reported in the striatum more than 40 years ago, with evidence of

striatal DIO2 and DIO3 activity among the highest in the rodent

brain (169). However, we had to wait until the present century to

unravel the local expression of THTs, such as MCT8 and

OATP1C1, both in mice, non-human primates, and humans, with

a particularly high expression of OATP1C1 (170–172). Indeed, our

recent work described the expression of both transporters in striatal

motor neuron circuitry, as well as in pericytes in the primate

striatum, implying the importance of THs in this area (172).

Moreover, in rats, thyroidectomy and subsequent depletion of

THs in the striatal area have been demonstrated to induce a

number of transcriptomic changes (173). After THs depletion, T3

administration to hypothyroid rats proved that THs modulate

several genetic pathways, including genes involved in

neurogliogenesis, such as Egr1, involved in maintaining NSC

proliferation or Klf9 , crucial to oligodendroglial cells

differentiation (174, 175).
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However, cellular mechanisms underlying THs regulation of

neurogliogenesis within the striatum are not established yet. This

regulation, even if it has not yet been established, likely occurs in

relation to the GABAergic system. It has been demonstrated that a

majority of the generated neurons in the adult striatum are GABAergic

interneurons (7, 150, 176). Control of GABAergic system homeostasis

is one of the hallmarks of THs action, and THs depletion or deficient

signaling, mainly exerted through TRa have been proven to reduce the

number of GABAergic cells (104, 177, 178). This reinforces the idea of

an important effect for THs in striatal neurogenesis.

Although the molecular mechanism for this potential control

has not been reported, among the different substances able to

control adult striatal neurogenesis, GFs have been demonstrated

to be crucial and stand out as potential THs downstream effectors.

EGF, FGF and BDNF have been reported to increase the generation

of new cells to different extents, including neurogenesis and

oligodendrogenesis, both in health and disease (151, 152, 162,

179–182) (Figure 3).

Interestingly, all those molecules have been demonstrated to be

dependent on TH signaling, with effects reported from both T3 and

T4 (55, 116, 183–185). These data back up the hypothesis that local

and temporal control of TH availability is crucial to

neurogliogenesis, and so are the components involved in this

control. It is interesting to observe that, given the importance of

both GFs to striatal neurogliogenesis, they have been reported to be

regulated also by different controllers of TH availability, such as

deiodinases and THTs, whose depletion is able to change the

expression of both GFs, through TH signaling (97, 144).

Once the putative effect of THs in adult striatal neurogliogenesis

has been defined, it is necessary to understand its potential in a

pathophysiological context. Aside from the aforementioned

potential GFs-mediated influence in pathologies such as ischemia

and HD, that remains speculative, there are reports in the literature

of THs’ influence in the striatum affecting pathophysiological

contexts. Interestingly, an increase in the vulnerability of striatal

medium spiny neurons to HD has also been reported in deficient

TH signaling, which would point to an important effect of THs in

this process (186).

Although knowledge of THs influence on str iatal

neurogliogenesis is scarce, there is growing evidence that suggests

that THs should not be overlooked as actors in the process. Further

studies should be pursued in the matter, as being able to control the

process of neurogliogenesis using THs regulation may be a great

step forward in the managing of different pathological conditions.
Future challenges:
Fron
- What is the ontogeny of the local progenitors present in the

striatum that do not belong to SVZ derived cells?

- Does hypothyroidism and/or other changes in TH availability

alter neurogliogenesis in the striatum?

- Would it be possible to manipulate striatal TH signaling as a

therapeutic approach for different pathological conditions?
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- Would THs manipulation induce deleterious side-effects that

overcome the potential positive effects of regulating

striatal neurogliogenesis?
TH and neurogliogenesis in the
cerebral cortex

For some time now, growing evidence highlights that not only

cortical oligodendrogenesis but also neurogenesis occurs after

embryogenesis, notably through adulthood in the mammalian

brain, with important implications in disease states. Adult cortical

oligodendrogenesis has been observed in rodents and humans, in

physiological and pathophysiological states (2, 8, 50, 187).

In normal conditions, adult cortical neurogenesis, particularly

in humans, remains controversial. After years of a fixed paradigm of

non-existent cortical neurogenesis, in, 1999, Gould and colleagues

claimed the discovery of newly generated neurons in the macaque

cortex, originating from ectopic migration of SVZ-derived

progenitors (188). However, this discovery was rejected shortly

afterward by Kornack and colleagues (189), although other groups

obtained similar data using different monkey species (12). Gould’s

data were confirmed also by the successful generation of

neurospheres from human cortical progenitor cells (190).

However, C14 studies both in healthy samples and in cortical

stroke-affected individuals contrast the apparent presence of

pluripotent progenitors, as they described that most of the newly

generated cells do not express neuronal markers (165, 191).

In rodents, the strongest indicator of adult cortical neurogenesis

is the electron microscopic detection of newly generated [3H]

thymidine cortical neurons in rodent brains (169). Later, they

were further supported by the finding of proliferating progenitors

in the murine cerebral cortex that were directed towards a neuronal

fate (positive for DCX and/or the neuronal markers NeuN and Hu)

(11) after a provoked insult in deep layers of the cerebral cortex.

These newly generated cells were able to establish connections

with other regions, including the hypothalamus and spinal cord

(192). Later, it was demonstrated that neurogenic progenitors

included not only ectopic SVZ progenitors but also a local pool of

cells ubiquitously residing in the adult rodent cerebral cortex,

producing mainly glial cells but retaining the ability to produce

new neurons (150, 193). Among the different layers of the cerebral

cortex, layer I has been suggested to harbor the highest neurogenic

potential, given its importance during development and in early

postnatal weeks both in primates and in rodents (10, 194)

(Figure 3). This neurogenic activity has been demonstrated in

adulthood after ischemic insult, with new neurons being

generated in layer I and integrated into inner cortical layers (195).

Cortical oligodendrogenesis has been assessed in other

pathological contexts, including demyelinating diseases and

especially MS. Its potential to repair demyelinating lesions has

been investigated in murine models, and the existence of the

process in the human MS context has also been demonstrated

(50, 196) (Figure 3). In this context, it is of great importance to
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understand the mechanisms underlying this process, and again,THs

arise as a key candidate to regulate these processes.

As was thoroughly reviewed by Wang and colleagues (197),

MCT8 and OATP1C1 have been consistently detected in the

cerebral cortex of different species, including rodents, non-

human-primates and humans, through all stages of development.

This study has for the first time precisely reported the cellular

location of both transporters. Aside from the classically described

expression in blood vessels, the authors have shown neuronal

expression of both transporters, especially in layer I of the

cerebral cortex (197) (Figure 3). In particular, OATP1C1 was

strongly detected in pyramidal neurons. As DIO2 has not been

demonstrated to colocalize in these neurons (138), the presence of

the transporter could indicate either increased importance of T4 or,

as the authors suggest, the ability of these neurons to accumulate T4

and release it when necessary to other surrounding cell types.

Interestingly, the authors described the expression of OATP1C1

in Corpora amylacea. These globular structures, equally located in

cortical layer I, have been described to also express the TH-

distributor protein TTR (198), suggesting a function in the

storage/buffering and/or delivery of T4 in layer I upon local need.

Despite the various lines of evidence on adult cortical

neurogliogenesis and the control of TH availability occurring

locally in different cortical areas, the role of THs in cortical

neurogliogenesis remains to be clarified.
Future challenges:
Fron
- Are THs a factor in cortical neurogliogenesis regulation?

- Is this regulation linked to parenchymal or cell-by-cell

intracellular THs levels?

- Is this cell-by-cell regulation being carried out by progenitors

present at the niches, as if the maintenance of

neurogliogenic potential depends on paracrine-like TH

signaling inside the niche?

- Would it be possible to manipulate TH availability or TH

downs t r eam e ff e c to r s expre s s i on to regu l a t e

neurogliogenesis at the cellular level, to avoid the side

effects derived from excessive TH signaling?
Conclusion

Since the seminal discovery of neurogliogenic niches in the

adult mammalian brain, enormous progress has been made in

understanding the role of adult-generated neurons and glial cells

in health and disease. In this review, we have highlighted THs as a

key factor that controls neurogliogenic fate decisions and lineage

progression at multiple levels. To that end, we have summarized

existing knowledge on the precise spatiotemporal regulation of TH
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availability in progenitor and mature cells. Yet, many questions as

to the cell-specific role of THs and TH signaling regulators as well as

the functional outcome of altered TH availability are still

unanswered. Future research employing new model systems and

advanced methodology is needed to close those gaps. Likewise, past

investigations have mainly focused on the “classical” neurogliogenic

niches in the SVZ and SGZ, while the putative role of TH signaling

in emerging niches in the hypothalamus, striatum, and cerebral

cortex is still largely elusive. By pointing out critical open questions

we aspired to spark future studies to fill in the blanks. The expected

answers will help to fully harness THs’ potential to shift the fate of

progenitor cells and thus foster regenerative processes in

pathological conditions when new neurons and/or new

oligodendrocytes are urgently needed.
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Pinedo U, Garcı ́a-Verdugo JM, et al. IGF-I stimulates neurogenesis in the
hypothalamus of adult rats. Eur J Neurosci. (2010) 31:1533–48. doi: 10.1111/j.1460-
9568.2010.07220.x

143. Smith TJ. Insulin-like growth factor pathway and the thyroid. Front Endocrinol
(Lausanne). (2021) 12:653627. doi: 10.3389/fendo.2021.653627

144. Martinez ME, Hernandez A. The type 3 deiodinase is a critical modulator of thyroid
hormone sensitivity in the fetal brain. Front Neurosci. (2021) 15:1–15. doi: 10.3389/
fnins.2021.703730

145. Zhou X, Lu Y, Zhao F, Dong J, Ma W, Zhong S, et al. Deciphering the spatial-
temporal transcriptional landscape of human hypothalamus development. Cell Stem
Cell. (2022) 29:328–343.e5. doi: 10.1016/j.stem.2021.11.009

146. Di Cosmo C. La resistenza e le altre sindromi da ridotta sensibilità agli ormoni
tiroidei. L’Endocrinologo. (2022) 23:20–6. doi: 10.1007/s40619-021-01008-x

147. Masnada S, Sarret C, Antonello CE, Fadilah A, Krude H, Mura E, et al.
Movement disorders in MCT8 deficiency/Allan-Herndon-Dudley Syndrome. Mol
Genet Metab. (2022) 135:109–13. doi: 10.1016/j.ymgme.2021.12.003

148. Morreale de Escobar G, Pastor R, Obregon MJ, Escobar del Rey F. Effects of
maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic
tissues, before and after onset of fetal thyroid function. Endocrinology. (1985) 117:1890–
900. doi: 10.1210/endo-117-5-1890

149. Burfeind KG, Yadav V, Marks DL. Hypothalamic dysfunction and multiple
sclerosis: Implications for fatigue and weight dysregulation. Curr Neurol Neurosci Rep.
(2016) 16:98. doi: 10.1007/s11910-016-0700-3
frontiersin.org

https://doi.org/10.1002/hipo.22319
https://doi.org/10.1002/hipo.20476
https://doi.org/10.1101/gad.346105
https://doi.org/10.1016/j.stem.2018.03.015
https://doi.org/10.1073/pnas.94.19.10391
https://doi.org/10.1523/JNEUROSCI.19-09-03430.1999
https://doi.org/10.3389/fendo.2014.00082
https://doi.org/10.1007/s00127-015-1043-0
https://doi.org/10.3389/fnins.2021.594448
https://doi.org/10.1210/en.2016-1272
https://doi.org/10.3389/fcell.2020.00548
https://doi.org/10.1210/en.2017-03084
https://doi.org/10.3389/fcell.2020.00860
https://doi.org/10.1038/s41398-021-01280-3
https://doi.org/10.1016/0169-328X(92)90231-Y
https://doi.org/10.1038/s41598-019-53192-4
https://doi.org/10.1038/s41591-019-0375-9
https://doi.org/10.1038/nature25975
https://doi.org/10.1016/j.neuron.2021.10.036
https://doi.org/10.1016/j.neuron.2021.05.003
https://doi.org/10.1016/j.neuron.2021.09.001
https://doi.org/10.1007/s13238-021-00852-9
https://doi.org/10.1007/s13238-021-00852-9
https://doi.org/10.1089/thy.2017.0561
https://doi.org/10.1089/thy.2013.0058
https://doi.org/10.1089/thy.2013.0058
https://doi.org/10.1210/jc.2008-2702
https://doi.org/10.1155/2012/590648
https://doi.org/10.1523/JNEUROSCI.4161-03.2004
https://doi.org/10.1016/j.expneurol.2004.12.021
https://doi.org/10.1523/JNEUROSCI.21-17-06706.2001
https://doi.org/10.1073/pnas.1219443110
https://doi.org/10.1523/JNEUROSCI.2437-12.2013
https://doi.org/10.1002/cne.23514
https://doi.org/10.1016/j.stemcr.2020.04.005
https://doi.org/10.3389/fncel.2020.576444
https://doi.org/10.1016/0006-8993(87)90260-5
https://doi.org/10.1210/endo.140.2.6486
https://doi.org/10.1210/endo.138.8.5318
https://doi.org/10.1210/en.2008-0378
https://doi.org/10.1210/jc.2004-0474
https://doi.org/10.1210/jc.2004-2567
https://doi.org/10.1111/j.1460-9568.2010.07220.x
https://doi.org/10.1111/j.1460-9568.2010.07220.x
https://doi.org/10.3389/fendo.2021.653627
https://doi.org/10.3389/fnins.2021.703730
https://doi.org/10.3389/fnins.2021.703730
https://doi.org/10.1016/j.stem.2021.11.009
https://doi.org/10.1007/s40619-021-01008-x
https://doi.org/10.1016/j.ymgme.2021.12.003
https://doi.org/10.1210/endo-117-5-1890
https://doi.org/10.1007/s11910-016-0700-3
https://doi.org/10.3389/fendo.2024.1347802
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
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