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Causal role of immune cells in
Hashimoto’s thyroiditis:
Mendelian randomization study
Zhendan Zhao, Yuehua Gao, Xiaoqing Pei, Wenhao Wang
and Huawei Zhang*

Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, China
Objectives: Hashimoto’s thyroiditis (HT) is a common autoimmune disease

whose etiology involves a complex interplay between genetics and

environment. Previous studies have demonstrated an association between

immune cells and HT. However, the casual relationship was not clear. We

aimed to explore the causal associations between signatures of immune cells

and HT.

Methods: In this study, bidirectional two-sample Mendelian randomization (MR)

analysis was conducted to investigate the potential causal relationship between

731 immune cell signatures and HT by using genome-wide association study

(GWAS) data. Heterogeneity and horizontal pleiotropy were detected through

extensive sensitivity analyses.

Results: The increased levels of six immune phenotypes were observed to be

causally associated with increased risk of HT P < 0.01, which were CD3 on CM

CD8br, CD3 on CD39+ secreting Treg, HLA DR on CD33dim HLA DR+ CD11b−,

CD3 on CD4 Treg, CD62L− plasmacytoid DC%DC, and CD3 on CD45RA+ CD4+.

In addition, the levels of FSC-A on HLA DR+ T cell and CD62L onmonocyte were

associated with disease risk of HT P < 0.01. In addition, HT also had causal effects

on CD3 on CM CD8br, CCR2 on monocyte, CD25 on CD39+ resting Treg, and

CCR2 on CD62L+ myeloid DC P < 0.05.

Conclusions: In this study, we demonstrated the genetic connection between

immune cell traits and HT, thereby providing guidance and direction for future

treatment and clinical research.
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1 Introduction

As one of the most common autoimmune disorders in the world,

Hashimoto’s thyroiditis (HT) is characterized by lymphocyte

infiltration and thyroid autoantibodies such as against thyroid

peroxidase (anti-TPO) or thyroglobulin (anti-TG), which eventually

leads to thyroid fibrosis and hypothyroidism (1, 2). According to

statistics, there are 0.3–1.5 cases of HT per 1,000 people worldwide,

with a male-to-female ratio of 1:7–10 (3). HT is the most common

cause of hypothyroidism in iodine-sufficient areas (4). In the current

state of science, there are few, if any, effective treatments available for

people with HT in addition to thyroid hormone replacement (5). Thus,

a better understanding of pathogenesis of HT is vital for the

development of more effective treatments.

A growing number of studies have revealed the complex

relationships between immune system and HT (6). Laboratory

studies demonstrated that Treg cell deficiency was associated with

infiltration of the thyroid gland, which could lead to thyroid cell

apoptosis and hypothyroidism (7, 8). In addition, Breg cells appears

to be involved in HT progression, although its mechanism of action

is not yet fully understood (9, 10). In addition, several

polymorphisms of cytokine genes, such as IL1 and IL17, were

reported to be associated with the production of anti-TPO, which

suggests that these cytokines participated in HT progression (11,

12). Although the close relationship between HT and immune

system was identified by numerous observation studies, whether

this association was causal still remains unknown.

Because genetic variants are randomly allocated at conception,

the two-sample Mendelian randomization (MR) method can be

used to evaluate the potential causal effect between an exposure and

an outcome based on genetic variants, which reduces the effect of

confounding factors and conquers reverse causality (13, 14). To

further explore the causal relationship between immune cell

signature and HT, a bidirectional two-sample MR analysis was

conducted to examine the influence of immune cells on HT.
2 Methods

2.1 Study design

Two-sample bidirectional MR analysis was performed to evaluate

the causal association between 731 immune cell signatures (seven

groups) and HT. In MR analysis, single-nucleotide polymorphisms

(SNPs) are used as instrumental variables to estimate the causal impact

of exposure variables. Thus, it is essential that the valid instrumental

variables (IVs) meet the following three core assumptions (1): IVs are

highly associated with exposure (2); IVs must be unrelated to

confounders (3); the IVs influence the outcome only via the exposure.
2.2 Exposure and outcome data sources

For each immune trait, full genome-wide association study

(GWAS) summary statistics are publicly available through the

GWAS Catalog server at https://www.ebi.ac.uk/gwas/home (accession
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number from GCST90001391 to GCST90002121) (15). These GWAS

data involve 3,757 subjects of Europeans, which reports the influence of

22 million variants on 731 immune cell signatures.

GWAS summary statistics for HT were acquired from study of

Sakaue et al. (16). The data consist 395,640 cases and 379,986 controls

of European ancestry. It was not necessary to obtain ethical approval

for this study that used publicly available GWAS summary statistics.
2.3 Selection of instrumental variables

The threshold of significance of IVs for each immunotype was set

to 1 × 10−5 according to recent research (15, 17). A threshold value of

0.001 was applied to the linkage disequilibrium parameter (R2) in order

to select the relevant SNPs. To ensure independence and eliminate the

effect of linkage of disequilibrium on the results, a genetic distance of

10,000 kb was set. All of the above operations were performed by using

R package “TwoSampleMR”. Furthermore, we conducted a reverse-

direction-MR analysis to examine the possibility of reverse-direction

causal relationships. For immune cell traits, the significance level was

adjusted to 5 × 10−8.
2.4 Statistical analysis

All analyses were conducted in R (version 4.0.3).

We estimated the causal relationship between immune cell

traits and HT using an inverse variance weighted (IVW-random),

MR-Egger, and weighted median method and MR pleiotropy

residual sum and outlier (MR-PRESSO) test. Among these, the

IVW method is the primary approach.

For IVW ratio method MR, the Wald estimator was used to

generate MR estimates for each SNP and exposure and outcome

associations were both estimated with standard errors based on the

Delta method (18). Cochran’s Q statistics were conducted to

examine the heterogeneity among estimates between each SNP,

and if there is statistical heterogeneity among the findings (P <

0.05), we will select a random-effects model, and otherwise, a fixed-

effects model will be used (19). Second, P > 0.05 indicated that there

was no horizontal pleiotropy by using the intercept test of MR-

Egger (20). In addition, we used the weighted median estimator,

which allows the use of invalid instruments when at least half of the

instruments are valid in the MR analysis (21). As an additional

measure of robustness to the presence of heterogeneity among SNP

effects, MR-PRESSO was employed in order to produce an MR

estimate (22). As a visual inspection of symmetry and effect

estimates, funnel plots and scatter plots were analyzed.
3 Result

3.1 Exploration of the causal effect of
immunophenotypes on HT onset

We examined the causal effect of immune cells on HT by using

the two-sample MR analysis. When the P-value was set at P < 0.05,
frontiersin.org

https://www.ebi.ac.uk/gwas/home
https://doi.org/10.3389/fendo.2024.1352616
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2024.1352616
a total of 34 immunophenotypes were identified. Of those, top 8 of

them are shown in Figure 1. As shown in Figure 1, the level of CD3

on CD39+ secreting Treg was related to increased susceptibility of

HT [odds ratio (OR) = 1.063, 95% confidence interval (CI) = 1.023–

1.1015, P = 0.002]. In addition, the level of CD3 on CM CD8br

increased the risk of HT (OR = 1.094, 95% CI = 1.040–1.150, P =

0.00048). HLA DR on CD33dim HLA DR+ CD11b− was also

observed to be positively associated with the risk of HT (OR = 1.095,

95% CI = 1.032–1.162, P = 0.002). For CD3 on CD4 Treg, a positive

association was observed (OR = 1.075, 95% CI = 1.018–1.135, P =

0.01), which was consistent with weight median (OR = 1.096, 95%

CI = 1.035–1.160, P = 0.002). The causal effect of CD62L−

plasmacytoid DC %DC on HT was estimated to be 1.052 (95% CI

= 1.012–1.093, P = 0.001). This association was, however, not

supported by the weighted median approach (OR = 1.041, 95%

CI = 0.984–1.100, P = 0.163). Additionally, CD3 on CD45RA+ CD4

+ was also found to be positively related to the increased risk of HT

onset (OR = 1.041, 95% CI = 1.009–1.075, P = 0.012), but the

association was not supported by weighted median (OR = 1.039,

95% CI = 0.994–1.086, P = 0.087) and MR Egger (OR = 1.038, 95%

CI = 0.992–1.086, P = 0.119). However, the levels of FSC-A on HLA

DR+ T cell (OR = 0.935, 95% CI = 0.891–0.981, P = 0.006) and

CD62L on monocyte (OR = 0.963, 95% CI = 0.937–0.990, P = 0.008)

were associated with disease risk of HT, which suggests the

protective role of FSC-A on HLA DR+ T cell and CD62L on

monocyte in HT. Details of the MR results and results of

heterogeneity and pleiotropy are provided in Supplementary

Table S1. Detailed information about SNP exceeding the

threshold level is listed in Supplementary Table S2. We also

provided the scatter plots and funnel plots for better
Frontiers in Endocrinology 03
demonstration of causality and identification of heterogeneity

(Supplementary Figure 1).
3.2 Exploration of the causal effect of HT
on immunophenotypes

To determine whether the results could be explained by reverse

causality, we performed MR analysis in the reverse direction. Four

immunophenotypes were detected at P < 0.05: CD3 on CM CD8br

(maturation stages of the T-cell panel), CCR2 on monocyte (monocyte

panel), CD25 on CD39+ resting Treg (Treg panel), and CCR2 on

CD62L+ myeloid DC (cDC panel) (Figure 2). Specifically, the OR of

HT on CD3 on CM CD8br risk was estimated to be 0.853 (95% CI =

0.758–0.961, P = 0.009) by using the IVWmethod. A similar result was

observed by performing the MR-PRESSO approach (OR = 0.853, 95%

CI = 0.816–0.890, P = 0.026). In addition, results from the IVW

method revealed that HT onset could decrease the level of CCR2 on

monocyte (OR = 0.875, 95% CI = 0.773–0.990, P = 0.035), which was

consistent with MR Egger (OR = 0.875, 95% CI = 0.893–0.911, P =

0.046). We also found that the risk of HT was negatively associated

with the level of CD25 on CD39+ resting Treg (OR = 0.891, 95% CI =

0.798–0.996, P = 0.042) under the IVW model. A similar association

was found for CCR2 on CD62L+ myeloid DC (OR = 0.864, 95% CI =

0.748–0.999, P = 0.049). Detailed results of reverse MR analysis as well

as results of heterogeneity and pleiotropy test are shown in

Supplementary Table S3. Information of SNPs used for these four

immune cell traits is listed in Supplementary Table S4. Scatter plots

and funnel plots also indicated the stability of the results

(Supplementary Figure 2).
FIGURE 1

Forest plots showed the causal effects of immune cell traits on HT by using different methods. MR-PRESSO, Mendelian Randomization Pleiotropy
Residual Sum and Outlier; OR, adds ratio; CI, confidence interval.
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4 Discussion

The lymphocytic infiltration in the thyroid gland represented

the principal feature of HT; in this way, the thyroid gland can be

invaded by lymphocytic cells, which leads to follicular atrophy

hyperemia accompanied by oncocytic metaplasia of follicular cells

and eventually hypothyroidism (23, 24). Multiple lines of evidence

have suggested that immune cells exert function in developments of

HT. In a cross-sectional study, the investigators extracted peripheral

blood mononuclear cells from both HT patients and healthy

controls and the results showed that the percentage of Treg cells

was significantly lower in HT patients (8). Another study identified

an upregulation of Breg cells but a downregulation of their

regulatory activity in HT patients (9, 10). However, whether there

is a cause-and-effect relationship is still unclear.

For the first time, we used the GWAS summary data to analyze

the causality between the 731 immune cell traits and HT. To the

best of our knowledge, this is the first MR study to explore the

causal associations between immunotypes and HT. In this study,

among 731 immunotypes, 8 immunotypes had significant causal

effects on HT (P < 0.01) and HT was found to have causal effects on

four immunotypes (P < 0.05).

As mentioned above, T cells play an essential role in all stages of

the development of HT. The CD3 molecule is identified as the T-

cell-specific marker which is involved in T-cell development and

signaling (25). It is well known that T cells can be divided into two

distinct functional subtypes: the CD4+ T helper cells (Th) and the

CD8+ cytotoxic T lymphocytes (CTL) (26). According to the

difference of surface molecular and endogenous cytokines, CD4

+T cells could be classified into several subsets including Th1, Th2,

Th9, Th17, Th22, and Tregs (27). Many lines of evidence suggest
Frontiers in Endocrinology 04
that the balance between Th17 and Treg cells play a crucial role in

progression of HT (28–30). The ratio of Th17/Treg increases as HT

progresses, which is consistent with our research findings that the

susceptibility of HT was negatively correlated with the level of CD25

on CD39+ resting Treg (31). However, the role of Tregs in

occurrence of HT is still less defined. In our study, levels of three

types of Tregs (CD3 on CD39+ secreting Treg, CD3 on CD4 Treg,

and CD3 on CD45RA+ CD4+) were identified to be positively

associated with the risk of HT. Foxp3 is the specific marker of Treg

cells (32). It has been shown that genetic polymorphisms of Foxp3

increased the susceptibility of HT in Caucasian women, which

could partly explain our results (33). In addition, we found that

onset of HT was associated with greater proportions of CD3 on CM

CD8br. CD3 on CM CD8br is a type of maturation stage of T cell

that derived from bone marrow (34). There is evidence showing

that CCR7 mediated the recruitment of mature T cells into the

thyroid gland and hence promoted the formation of tertiary

structures, which play an important role in HT (35). In addition,

our findings reveal that the occurrence of HT decrease the level of

CD3 on CMCD8br. This may be attributed to the persistent antigen

stimulation leading to T-cell exhaustion in HT (36).

Macrophages are heterogeneous and can differentiate toward

various phenotypes under different stimulations (37). Phenotype

M1 is pro-inflammatory and can clear necrotic cell debris through

releasing pro-inflammatory factors, whereas M2 is an anti-

inflammatory phenotype which can facilitate tissue repair and

remodeling in the reparative stage of inflammation (38). IL4 is a

well-known cytokine that polarizes macrophages to M2 type (39).

An animal experiment showed that the ectopic expression of IL4 in

thyroid cells increased the incidence of HT and aggravated the

severity of HT. Compared with the wild type, mice overexpressing
FIGURE 2

Forest plots showed the causal effects of HT on immunotypes. MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and Outlier; OR,
adds ratio; CI, confidence interval.
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IL4 in the thyroid exhibited more infiltrations of macrophages (40).

From this, we speculated that IL4 promoted progression of HT

through motivating M2 macrophage polarization. However, our

results could not prove that macrophages have a causal relationship

with HT, and more studies are needed to prove these aspects.

The dendritic cell (DC) is one of the antigen-presenting cells

which could coordinate adaptive immunity and innate immunity

(41). Depending on developmental origin, surface marker, and

committing transcription factors, DCs can be divided into

classical DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-

derived DCs (moDCs) (42). In our study, we found that the risk of

HT increased with an increase in the proportion of CD62L−

plasmacytoid DC %DC. It was discovered that the density of

plasmacytoid dendritic cells was significantly increased in patients

with HT compared with controls and the density of plasmacytoid

dendritic cells was positively associated with the progression of HT

(43). These previous findings are consistent with the result of our

present study, indicating that plasmacytoid cells play a critical role

in the pathogenesis of HT. Notably, the presence of HT was found

to be associated with decreased CCR2 on monocyte and CCR2 on

CD62L+ myeloid DC. CCR2 are structurally chemokine receptors

which can exert either proinflammatory or anti-inflammatory

effects depending on the cellular context (44, 45). To date, there

has been limited research on the role of CCR2 in HT. There are

reports proving that the concentration of serum CCR2 ligands was

higher in healthy controls compared with patients with

autoimmune disorders such as multiple sclerosis (46, 47). These

findings combined with our results let us to speculate that CCR2

may play an anti-inflammatory role in HT.

HLA DR, an MHC class II cell surface receptor, is encoded by

the human leukocyte antigen complex on chromosome 6 region

6P21 (48). Several studies have shown that HLA DR+ thyroid

epithelial cells exerted an situ stimulation effect on the immune

system within the thyroid gland of patients with HT (49, 50). In our

study, we found that HLA DR on CD33dim HLA DR+ CD11b− in

the myeloid cell panel was associated with increased HT risk, which

suggesting HLA DR+ myeloid cell may play a causative role for HT.

However, the effect of FSC-A on the HLA DR+ T cell is opposite to

the effect of HLA DR on CD33dim HLA DR+ CD11b− in our study.

FSC-A is a morphological parameter; thus, the result suggests that

the immune cells morphology might affect their function.

Previous study has identified hub genes with high diagnostic

accuracy in HT by the bioinformatic method, and immune profiling

revealed that the infiltration of monocyte was inversely associated

with the expression of hub genes. This is in agreement with our

finding that the risk of HT decreases as the level of CD62L on

monocyte increase (51).

TPO is a key enzyme for synthesizing the thyroid hormone (52).

It is demonstrated by in vitro experiments that anti-TPO could

injure thyroid follicular cells through the antibody-dependent

cytotoxic mechanism (53). TG is a type of glycoprotein mainly in

the thyroid follicular epithelium. A large amount of TG is released

when thyroid tissue damage occurs, and the level of anti-TG also

increases (54). However, the immunological mechanism underlying
Frontiers in Endocrinology 05
the effects of anti-TG in HT is unclear therefore further research is

still required.

We have to admit that our research has limitations. First of all,

the single population from the Europeans may limit the

generalization of our results to other populations. Secondly, due

to the lack of individual data such as age or gender, we were unable

to perform stratified analysis in this study. Finally, the substantial

causal relationship between immune features and HT needs to be

further explained due to lack of direct biological evidence.
5 Conclusion

In conclusion, this MR study offers genetic evidence for a

potential association between immune cell traits and HT. In

future studies, animal experiments and large-scale clinical

randomized controlled trials are needed to elucidate the

underlying mechanism linking these immune cell traits and HT.
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