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Background: Central precocious puberty (CPP) is a common endocrine disorder

in children, and its diagnosis primarily relies on the gonadotropin-releasing

hormone (GnRH) stimulation test, which is expensive and time-consuming.

With the widespread application of artificial intelligence in medicine, some

studies have utilized clinical, hormonal (laboratory) and imaging data-based

machine learning (ML) models to identify CPP. However, the results of these

studies varied widely and were challenging to directly compare, mainly due to

diverse ML methods. Therefore, the diagnostic value of clinical, hormonal

(laboratory) and imaging data-based ML models for CPP remains elusive. The

aim of this study was to investigate the diagnostic value of ML models based on

clinical, hormonal (laboratory) and imaging data for CPP through a meta-analysis

of existing studies.

Methods:We conducted a comprehensive search for relevant English articles on

clinical, hormonal (laboratory) and imaging data-basedMLmodels for diagnosing

CPP, covering the period from the database creation date to December 2023.

Pooled sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood

ratio (LR-), summary receiver operating characteristic (SROC) curve, and area

under the curve (AUC) were calculated to assess the diagnostic value of clinical,

hormonal (laboratory) and imaging data-based ML models for diagnosing CPP.

The I2 test was employed to evaluate heterogeneity, and the source of

heterogeneity was investigated through meta-regression analysis. Publication

bias was assessed using the Deeks funnel plot asymmetry test.

Results: Six studies met the eligibility criteria. The pooled sensitivity and

specificity were 0.82 (95% confidence interval (CI) 0.62-0.93) and 0.85 (95% CI

0.80-0.90), respectively. The LR+ was 6.00, and the LR- was 0.21, indicating that

clinical, hormonal (laboratory) and imaging data-based ML models exhibited an

excellent ability to confirm or exclude CPP. Additionally, the SROC curve showed

that the AUC of the clinical, hormonal (laboratory) and imaging data-based ML

models in the diagnosis of CPPwas 0.90 (95%CI 0.87-0.92), demonstrating good

diagnostic value for CPP.
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Conclusion: Based on the outcomes of our meta-analysis, clinical and imaging

data-based ML models are excellent diagnostic tools with high sensitivity,

specificity, and AUC in the diagnosis of CPP. Despite the geographical

limitations of the study findings, future research endeavors will strive to

address these issues to enhance their applicability and reliability, providing

more precise guidance for the differentiation and treatment of CPP.
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1 Introduction

Central precocious puberty (CPP), also known as true precocious

puberty, is characterized by the premature activation of the

hypothalamic-pituitary-gonadal (HPG) axis, resulting in clinical

pubertal symptoms in girls under 8 years old and boys under 9 years

old (1–3). Several countries have conducted research on the prevalence

of precocious puberty within their own borders, with findings

indicating an increasing trend in childhood precocious puberty.

However, consensus regarding the underlying reasons for this rise

remains elusive (4–6). Previous studies have indicated a much higher

likelihood of girls developing idiopathic central precocious puberty

compared to boys. However, a recent nationwide multicenter study

from Italy suggests that the percentage of idiopathic forms of CPP in

boys may be much higher than previously reported (7). CPP can

potentially impact adult height and may even lead to social and

psychological disturbances. Notably, girls with CPP face an elevated

risk of developing breast or cervical cancer (8, 9). Consequently, timely

diagnosis and treatment are crucial for girls with CPP. Meanwhile,

peripheral precocious puberty (PPP), clinically known as

pseudoprecocious puberty, exhibits clinical features similar to CPP

but without activation of the hypothalamic-pituitary-gonadal (HPG)

axis (1). In routine clinical diagnosis, diagnosing CPP is challenging

without the gonadotropin-releasing hormone (GnRH) stimulation test.

However, this test is not only expensive and time-consuming but also

often causes anxiety in patients due to the need for establishing vascular

access and collecting multiple blood samples at various intervals (10,

11). Furthermore, in non-tertiary or community hospitals with limited

resources, this laborious test is not consistently accessible. Therefore,

some studies have attempted to explore other convenient clinical,

hormonal (laboratory) and imaging-related markers, such as basal

sex hormone levels, pelvic ultrasound, or bone age, to identify patients

with idiopathic CPP (12–15). However, the cut-off values of these

factors varied widely, and their efficiency remains unclear. In recent

years, with the advancement of artificial intelligence (AI) in the medical

field, clinical, hormonal (laboratory) and imaging data-based machine

learning (ML) models have utilized clinical, hormonal (laboratory) and

imaging data as inputs to create classifiers, enabling the rapid

identification of CPP. This approach offers a new perspective for an
02
objective, swift, and intelligent diagnosis of CPP. However, the results

of these studies varied widely and were difficult to directly compare,

mainly due to diverse ML methods (16–21). Therefore, the diagnostic

value of clinical, hormonal (laboratory) and imaging data-based ML

models for CPP remains elusive. The aim of this study was to

investigate the diagnostic value of ML models based on clinical,

hormonal (laboratory) and imaging data for CPP through a meta-

analysis of existing studies.
2 Materials and methods

This meta-analysis conformed to the recommendations provided

in the Cochrane Handbook for Systematic Reviews of Diagnostic Test

Accuracy (22) and adhered to the guidelines set by the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) (23).
2.1 Search strategy

A comprehensive search was performed using PubMed,

EMBASE, The Cochrane Library, Wiley Online Library, and the

Web of Science to identify relevant articles in English (database

creation dated to December 2023).The search strategy adhered to

the Population, Intervention, Comparison, Outcome, and Study

Design (PICOS) principle (24) (P: “CPP”, I: “ML, DL”, S:

“diagnostic test”). The search employed a blend of Medical

Subject Heading (MeSH) terms and free-text terms, as follows:

(“central precocious puberty” [MeSH] or “CPP” [text]) and

(“machine learning” [MeSH] or “ML” [text] or “deep learning”

[text] or “DL” [text]) and (“sensitivity and specificity” [MeSH] or

predict* [text] or diagnos* [text] or accura* [text]).
2.2 Selection criteria

Included studies were those that employed machine learning

models utilizing clinical, hormonal (laboratory) and imaging data for
frontiersin.org
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the diagnosis of CPP, with the capability to formulate a 2×2 table

encompassing true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) values. Studies lacking a clearly defined

reference standard or providing insufficient data for the computation of

study outcomes were excluded. Animal experiments, case reports,

meta-analyses, and reviews were also excluded.
2.3 Study selection and data extraction

The initial screening involved evaluating study titles and abstracts

based on the inclusion criteria before proceeding to a comprehensive

review of the full text. Two researchers independently conducted data

extraction, and any disagreements were resolved through mutual

consultation or discussion with a third expert. Extracted data

encompassed details such as authorship, publication year, gender,

CPP and non-CPP group size and age, features utilized, classifier

employed, optimal classifier, and results (specificity, sensitivity, and

AUC). In cases where additional information was required,

corresponding authors were contacted.
2.4 Quality of the studies

The evaluation of the risk of bias in individual studies was

conducted employing the Quality Assessment of Diagnostic

Accuracy Studies-2 (QUADAS-2) checklist (25). Independent

reviewers assessed each article according to these criteria, and any

disparities were resolved through discussion.
2.5 Statistical analysis

Stata software (version 23; Stata Corporation, College Station,

Texas, USA) was utilized for both graphical representation and

calculations. Pooled sensitivity (SEN), pooled specificity (SPE),

positive likelihood ratio (LR+), negative likelihood ratio (LR-),

diagnostic odds ratio (DOR) with a 95% confidence interval (CI),

summary receiver operating characteristic (SROC) curve, and area

under the curve (AUC) were computed to evaluate the accuracy of

clinical, hormonal (laboratory) and imaging data-based ML models in

diagnosing CPP. A binary generalized linear mixture model was

employed for pooling. Heterogeneity was assessed using chi-square

and Cochran Q tests, with I2 > 50% indicating substantial

heterogeneity. Subgroup analyses and meta-regression analyses were

carried out to investigate potential sources of heterogeneity. Publication

bias was assessed using Deeks’ funnel plot asymmetry test, with

significance set at P < 0.05.
3 Results

3.1 Literature search results

Through database searches, a total of 179 articles were initially

identified. Subsequently, 95 duplicate articles were excluded,
Frontiers in Endocrinology 03
followed by the exclusion of 43 articles after reviewing titles and

abstracts. After a thorough full-text review, 35 additional studies

were excluded, resulting in the inclusion of 6 studies for our analysis

(refer to Figure 1).
3.2 Characteristics of the included studies

Table 1 presents the characteristics of the included studies. Notably,

all analyzed articles were recently published, with the earliest study

dating back to 2019, highlighting the relatively recent introduction of

machine learning models in the context of CPP diagnosis. Examining

Table 1 reveals a singular focus on girls across all the studies. The CPP

group exhibited case numbers ranging from 137 to 1153, while the

non-CPP group ranged from 24 to 1370 cases. It is noteworthy that

among the included studies, only Zou et al. (21) reported subjects with

PPP as controls. In the other studies, the non-PPP group was

represented by subjects who tested normal on diagnostic tests. In

Pan et al. (19), reference was made to a self-administered questionnaire

administered in schools. The average age of most cases hovered around

7 years old. Furthermore, there was substantial variation in ML

methods among the studies, particularly in terms of feature selection

and classifier choice. The data sources, extracted from clinical,

hormonal (laboratory) and imaging data, encompassed four main

aspects: general features (e.g., age, height, weight, body mass index),

clinical features (e.g., disease duration, breast Tanner stage, vaginal

bleeding), laboratory features (e.g., 17a-hydroxyprogesterone (17a-
hydroxy), adrenocorticotropic hormone (ACTH), cortisol, human

chorionic gonadotropin (HCG), follicle-stimulating hormone (FSH),

luteinizing hormone (LH), prolactin, estradiol (E2), total testosterone

(TT)), and imaging features (e.g., bone age X-rays, pelvic ultrasound,

pituitaryMRI imaging features). Additionally, the classifiers used in the

studies were diverse, including logistic regression (LR), support vector

machine (SVM), Gaussian naive Bayes (GaussianNB), extreme

gradient boosting (XGBoost), random forest (RF), and k-nearest

neighbor algorithm (kNN), among others. Finally, the levels of AUC

(ranging from 0.79 to 0.97), sensitivity (ranging from 0.34 to 0.96), and

specificity (ranging from 0.77 to 0.93) varied across ML models,

indicating the need for further pooled analysis to comprehensively

assess the diagnostic value of clinical, hormonal (laboratory) and

imaging data-based ML models for CPP.
3.3 Quality of the studies

Table 2 provides an overview of the risk of bias and applicability

concerns identified in the included studies. The information is

categorized into 14 items, distributed across four sections: patient

selection, index test, reference standard, and flow and timing. While

none of the studies met all the items, each study fulfilled a minimum

of 10 items. Notably, high-risk items were mainly reflected in the

patient selection part because the included studies were case-control

studies rather than randomized controlled trials, and it is not clear

whether the sample of patients enrolled is a continuous case.

whereas the remaining sections indicated a low risk of bias.
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3.4 Main results

In our study, the pooled sensitivity and specificity of clinical,

hormonal (laboratory) and imaging data-based ML models for

diagnosing for CPP were 0.82 (95% CI 0.62-0.93) and 0.85 (95% CI

0.80–0.90), respectively (Figure 2). SROC curves showed that the

accuracy of the AUC was 0.90 (Figure 3). The closer the AUC is to

1, the better the diagnosis test. Based on these findings, clinical,

hormonal (laboratory) and imaging data-based ML models has good

diagnostic value for CPP and exhibits high sensitivity and specificity.

Theoretically, the higher the positive likelihood ratio, the better the

diagnostic test is in correctly identifying the true disease. The lower the

negative likelihood ratio, the better the ability of the diagnostic test to

exclude a disease. As noted in Figure 4, clinical, hormonal (laboratory)

and imaging data-basedMLmodels had a high positive likelihood ratio

(6) and a low negative likelihood ratio (0.21), revealing that clinical,

hormonal (laboratory) and imaging data-based ML models exhibited

an excellent ability to confirm or exclude CPP.
3.5 Publication bias

We assessed publication bias using Deeks’ regression test of

asymmetry (t = 1.17; P = 0.31) (refer to Figure 5). Examination of

Deeks’ funnel plots for clinical, hormonal (laboratory) and

imaging data-based ML models indicated the absence of

publication bias (P > 0.05).
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3.6 Heterogeneity and meta-
regression analyses

Significant heterogeneity was observed among the studies

(I² = 99.37%, 95% CI 99.20-99.54). To identify the source of

heterogeneity, subgroup analyses and meta-regression analysis

were conducted (refer to Table 3). The primary contributor to

heterogeneity appeared to be the variations in features and

classifiers. Meta-regression analysis further emphasized that

differences in features and classifiers were the key sources of

heterogeneity across these studies. Results from the subgroup

analysis revealed that: studies incorporating image features

exhibited higher sensitivity and specificity compared to those that

did not include image features (P < 0.05). Studies employing the LR

classifier demonstrated higher sensitivity and specificity in

diagnosing CPP compared to those using the XGBoost classifier

(P < 0.05). However, studies utilizing the RF classifier displayed

higher sensitivity and specificity in diagnosing CPP compared to

those opting for the LR model (P < 0.05).
4 Discussion

To the best of our knowledge, this is the first meta-analysis in

existing research on ML models for diagnosing CPP based on

clinical, hormonal (laboratory) and imaging data. Our meta-

analysis reveals that ML models utilizing clinical, hormonal
FIGURE 1

Flowchart summarizing the study selection process. Note-Some studies were excluded for more than one reason. Irrelevant: Did not investigate the
diagnostic value of ML models based on clinical, hormonal (laboratory) and imaging data for CPP. Improper design: Did not meet the
selection criteria.
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(laboratory) and imaging data for CPP diagnosis demonstrate high

AUC, sensitivity, and specificity, indicating significant diagnostic

value. This suggests that the application of ML models in

diagnosing CPP holds promising potential. The development of

this technology is attributed to the advancements in AI in the

medical field. ML models based on clinical, hormonal (laboratory)

and imaging data utilize clinical, hormonal (laboratory) and

imaging data as inputs for ML algorithms, creating classifiers that

rapidly identify CPP. This provides a new perspective for an

objective, swift, and intelligent diagnosis of CPP.

In the studies we included, despite the use of different ML

models for diagnosing CPP, the steps involved in ML technology

were similar, primarily encompassing three stages: feature selection,
Frontiers in Endocrinology 05
feature extraction, and decision-making through a classifier. On the

one hand, feature selection is a critical component of ML

technology. The selection of features primarily derives from

clinical, hormonal (laboratory) and imaging data, such as age,

gender, height, weight, breast development, vaginal bleeding, LH,

FSH, E2, TT, bone age, pelvic ultrasound, pituitary MRI, etc. In the

studies we included, while the types and number of features varied,

all studies incorporated LH and FSH as laboratory indicators,

indicating their significant discriminatory value for CPP,

consistent with previous research (26–28). Certainly, we aim to

include as few features as possible to establish a machine learning

model that can accurately diagnose CPP. Pan et al. (19) employed

ML algorithms, incorporating 19 features such as age, baseline LH,
TABLE 1 Characteristics of the included studies.

Author Year Sex
(F/M)

CPP group Non-CPP group Feature Classifier Optimal
classifier

SPE SEN AUC

N Age (mean
± SD), y

N Age (mean
± SD), y

Pan
et al. (16)

2020 F 1153 7.056 ± 1.13 1370 7.476 ± 1.09 General
features,
Clinical
features,
Laboratory
features,
BA,US

XGBoost XGBoost 77.88 85.71 0.88

Huynh
et al. (17)

2022 F 524 7.2 ± 1.8 90 7.5 ± 1.5 General
features,
Clinical
features,
Laboratory
features,
BA

kNN, GNB, LR,
RF, XGBoost

RF 89.30 96.60 0.97

Pang
et al. (18)

2022 F 408 10.9 5119 10.8 General
features,
Clinical
features,
Laboratory
features

LR,DT,
Adaboost, SVM,
RF,kNN,GBM,
GNB,et al

GBM 93.22 34.39 0.79

Pan
et al. (19)

2019 F 791 7.52 ± 0.99 966 7.07± 1.11 General
features,
Clinical
features,
Laboratory
features

XGBoost,RF,
SVM,DT

XGBoost 85.39 77.94 0.89

Chen
et al. (20)

2023 F 137 8.51 24 8.55 General
features,
Clinical
features,
Laboratory
features

LR, RF,
GBM, XGBoost

LR 85.7 95.2 0.88

Zou
et al. (21)

2023 F 185 7.52± 0.56 307 7.21± 0.76 General
features,
Clinical
features,
Laboratory
features
US,
MRI
Radiomics

RF, DT, SVM,
GNB, LR

LR 85.7 72.7 0.86
frontie
F, female; M, male; N, number of patients; CPP, central precocious puberty; BA, bone age; US, ultrasonography; MRI, magnetic resonance imaging; XGBoost, extreme gradient boosting; kNN, k-
nearest neighbor algorithm; GNB, gaussian naive bayes; LR, logistic regression; RF, random forest; DT, decision tree; SVM, support vector machine; GBM, gradient boosting machine; SPE,
Specificity; SEN, Sensitivity; AUC, area under the curve.
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baseline FSH, insulin-like growth factor-1 (IGF-1), growth

hormone (GH), etc., to construct a predictive model for CPP

diagnosis. They achieved an AUC range of 0.88 to 0.90, with

sensitivity ranging from 77.91% to 77.94% and specificity from

84.32% to 87.66%. Huynh et al. (17) also developed six classical ML

diagnostic models for girls suspected of having CPP, including 14

clinical indicators such as baseline LH, baseline FSH, uterine

volume, etc. The best-performing model, the RF model,

demonstrated an AUC of 0.972, sensitivity of 96.6%, and

specificity of 89.3%. It can be observed that compared to the

study by Pan et al., Huynh et al. achieved improved diagnostic

efficiency while reducing the number of included features. Our

meta-analysis does not provide definitive recommendations for the

development of an optimal feature combination. In high-

dimensional spaces, there is typically no method superior to

others. However, our subgroup analysis results indicate that

studies incorporating imaging features tended to have higher

sensitivity and specificity in diagnosing CPP compared to studies

that did not include imaging features. Imaging features primarily
Frontiers in Endocrinology 06
include BA, pelvic ultrasound, pituitary MRI, etc. Pan et al. (19)

demonstrated that using only laboratory data is challenging to

effectively differentiate between CPP and non-CPP (sensitivity of

66.23%). However, once combined with pelvic ultrasound, the

model showed a significant improvement in the area under the

ROC curve, increasing from 0.42 to 0.63. Therefore, it is suggested

that in the development of machine learning diagnostic models for

CPP, efforts should be made to include imaging features whenever

possible. On the other hand, classifier selection is another crucial

aspect of machine learning technology. The included studies

encompassed various types of classifiers, including XGBoost, RF,

GBM, LR, SVM, naïve Bayesian, kNN, etc. In the studies we

incorporated, apart from Chen et al. (20) and Zou et al. (21),

where LR was the optimal model, the optimal models in other

studies varied, including XGBoost, RF, GBM, etc. Our subgroup

analysis results indicate that studies opting for the RF classifier

tended to have higher specificity and sensitivity compared to studies

choosing other types of classifiers. Therefore, it is recommended

that in the development of machine learning diagnostic models for
TABLE 2 Risk of bias and applicability concerns summary of the included studies.

Study Risk of bias1 Applicability2

Patient
selection3

Index
text4

Reference
Standard5

Flow
and timing6

Patient
selection

Index
text

Reference
standard

Pan et al (16) H L L L L L L

Huynh
et al. (17)

H L L L L L L

Pang et al. (18) H L L L L L L

Pan et al. (19) H L L L L L L

Chen et al. (20) H L L L L L L

Zou et al. (21) H L L L L L L
H, High risk; L, Low risk; U, Unclear.
1Risk of Bias is judged as “low,” “high,” or “unclear.” If the answers to all items questions for a part are “yes,” then risk of bias can be judged low. If any item question is answered “no,” potential for
bias exists. The “unclear” category should be used only when insufficient data are reported to permit a judgment.
2Applicability sections are structured in a way similar to that of the bias sections but do not include signaling questions. Review authors record the information on which the judgment of
applicability is made and then rate their concern that the study does not match the review question.Concerns about applicability are rated as “low,” “high,” or “unclear.” the “unclear” category
should be used only when insufficient data are reported.
3Part 1: Patient Selection.
Risk of Bias:
item 1: Was a consecutive or random sample of patients enrolled?
item 2: Was a case–control design avoided?
item 3: Did the study avoid inappropriate exclusions?
Applicability:
item 4: Are there concerns that the included patients and setting do not match the review question?
4Part 2: Index Test.
Risk of Bias:
item 5: Were the index test results interpreted without knowledge of the results of the reference standard?
item 6: If a threshold was used, was it prespecified?
Applicability:
item 7: Are there concerns that the index test, its conduct, or its interpretation differ from the review question?
5Part 3: Reference Standard.
Risk of Bias:
item 8: Is the reference standard likely to correctly classify the target condition?
item 9: Were the reference standard results interpreted without knowledge of the results of the index test?
Applicability:
item 10: Are there concerns that the target condition as defined by the reference standard does not match the question?
6Part 4: Flow and Timing.
Risk of Bias:
item 11: Was there an appropriate interval between the index test and reference standard?
item 12: Did all patients receive a reference standard.
item 13: Did all patients receive the same reference standard?
item 14: Were all patients included in the analysis?
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CPP, efforts should be made to include the RF classifier

whenever possible.

We hope that the results of the aforementioned meta-analysis

will catalyze further advancements in this field. Despite the

challenging nature of diagnosing CPP using ML models based on

clinical, hormonal (laboratory) and imaging data, and being in its

early stages, our meta-analysis suggests that these technologies have

shown promising results. Future research should focus on

developing ML models that incorporate fewer features, provide

accurate diagnoses, and are interpretable. We further observed that

Zou et al. (21) employed the SHAP global interpretability

technique, and Huynh et al. (17) utilized the LIME analysis
Frontiers in Endocrinology 07
method to interpret their machine learning models. This

interpretability is crucial for clinical decision-making as it

enhances healthcare professionals’ trust in the model outputs and

helps them better understand the reasons behind specific diagnostic

decisions. This breaks the curse of machine learning models being
FIGURE 2

Forest plots of the sensitivity (A) and specificity (B) of ML models based on clinical, hormonal (laboratory) and imaging data for the diagnosis of CPP.
Note-The dots correspond to the individual studies included in this analysis, and both sides of the line represent the 95% confidence interval. The
narrower the line is, the greater the accuracy of the study and the greater the weight. The diamond corresponds to the pooled result. The
intermediate vertical line represents an invalid line. Q statistic test card square value (chi-square), degree of freedom (df), p-values and I2 statistic test
results (Inconsistency (I- square)) correspond to heterogeneity test results. The Q test was used to assess heterogeneity, while the I2 test was used
to measure the size of heterogeneity. Heterogeneity was considered when p was less than 0.01. If I2<25%, no heterogeneity was noted. If the value
of I2 was between 25% and 50%, the degree of heterogeneity was considered to be small. If the value of I2 was between 50% and 75%,
heterogeneity was noted. If I2>75%, large heterogeneity was noted.
FIGURE 3

Hierarchical summary SROC plots of ML models based on clinical,
hormonal (laboratory) and imaging data for the diagnosis of CPP.
The ellipse represents 95% CI for this estimate. Numbers correspond
to enrolled studies.
FIGURE 4

Fagan nomogram of ML models based on clinical, hormonal
(laboratory) and imaging data for the diagnosis of CPP.
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perceived as black boxes. Additionally, in clinical practice, these

machine learning models can be developed into a small software

tool to facilitate their application in healthcare settings. In resource-

limited medical environments, primary care physicians can use the

model’s results to make preliminary management decisions. If,

based on the model’s assessment, a patient is classified into the

CPP group, it suggests a reason to suspect early development,

warranting appropriate medical intervention.

We assessed the quality of the included studies using the

following four components: patient selection, index test, reference

standard, and flow and timing, among which the high risk was

mainly reflected in the patient selection component. A potential

explanation for this finding is that the inclusion criteria for

diagnostic trials are often based on case-control trials rather than

randomized controlled trials, and patients included in the study

only reported the time period without specifying whether they were
Frontiers in Endocrinology 08
consecutive cases. In the included studies, ML methods and the gold

standard method were performed without knowing the results of

each other, and the GnRH stimulation test was used as the gold

standard. Therefore, selection bias was minimal, and the results

were reliable, indicating that these factors were associated with a

low risk of bias. Additionally, the Deeks funnel plot showed no

publication bias in these studies.

In the included studies, a significant amount of heterogeneity

was observed, and the causes of this heterogeneity were

multifaceted. Differences in feature selection, imaging methods,

and classifiers were the main contributors to this heterogeneity.

However, in another sense, this heterogeneity might be valuable

when developing clinically deployable ML models. To accurately

reflect the actual performance of ML models in diagnosing CPP,

these models must be tested on different features, imaging methods,

and classifiers to identify the model with the best performance. In

addition, differences in control groups also serve as a primary

source of heterogeneity. Among the included studies, only Zou

et al. (21) reported subjects with PPP as controls. In the other

studies, the non-PPP group was represented by subjects who tested

normal on diagnostic tests. In Pan et al. (19), reference was made to

a self-administered questionnaire administered in schools. These

factors may all contribute to the heterogeneity.

Our study has some limitations. Our study has several

limitations. Firstly, all participants were recruited from China and

Taiwan, which may restrict the generalizability of our findings as

environmental factors, ethnicity, and medical conditions can vary

significantly across different regions. Therefore, caution should be

exercised when extrapolating our results to other populations, and

future research should consider geographical, ethnic, and medical

variations to enhance the applicability of our findings. Secondly,

distinguishing between rapidly progressing and slowly progressing

forms of central precocious puberty (CPP) poses a significant

challenge for pediatricians, and our meta-analysis failed to
FIGURE 5

Deeks’ funnel plot asymmetry test for publication bias Note-
Numbers correspond to enrolled studies.
TABLE 3 Univariate and multivariate meta-regression analyses for identifying covariates to explain heterogeneity among studies on clinical, hormonal
(laboratory) and imaging data-based ML models for the diagnosis of CPP.

Covariates Multivariate meta-regression SEN and 95% CI SPE and 95% CI

LR
(Chi-square test)

P I2 index (%)

Feature
Image feature (n =4)
Non-image feature (n = 2)

6.13 0.04 67
0.90 [0.83 - 0.97]
0.53 [0.25 - 0.81]

0.90 [0.86 - 0.94]
0.83 [0.77 - 0.89]

Classifier
LR (n =4)
XGBoost (n = 4)

4.22 0.02 53
0.93 [0.87 - 0.99]
0.62 [0.42 - 0.82]

0.88 [0.84 - 0.93]
0.82 [0.73 - 0.90]

Classifier
RF (n =5)
LR (n = 4)

4.68 0.01 57
0.91 [0.87 - 0.95]
0.77 [0.47 - 1.00]

0.91 [0.87 - 0.95]
0.81 [0.77 - 0.86]

Classifier
GBM (n =1)
RF (n = 5)

2.99 0.22 33 – –
LR, logistic regression; XGBoost, extreme gradient boosting; RF, random forest; GBM, gradient boosting machine; SPE, Specificity; SEN, Sensitivity. P value of <0.05 was considered
statistically significant.
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provide clear guidance in this regard. Thus, future research should

prioritize addressing this issue by exploring methods to differentiate

between different presentations of CPP and guiding personalized

treatment strategies. Lastly, the substantial heterogeneity observed

among the included studies may impact the evaluation of the

diagnostic performance of machine learning (ML) models. Given

the limited number of studies and the ongoing development of ML

technology, conducting further research in this field is crucial for

accurately assessing the utility of ML in diagnosing CPP.
5 Conclusions

In summary, our meta-analysis findings demonstrate

promisingly high accuracy of machine learning models based on

clinical, hormonal (laboratory), and imaging data in diagnosing

CPP, exhibiting elevated levels of sensitivity, specificity, and AUC

values. Nevertheless, we acknowledge certain limitations regarding

the generalizability of our results due to the exclusive inclusion of

participants from China and Taiwan. Given the disparities in

environmental factors, ethnicity, and healthcare conditions across

different regions, caution should be exercised when extrapolating

these findings to other populations. Additionally, while

distinguishing between rapid and slow progression forms of CPP

remains a challenge for pediatricians, we are optimistic about future

research prospects. Future studies will continue to address these

challenges to further enhance the applicability and reliability of the

results, and explore more effective means of differentiating between

various types of CPP, thereby providing more precise guidance for

appropriate treatment strategies.
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