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Background: Previous observational researchers have found an inverse

bidirectional link between Alzheimer’s disease (AD) and prostate cancer (PCa);

yet, the causative nature of this link remains unclear. To investigate the causal

interactions between AD and PCa, a bidirectional Mendelian randomization (MR)

analysis was conducted.

Methods: This study comprised two Genome-Wide Association Study (GWAS)

summary statistics for AD (17,008 cases and 37,154 controls) and PCa (79,148

cases and 61,106 controls) in individuals of European ancestry. The inverse-

variance weighted (IVW) method was employed as the primary approach, while

MR-Egger, weighted median, weighted mode, and simple mode served as

supplementary methods for estimating the causal effect. To assess pleiotropy,

the MR-PRESSO global test and MR-Egger regression were used. Cochran’s Q

test was adopted to check heterogeneity, MR Steiger test and the leave-one-out

analysis was performed to confirm the robustness and reliability of the results.

Results: The causal association genetically inferred of AD on PCa was found

using IVW (OR = 0.974, 95% CI = 0.958-0.991, p = 0.003) in forward MR analysis

and the causal association genetically inferred of PCa on AD was not found using

IVW (OR = 1.000, 95% CI: 0.954-1.049, P = 0.988) in reverse MR analysis. The

sensitivity analysis showed that no pleiotropy and heterogeneity was observed.

The leave-one-out analysis showed that the findings were not inordinately

affected by any instrumental variables.

Conclusion: The results of this study demonstrated an absence of bidirectional

causality between AD and PCa among the European population, suggested that a

genetically predicted possibility of decreased PCa risk in AD patients, and no

significant genetically predicted causal effect of PCa on AD.
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1 Introduction

Prostate cancer (PCa) represents a prevalent malignancy in

elderly males, especially in Western countries, and ranks as the

second most frequent cause of cancer-related mortality in the male

population (1). Despite advancements in the therapeutic

approaches for PCa, there is considerable geographic variability in

its occurrence, with all regions experiencing a consistent annual

surge in cases (2). Variations in the disease’s progression are

attributed to the pathological diversity and the heterogeneity

present within the cancerous cells (3). At the moment of PCa

diagnosis, nearly 90% of affected individuals exhibit locoregional

advancement of the tumor, which often disqualifies them from

undergoing surgical interventions (4). Established risk determinants

include age, genetic predisposition, and racial or ethnic origins,

while the significance of other potential causative factors is still a

subject of debate (5). Considering the significant impact of PCa on a

global scale, it is imperative to investigate both protective and risk

elements of PCa and to implement prompt interventions, aiming to

enhance the prognosis for those diagnosed with the disease.

Alzheimer’s disease (AD) stands as the predominant

neurodegenerative condition in the aging population, clinically

manifesting through memory-related cognitive decline and

pathologically distinguished by the presence of extracellular plaques

rich in b-amyloid (Ab) and intracellular neurofibrillary tangles

composed of tau protein. The principal risk factor for AD is

advanced age (6–8). Recent research has unveiled a reciprocal

negative correlation between Alzheimer’s disease and cancer

incidence. Studies have indicated that individuals with AD have their

cancer risk halved, while a 35% decrease in the likelihood of AD has

been noted among individuals who have had or recovered from cancer

(9, 10). Prior observational research has suggested that those afflicted

with AD may have a diminished probability of developing prostate

cancer (11). And, Sherzai et al. observed that patients with PCa have a

lower probability of developing AD (12). Such findings highlight a

potential association between AD and PCa.

The majority of research examining the link between AD and PCa

has utilized cross-sectional or retrospective designs, with a scarcity of

prospective studies conducted. Observational studies have not been able

to thoroughly investigate the causal relationship between AD and PCa.
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These studies often face challenges such as limited participant numbers

and the absence of randomization. Mendelian randomization (MR)

employs genetic variations, usually in the form of single-nucleotide

polymorphisms (SNPs), as tools for evaluating the causal influence of an

exposure on an outcome (13–15). The MR approach mirrors the

principles of a randomized controlled trial, is structured to

circumvent biases stemming from confounders that are not

accounted for and to prevent biases due to reverse causality (15, 16).

And genetic data for this method are frequently sourced from extensive

genome-wide association studies (GWAS). As a result, MR offers a

time-efficient and economical strategy for discovering potential causal

links (17). In this study, a bidirectional two-sample MR approach was

utilized to explore the causal relationships between AD and PCa within

European demographic groups.
2 Methods

2.1 Study design and ethics statement

Figure 1 illustrated the schematic of our study design along with

the three critical assumptions inherent in the MR study. The first

assumption asserts that the instrumental variables (IVs) have a robust

association with exposure (AD or PCa). The second assumption

contends that the IVs are not affected by confounding variables. The

third assumption holds that the IVs exert an effect on the likelihood of

exposure exclusively through their interaction with outcome, without

any indirect routes (18). Since our data were derived from previously

conducted studies or databases available to the public, there was no

requirement to obtain additional ethical approval from an ethics

committee. In our research, we consistently followed the STROBE-

MR guidelines (19, 20), with Supplementary Material presenting a

checklist that illustrates our adherence to these protocols.
2.2 Data source

Our research utilized subjects of European descent from the

Integrative Epidemiology Unit (IEU) GWAS database (https://

gwas.mrcieu.ac.uk/). All data were extracted from the IEU GWAS
FIGURE 1

Overall design of this bidirectional Mendelian randomization analysis. AD, Alzheimer’s disease; PCa, Prostate cancer.
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database. We identified genetic variants associated with AD by

analyzing AD GWAS data (ebi-a-GCST002245) comprising a

cohort of 54,162 individuals (21). To avoid overlap between the

populations assessed for exposure and outcome, we obtained

summary data for prostate cancer from the largest GWAS meta-

analysis conducted by the PRACTICAL consortium, which

included 79,148 cases and 61,106 controls of European descent

(22). The average age of participants with prostate cancer in the

PRACTICAL study was 66 years. The distribution of disease stages

among these patients was as follows: low aggression, characterized

by T0 or T1, Gleason Score ≤6, and PSA <10, accounted for 12.1%;

intermediate aggression, defined by T2 or Gleason Score = 7 or PSA

between 10 and 20, comprised 37.9%; high aggression, indicated by

T3, T4, N1, M1, Gleason Score ≥8, or PSA >20, made up 26.8%; and

advanced stages, which included Gleason Score 8+, metastatic

disease, PSA >100, or prostate cancer as cause of death according

to the previous aggressiveness definition from iCOGS and accessible

phenotype data, constituted 20.1% (22). Table 1 provides

comprehensive details about the two sets of GWAS summary data.

2.3 Selection of instrumental variables

Utilizing the aforementioned GWAS summary data, a rigorous

method was adopted to select appropriate SNPs as instrumental

variables (IVs). The selection process began with the identification of

SNPs that were strongly associated with the exposure, demonstrated by

a genome-wide significant P-value threshold of less than 5×10-8. To

prevent skewed results due to linkage disequilibrium (LD), we applied a

clumping procedure with a stringent r2 threshold of 0.001 and a 10,000

kb window size. For further refinement, the Phenoscanner database

(http://www.phenoscanner.medschl.cam.ac.uk/) was employed to filter

out genetic variants linked to potential confounders. In cases where the

identified SNPs were absent in the outcome GWAS dataset, we sought

substitute proxy SNPs that exhibited a high LD (r2 > 0.8) with the initial

SNPs. Furthermore, to eliminate confounding from palindromic and

ambiguous SNPs with mismatching alleles, we harmonized the

exposure and outcome data to ensure consistency in the effect alleles

between them. In addition, to address the concern of bias due to weak

IVs, we assessed the strength of the IVs by calculating the F-statistic,

with an F-statistic significantly greater than 10 indicating a reduced risk

of weak instrument bias (23, 24).
2.4 Statistical analysis

In this study, various techniques were employed to examine and

measure the causal relationships and effects between the exposure and
Frontiers in Endocrinology 03
the outcome. These techniques encompassed the inverse-variance

weighted (IVW) (25), MR-Egger (26), weighted median (27), simple

mode (28) and weighted mode (29). The IVW approach, commonly

used in MR analyses, has both random-effects and fixed-effects models.

It acts as a meta-analytic tool that aggregates the individual Wald ratio

estimates from each IV to provide a consolidated estimate of the effect

of exposure on the outcome. The IVW method’s estimates are most

credible in the absence of heterogeneity and pleiotropy (30). A

random-effects model was implemented when substantial

heterogeneity was detected among IVs (p < 0.05); otherwise, a fixed-

effect model was chosen. The MR-Egger regression is designed to yield

reliable estimates even in the presence of pleiotropy among IVs (31).

The weighted median technique is capable of producing causal effect

estimates provided that less than half of the IVs breach essential MR

preconditions (27). The weighted mode method is suitable for MR

causal analysis when the majority of the IVs are valid (29). The simple

mode approach offers a less robust alternative to IVW. All these

analyses were performed and graphically represented using R version

4.3.1, leveraging the “MRPRESSO” and “TwoSampleMR” R packages.

A p-value of less than 0.05 was considered statistically significant.
2.5 Sensitivity analysis

We utilized the MR-PRESSO global test and the MR-Egger

regression to evaluate pleiotropy in the instrumental variables, with

pleiotropy indicated by a p-value of less than 0.05 (26, 32). We

assessed heterogeneity through Cochran’s Q statistic, deeming it

significant at p < 0.05. The MR Steiger test was used to verify the

directionality that exposure causes the outcome (33). Additionally,

the “leave-one-out” sensitivity analysis was performed to ascertain

whether any single SNP might exert undue influence on the

aggregate causal inference.
3 Results

3.1 Selection of instrumental variables

In accordance with rigorous criteria for selecting instrumental

SNPs, we chose suitable SNPs as IVs that conformed to three

essential assumptions. We pinpointed 13 SNPs with a high

correlation to AD, and 89 SNPs with a high correlation to PCa.

These SNPs acted as IVs for exposure (AD or PCa), and each SNP

worked out as F-statistic greater than 10, suggesting a low chance of

weak IV bias. Detailed information of included SNPs was showed in

Supplementary Tables 1, 2.
TABLE 1 Characteristics of Alzheimer’s disease and prostate cancer GWAS cohorts.

Exposure/
Outcome

IEU
GWAS id Cases Controls

Sample
size

Number
of SNPs

First
Author Population PMID

Alzheimer’s disease
ebi-

a-GCST002245 17,008 37,154 54,162 7,022,150 Lambert JC European 24162737

Prostate cancer ieu-b-85 79,148 61,106 140,254 20,346,368 Schumacher European 29892016
fron
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3.2 Causal effects of Alzheimer’s disease on
prostate cancer

The outcomes of forward MR analysis of the causality of AD on

PCa were shown in Table 2. IVW revealed a statistically significant

negative causal impact of AD on PCa (OR = 0.974, 95% CI = 0.958-

0.991, p = 0.003). Simultaneously, a relationship following the same

trend was discerned through MR Egger method (OR = 0.974, 95%

CI =0.953-0.996, p = 0.039), the weighted median method (OR =

0.975, 95% CI = 0.957-0.993, p = 0.007) and Weighted mode

method (OR = 0.975, 95% CI = 0.957-0.993, p = 0.020). These

results were graphically represented in both the forest plot

(Supplementary Figure 1) and the scatter plot (Figure 2). The

forest plot visually displayed the effect estimates alongside their

confidence intervals (CI) for each SNP, whereas the scatter diagram

graphically portrayed the association between the exposure (AD)

and the outcome (PCa) utilizing the IVs. Given the simple mode

approach offers a less robust alternative to IVW, the outcomes from

the MR analysis provide support for a causal association between

AD and PCa.
3.3 Causal effects of prostate cancer on
Alzheimer’s disease

The outcomes of reverse MR analysis of the causality of PCa on

AD were shown in Table 3. The findings from the IVW analysis

indicated that PCa did not causally influence AD (OR = 1.000, 95%

CI: 0.954-1.049, P = 0.988), with the MR-Egger, Weighted Median,

Weighted mode and Simple Mode approaches yielding congruent

outcomes. The forest plot and the scatter plot were shown in

Supplementary Figure 1 and Figure 2. Thus, our results showed

that there is no significant causal relationship of PCa on AD.
3.4 Sensitivity analysis

Pleiotropy of IVs was examined through the application of MR-

Egger regression and MR-PRESSO global test. The MR-Egger

regression inferred that no pleiotropy in IVs (p = 0.994 in

forward MR analysis, p = 0.597 in reverse MR analysis, Table 4),

a conclusion that was further corroborated by the MR-PRESSO

global test (p = 0.877 in forward MR analysis, p = 0.132 in reverse

MR analysis, Table 3). Cochran’s Q test was employed to identify
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heterogeneity in IVs. The study revealed no heterogeneity in

forward MR analysis and reverse MR analysis by the Cochran Q-

test (p = 0.729 for MR-Egger, p = 0.799 for IVW in forward MR

analysis, p = 0.122 for MR-Egger, p = 0.133 for IVW in reverse MR

analysis, Table 4) and funnel plots (Supplementary Figure 2). The

MR Steiger test identified no evidence of reverse causality, and the

causal direction was reliable (Table 4). A leave-one-out analysis was

conducted, sequentially excluding each SNP to assess the impact on

the results (Supplementary Figure 3). This analysis in forward MR

analysis indicated that no single SNP significantly influenced the

causal inference, suggesting that the observed overall causal link

between AD and PCa was not propelled by any particular SNP,

underlining the robustness of the results. These outcomes provide

confidence in the validity and robustness of the causal inference

derived from the MR analysis.
4 Discussion

Previous epidemiological research examining the link between

AD and PCa suggests that those diagnosed with AD exhibit a

reduced occurrence of PCa, while survivors of PCa show a

decreased incidence of AD. Such epidemiological investigations

are primarily hypothesis-generating regarding causation and are

inevitably constrained by biases and confounding variables. We

employed a bidirectional two-sample MR technique to examine the

potential causal link between AD and PCa. Analyses using MR

methodologies revealed an absence of bidirectional causality

between AD and PCa. In particular, our analysis indicated a

possibility of decreased PCa risk in AD patients, yet no significant

causal effect of PCa on AD was observed. These results offer

important perspectives regarding the prospective causal dynamics

between the two disorders.

With the rise in the elderly population, there has been a

corresponding increase in the prevalence of conditions like cancer

and neurodegenerative diseases. Past research focusing mainly on

white demographics has found an association between AD and a

reduced cancer risk, ranging from 36% to 80%, though this

reduction rate differs according to the study design (34–37).

Similarly, a retrospective cohort study in Shanghai, China, and a

population-based longitudinal study in South Korea have indicated

a potential reduced risk for several cancers, included prostate

cancer, in patients with AD (11, 38). The results of our study are

consistent with these earlier findings.
TABLE 2 Forward MR analysis of the causality of Alzheimer’s disease on prostate cancer.

Exposure Outcome MR method Number of SNPs b SE OR (95% CI) P‐value

Alzheimer’s disease Prostate cancer MR Egger 13 -0.026 0.011 0.974(0.953-0.996) 0.039

Alzheimer’s disease Prostate cancer Weighted median 13 -0.026 0.010 0.975(0.957-0.993) 0.007

Alzheimer’s disease Prostate cancer Inverse variance weighted 13 -0.026 0.009 0.974(0.958-0.991) 0.003

Alzheimer’s disease Prostate cancer Simple mode 13 -0.010 0.030 0.990(0.933-1.051) 0.748

Alzheimer’s disease Prostate cancer Weighted mode 13 -0.026 0.010 0.975(0.957-0.993) 0.020
fro
SNPs, single-nucleotide polymorphisms; SE, standard error; OR, odds ratio; CI, confidence interval.
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Several studies have demonstrated an inverse correlation

between cancer and AD. An earlier study from Italy indicated

that the prevalence of AD did not increase in PC patients (36), while

research from Taiwan noted a negligible rise in AD prevalence

among PC patients compared to the broader population (39).

Individuals who have survived certain cancers appear to have a

diminished likelihood of developing AD, rather than other age-

related ailments, which suggests that the reduced AD diagnoses are

not solely attributable to biases. It has been posited that cancer

therapy may be linked to a lower risk of AD (40). Our study showed

that no genetic causal association of PCa on AD by MR analysis.

Utilizing discharge information sourced from the National

Inpatient Sample (NIS) spanning 1999 to 2008, this subsequent

analysis of existing data additionally revealed a reverse correlation

between Alzheimer’s disease (AD) and ten types of cancer, where

prostate, ovarian, and lung cancers showed the most significant

reverse associations (12). Drawing on a cohort study conducted in

Northern Italy involving over 1 million residents, it was found that

the incidence of cancer in individuals with AD dementia was

reduced by half, while the likelihood of developing AD dementia

in cancer patients decreased by 35%. The incidence rates for cancers

originating from various tissues in individuals with AD dementia

were consistently below expected levels; this decrease in risk was

statistically significant for cancers arising from epithelial tissues, as

well as those from non-epithelial, mesenchymal, blood, or nervous

tissues. The number of AD dementia cases among the five common

cancer locations (breast, lung, bladder, prostate, colorectal) always

fell short of expectations. Nonetheless, the relative risk (RR) showed
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a significant decline only in individuals with colorectal cancer or

with cancers of non-epithelial, mesenchymal, blood, or nervous

tissues. The frequency of the five cancer types ((breast, lung,

bladder, prostate, colorectal)) in AD dementia patients was below

anticipated levels, though the observed prostate cancer cases were

nearly the same as expected. Notably, the risk for developing lung

and colorectal cancers, along with tumors of non-epithelial,

mesenchymal, blood, or nervous tissues, was significantly lower

(36). A retrospective cohort study conducted in Shanghai indicates

that individuals with AD may have a reduced likelihood of

developing various cancers, such as lung, prostate, and testicular

cancer. Concurrently, an increased incidence of lymphoma was

found to be positively associated with AD (11).

Yuan et al. investigated the bidirectional causality between AD

and colorectal cancer (CRC) using a two-sample MR approach. The

MR findings indicated a lower likelihood of AD in individuals with

CRC, alongside a marginally increased probability of CRC in those

diagnosed with AD. However, the reliability of the latter finding is

compromised by the effect of overlapping samples (41). Sahba

Seddighi and colleagues utilized MR to investigate the causal link

between cancer and AD. They found that cancers related to

smoking, as predicted genetically, were linked to a 5.2% decrease

in the likelihood of AD (OR 0.95, 95% CI 0.92 -0.98, p = 0.0026) for

every 1-unit increase in log odds of cancer. Among these, only lung

cancer predicted genetically, showing a 9.0% reduction, had a

significant association with AD (OR 0.91, 95% CI 0.84-0.99,

p = 0.019) per 1-unit increase in log odds of cancer. Cancers not

related to smoking, as predicted genetically, were linked to a 1.9%
TABLE 3 Reverse MR analysis of the causality of prostate cancer on Alzheimer’s disease.

Exposure Outcome MR method Number of SNPs b SE OR (95% CI) P‐value

Prostate cancer Alzheimer’s disease MR Egger 89 0.025 0.052 1.025(0.925-1.136) 0.635

Prostate cancer Alzheimer’s disease Weighted median 89 -0.006 0.034 0.994(0.929-1.064) 0.869

Prostate cancer Alzheimer’s disease Inverse variance weighted 89 0.000 0.024 1.000(0.954-1.049) 0.988

Prostate cancer Alzheimer’s disease Simple mode 89 -0.005 0.063 0.995(0.879-1.126) 0.935

Prostate cancer Alzheimer’s disease Weighted mode 89 -0.005 0.039 0.995(0.921-1.075) 0.897
fro
SNPs, single-nucleotide polymorphisms; SE, standard error; OR, odds ratio; CI, confidence interval.
BA

FIGURE 2

Scatter plot for the causality of Alzheimer’s disease on prostate cancer risk in forward MR analysis (A) and Scatter plot for the causality of prostate
cancer on Alzheimer’s disease risk in reverse MR analysis (B). The regression slopes of the lines represent the magnitude of the causal effect.
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decrease in the odds of AD (OR 0.98, 95% CI 0.97-0.995,

p = 0.0091) for each 1-unit increase in log odds of cancer. Within

this category, prostate cancer, melanoma, lymphoma, and ovarian

cancer, as predicted genetically, showed no significant association

with the odds of developing AD. Conversely, leukemia predicted

genetically was associated with a 2.4% reduction in AD odds (OR

0.98, 95% CI 0.96- 0.995, p = 0.012) per 1-unit increase in log odds

of cancer, and breast cancer was linked to a 5.9% lower likelihood of

AD (OR 0.94, 95% CI 0.89-0.99, p = 0.028) for each 1-unit increase

in log odds of cancer. Combining genetic predictors for all types of

cancer considered in the study, the overall association pointed to a

2.5% reduction in the odds of AD (OR 0.98, 95% CI 0.96-0.99,

p = 0.00027) for every 1-unit increase in log odds of cancer (42).

An intriguing theory accounting for the inverse relationship

between cancer and AD posits a common etiology that exerts

divergent effects on carcinogenesis and neurodegenerative

processes (43). Proposed biological pathways include proteins that

inhibit tau accumulation and amyloid-b aggregation, as well as

those that control cell cycle events (44, 45), common epigenetic

alterations (46), and aging-associated disruptions in cell metabolism

(47). This hypothesized common etiology offers a significant chance

to enhance our understanding of the underlying mechanisms of

both carcinogenesis and neurodegenerative conditions (43, 48, 49).

The association between cancer and AD seems to related to

disruptions in the regulation of the cell cycle (50). Proteins such as

P53, Wnt, and Pin1 are involved in managing the cell cycle for both

diseases. The Pin1 gene plays a role in cancer and AD by influencing

cell cycle control, signal transduction, DNA damage response, as well as

the management of tau and b-amyloid (Ab) precursor proteins (37,
51). In AD patient brain tissues, Pin1 expression is typically

diminished, while in several cancer forms, such as prostate cancer,

an increased expression of Pin1 is observed (12, 51–54). Research

involving animals indicates that the absence of Pin1 hinders the

development of oncogenes and inhibits both tumor and cellular

proliferation (12, 53). Simultaneously, a reduced expression of Pin1

may contribute to enhanced neurodegeneration in AD (55).

Experiments with animals have shown that elevated Pin1 levels in

postnatal neurons can counteract neurodegeneration (51, 56, 57). The

depletion of Pin1 in animals results in tau and Ab-related pathological

changes that occur in an age-dependent fashion, mirroring those in AD
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(12). Due to Pin1’s direct involvement with both cancer and AD, it has

garnered considerable interest as a potential therapeutic target and

warrants further exploration.

This investigation presented multiple strengths. First, this study

utilized MR analysis, a method in genetic epidemiology that applies

instrumental variables to assess the causal impact of exposures (AD

or PCa) on outcomes (PCa or AD). An earlier MR study reported

that prostate cancer did not affect AD (42). However, the

bidirectional analysis conducted in this research represents the

novelty of the study. Second, the principles of MR analysis

ensured resistance to confounder-induced biases and forestalled

reverse causality in the MR analysis. The use of published GWAS

data provided access to a large cohort and extensive information on

genetic diversity. Consequently, the outcomes of this study

suggested a potential reduction in PCa risk among individuals

with AD, while no significant causal relationship was found from

PCa towards AD, implying a notable causal effect of increased AD

risk leading to a lower PCa risk. The robustness of these results was

further validated through sensitivity analysis. Lastly, the selection of

study participants from a European demographic reduced the

likelihood of biases related to population stratification.

Nonetheless, this study was subject to certain limitations. First,

the GWAS summary statistics were restricted to individuals with

European ancestry, hence our conclusions may be primarily

applicable to European cohorts. Therefore, extending the

application of our findings to racially and ethnically different

populations should be done with caution. Second, constraints in

our data sources precluded the possibility of performing analyses

that were stratified or adjusted for other variables. More exhaustive

investigations, such as future prospective randomized controlled

trials, could provide deeper insights to the inferences made in this

study. Third, the GWAS data for PCa are derived exclusively from

males. Unfortunately, GWAS data for AD with gender stratification

are not currently available. Consequently, the GWAS data for AD

used in this study include both males and females. Ideally, using

male-only GWAS data for traits related to AD would be preferable.

Lastly, the capability of the MR approach was confined to

examining causal links; it did not permit the exploration of the

underlying mechanisms behind these associations. Elucidating

these mechanisms would necessitate more detailed research.
TABLE 4 Sensitivity analyses of MR.

Exposure Outcome

Pleiotropy Heterogeneity

MR
Steiger
test
direction

MR
Steiger
test
P‐value

MR-PRESSO
global

outlier test
MR-

Egger regression MR-Egger

Inverse
variance

weighted (IVW)

Rssobs
P‐

value Intercept
P‐

value
Q

statistic
P‐

value
Q

statistic
P‐

value

Alzheimer’s
disease

Prostate
cancer 8.224 0.877 2.585e-05 0.994 7.822 0.729 7.822 0.799 TRUE 8.835e-217

Prostate
cancer

Alzheimer’s
disease 104.808 0.132 -0.003 0.597 102.536 0.122 102.868 0.133 TRUE 0
fr
Pleiotropy was tesed by MR-PRESSO global outlier test and MR-Egger regression methods. Heterogeneity was tesed byMR-Egger and Inverse variance weighted (IVW)methods. The MR Steiger
test was used to detect the reliability of the causal direction.
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5 Conclusion

In summary, we demonstrated an absence of bidirectional

causality between AD and PCa among the European population,

employing a bidirectional two-sample MR analysis. Our findings

suggested that a genetically predicted possibility of decreased PCa

risk in AD patients, and no significant genetically predicted causal

effect of PCa on AD. Our results provided new evidence for

discovering potential relationship between AD and PCa. Further

studies focused on mechanisms are necessary to clarify the complex

relationship between AD and PCa.
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