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immune-related oxidative
stress biomarkers of non-
obstructive azoospermia
Yang Pan †, Xiangyu Chen †, Hang Zhou †, Mingming Xu †,
Yuezheng Li †, Qihua Wang, Zhunan Xu, Congzhe Ren,
Li Liu* and Xiaoqiang Liu*

Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
Background:Non-obstructive azoospermia (NOA) is a major contributor of male

infertility. Herein, we used existing datasets to identify novel biomarkers for the

diagnosis and prognosis of NOA, which could have great significance in the field

of male infertility.

Methods: NOA datasets were obtained from the Gene Expression Omnibus

(GEO) database. CIBERSORT was utilized to analyze the distributions of 22

immune cell populations. Hub genes were identified by applying weighted

gene co-expression network analysis (WGCNA), machine learning methods,

and protein–protein interaction (PPI) network analysis. The expression of hub

genes was verified in external datasets and was assessed by receiver operating

characteristic (ROC) curve analysis. Gene set enrichment analysis (GSEA) was

applied to explore the important functions and pathways of hub genes. The

mRNA–microRNA (miRNA)–transcription factors (TFs) regulatory network and

potential drugs were predicted based on hub genes. Single-cell RNA sequencing

data from the testes of patients with NOA were applied for analyzing the

distribution of hub genes in single-cell clusters. Furthermore, testis tissue

samples were obtained from patients with NOA and obstructive azoospermia

(OA) who underwent testicular biopsy. RT-PCR and Western blot were used to

validate hub gene expression.

Results: Two immune-related oxidative stress hub genes (SHC1 and FGFR1) were

identified. Both hub genes were highly expressed in NOA samples compared to

control samples. ROC curve analysis showed a remarkable prediction ability

(AUCs > 0.8). GSEA revealed that hub genes were predominantly enriched in toll-

like receptor and Wnt signaling pathways. A total of 24 TFs, 82 miRNAs, and 111

potential drugs were predicted based on two hub genes. Single-cell RNA

sequencing data in NOA patients indicated that SHC1 and FGFR1 were highly

expressed in endothelial cells and Leydig cells, respectively. RT-PCR andWestern

blot results showed that mRNA and protein levels of both hub genes were

significantly upregulated in NOA testis tissue samples, which agree with the

findings from analysis of the microarray data.
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Conclusion: It appears that SHC1 and FGFR1 could be significant immune-

related oxidative stress biomarkers for detecting and managing patients with

NOA. Our findings provide a novel viewpoint for illustrating potential

pathogenesis in men suffering from infertility.
KEYWORDS

non-obstructive azoospermia, immune cell, oxidative stress, WGCNA, machine learning,
single-cell RNA-seq
Introduction

Infertility is defined as unsuccessful pregnancy after engaging in

normal, unprotected sexual intercourse for more than 1 year (1).

Approximately 30% of couples worldwide are infertile, and almost

half of the cases are attributed to male factors (2). There is significant

evidence to indicate that the incidence of male infertility has

increased in recent years. Azoospermia is diagnosed as the

inability to identify a single sperm cell in three consecutive

ejaculations (3). As such, azoospermia is defined as an absolute

spermatozoa deficiency in the ejaculate, even on microscopic

examination of a cell pellet obtained by centrifugation of the

semen sample (4). Azoospermia is a key cause of infertility in

men; this condition can be defined as either obstructive

azoospermia (OA) or non-obstructive azoospermia (NOA). NOA

is found in approximately 10% of infertile men and 1% of the general

male population (5), making it a primary cause of male infertility (6).

The pathogenesis of NOA includes genetic, developmental,

hormonal, environmental, and other reasons, and its management

remains challenging (7). Following the development of testicular

sperm extraction (TESE), the combination of TESE and

intracytoplasmic sperm injection (ICSI) has been regarded as a

primary management strategy for male patients with NOA (5, 8).

However, retrieval of spermatozoa by TESE is only successful in

approximately 50% of NOA cases, due largely to the heterogeneity of

NOA. As a result, exploration of the exact pathogenesis and

molecular markers for managing NOA cases is important.

The rapid advancement of high-throughput sequence

techniques has greatly facilitated research on the genetic

characteristics of spermatogenesis. EAU guidelines also illustrate

the importance of karyotype abnormalities and Y chromosome

microdeletions in NOA cases (4). While numerous reports have

shown that a variety of genetic mutations could be associated with

NOA, the failure of spermatogenesis may also be linked to various

unknown factors (9). Overall, the pathogenesis of NOA is relatively

complex and may result from the alternation of multiple genes

rather than a single monogenetic factor. Identifying novel

biomarkers with high statistical efficiency could hold significant

value for assessing the clinical outcomes of patients with NOA.

Many previous studies have revealed that NOA was associated

with immune (10, 11) and oxidative stress in testis tissues and cells
02
(12, 13). Gene microarray assessment of testis tissues could aid in

identifying novel biomarkers for diagnosing and predicting

prognosis in patients with NOA. In the present study, a weighted

gene co-expression network analysis (WGCNA) method was

applied to accurately explore the complicated molecular

mechanisms and identify potential immune- and oxidative stress-

associated gene biomarkers for NOA. WGCNA is commonly

utilized to identify highly correlated module genes and confirm

hub genes associated with phenotype characteristics (14). This

novel method has been widely applied by a diverse range of

biological researchers in the field of molecular genetics, cancer,

and others. WGCNA differs from traditional analyses of

microarray-generated differentially expressed genes (DEGs). This

novel method can create various co-expression clusters to

contextualize high-dimensional microarray data into fewer

variables, presenting an enhanced view of associating gene

clusters with phenotypes.

In the present study, we combined WGCNA and three machine

learning methods to identify novel immune- and oxidative stress-

related biomarkers for NOA based on testis tissue expression

microarray. Subsequently, single-cell RNA sequencing data from

the testes of patients with NOA were used to validate hub gene

distribution in single-cell clusters. Furthermore, testis tissue

samples were obtained from patients who underwent testicular

biopsy. Hub gene expression levels were further validated by real-

time polymerase chain reaction (RT-PCR) and Western blot.

Overall, this study provides insight into the underlying

pathogenesis and can contribute to the identification of crucial

medicinal targets for patients with NOA suffering from infertility.
Materials and methods

Datasets

Figure 1 presents a flowchart of this study. NOA microarray

data were obtained from the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/). We selected the

dataset GSE9210 to further identify hub genes, as it contained the

largest sample size, including data from 47 patients with NOA and

11 OA controls.
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Identification of differentially
expressed genes

The “limma” package (15) with the standard of |log2 (Fold

Change) | > 1 and p-value < 0.05 was utilized to identify DEGs. The

“pheatmap” and “ggplot2” packages were utilized to plot heatmap

and volcanic map of DEGs, separately.

Moreover, 1,792 genes related to oxidative stress were obtained

from the GeneCards database (https://www.genecards.org/) with a

criterion of >5 scores. The 1,792 genes were intersected with DEGs

to generate the differentially expressed oxidative stress-associated

genes (DEOSGs).
Immune infiltration analysis and
WGCNA constructio

CIBERSORT uses a deconvolution algorithm to assess the

composition and abundance of immune cells according to

microarray data (16). An online website, CIBERSORTx (https://

cibersortx.stanford.edu/), was utilized to determine the distribution

matrix of different immune cell populations between NOAs and

controls in the GSE9210 dataset. The WGCNA method was used to

identify candidate disease biomarkers, as described in our previous

study (17). The “WGCNA” package was further used to perform

WGCNA and identify the modules most strongly related to immune

cells in patients with NOA. The sample data were preprocessed and

outliers were removed. Subsequently, the “WGCNA” package was

applied to create the correlation matrix. The optimal soft threshold

was selected to convert the correlation matrix into an adjacency

matrix, and a topological overlap matrix (TOM) was created from the

adjacency matrix. The TOM-based phase dissimilarity metric was
Frontiers in Endocrinology 03
utilized to categorize genes with similar expression patterns into gene

modules using average linkage hierarchical clustering. The module

with the significantly highest correlation to immune cells was

regarded as the core module. Eventually, the genes in the core

module were intersected with DEOSGs. The intersected genes were

identified as differentially expressed immune-related oxidative stress

genes (DEIOSGs) for subsequent analysis.
GO and KEGG enrichment analysis

To evaluate the functional and pathway outcomes of DEIOSGs,

GO and KEGG enrichment were analyzed using the

“clusterProfiler” package (18, 19). The “ggplot2” package was

utilized to visualize enrichment analysis outcomes.
Identification of hub genes

Three machine learning algorithms—least absolute shrinkage

and selection operator (LASSO) regression (20), support vector

machine–recursive feature elimination (SVM-RFE) (21), and

random forest (RF) (22)—were applied to identify hub genes

based on DEIOSGs. The genes from each machine learning

method were intersected to identify the common hub genes.

Furthermore, protein–protein interaction (PPI) networks based

on DEIOSGs were generated using the STRING database (https://

cn.string-db.org/). Subsequently, PPI networks were analyzed using

the cytoHubba plugin in the Cytoscape software (v3.7.2). Twelve

algorithms in the cytoHubba plugin were performed, after which

the top 10 genes from every algorithm were intersected to identify

common genes, as another hub gene.
FIGURE 1

Flowchart for this study.
frontiersin.org

https://www.genecards.org/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cn.string-db.org/
https://cn.string-db.org/
https://doi.org/10.3389/fendo.2024.1356959
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2024.1356959
Eventually, the genes identified by these two methods were

regarded as hub genes.
Gene set enrichment analysis

Single-gene gene set enrichment analysis (GSEA) was

conducted to explore the potential function of each hub gene

using the “clusterProfiler” and “org.Hs.eg.db” packages (23).
Constructing the mRNA–miRNA–TFs
network and predicting drugs

The JASPAR and TarBase databases extracted from

the NetworkAnalyst (https://www.networkanalyst.ca/) were used to

forecast hub genes encoding transcription factors (TF) andmicroRNAs

(miRNA), respectively. In addition, the DSigDB database through the

Enrichr platform (https://amp.pharm.mssm.edu/Enrichr/) was applied

to forecast potential drugs.
Hub gene expression analysis
and validation

Hub gene expression comparisons between the NOA and

control groups were explored using data extracted from the

GSE9210 database. To validate hub gene expression trends, we

obtained another dataset (GSE145467), which included 10 NOA

samples and 10 OA control samples. The Mann–Whitney test was

applied to compare hub gene expressions.
Predictive value for NOA using hub genes

To evaluate the performance of hub genes, we assessed their

ability to predict clinical phenotype by constructing receiver

operating characteristic (ROC) curves using the “timeROC”

package. Furthermore, samples from the validation set

(GSE145467) were utilized to verify predictive accuracy. The

predictive value of hub genes in each dataset was assessed using

the areas under ROC curves (AUCs).
Immunohistochemical analysis

Immunohistochemical data and images were obtained from the

Human Protein Atlas (HPA) database (https://www.proteinatlas.org/

) to explore hub gene distribution in testis tissues.
Single-cell RNA sequencing analysis

A single-cell RNA sequencing (scRNA-seq) database for testis

diseases, named the Male Health Atlas database (http://
Frontiers in Endocrinology 04
malehealthatlas.cn/), was utilized to assess hub gene distribution

in single-cell clusters of testis tissues from patients with NOA.
Testis tissue sample collection

Testis tissue samples were obtained from patients with NOA and

OA controls who underwent testicular biopsy. Samples were

immediately flash-frozen in liquid nitrogen for preservation. All

patient procedures were performed in accordance with the

Declaration of Helsinki and were approved by the Ethics

Committee. Written informed consent was obtained from all cases

in our study.
Expression validation by RT-PCR

Total RNA from testes was extracted using TRIzol reagent

(Invitrogen) as per the manufacturer’s instructions. cDNA was

synthesized using commercial kits. A qPCR commercial kit was

also utilized to amplify transcript and analyze the mRNA levels of

genes in testes. The reaction was performed in a 20-mL volume

comprising 10 mL of mix, 10 mM forward and reverse primers, 1 mg
of diluted cDNA sample, and RNase-free water. The optimal PCR

conditions were 95°C for 120 s, followed by 40 cycles of 95°C for 15

s and 60°C for 30 s. After checking for reference gene suitability,

beta-actin was utilized as an internal control gene. The relative

mRNA expression levels of target genes were normalized to beta-

actin, and results were analyzed using the 2–DDCT method. The

primers were purchased from Sangon Biotech (Shanghai). All

primers were tested and quality controlled by this company and

met the standards. The primers are shown in Additional file 1

(Supplementary Table S1).
Expression validation by Western blot

Total protein was extracted as per the manufacturer’s

instructions (cat. no. R0020; Solarbio, China). Protein

concentration was measured using BCA Protein Quantitation

Assay (cat. no. PC0020; Solarbio, China). Protein samples were

separated using SDS-PAGE and transferred onto polyvinylidene

fluoride (PVDF) membranes (cat. no. FFP26, Beyotime, China).

The membranes were then blocked in non-fat powdered milk (cat.

no. D8340; Solarbio, China) and incubated overnight in primary

antibodies at 4°C. Primary antibodies included rabbit anti-beta-

actin (1:5,000; cat. no. bs-0061R; Bioss, China), rabbit anti-FGFR1

(1:1,000; cat no. 60325-1-Ig; Proteintech, USA), and rabbit anti-

SHC1 (1:1,000; cat. no. NBP3-21850; Novus Biologicals, USA).

Subsequently, the PVDF membranes were incubated in the

secondary antibody (1:5,000; cat. no. bs-0295G-HRP; Bioss,

China) for 1 h, then washed three times in TBS-T. Finally, the

ECL Plus kit (cat. no. PE0010; Solarbio, China) was applied to

expose the immunoreactive blots. ImageJ software was used to scan

the blot density. Hub gene protein expression was normalized to the

expression of beta-actin.
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Statistical analysis

R Project software (version 4.2.2) was used to analyze and

visualize the data. Graphics were created using GraphPad Prism 8.0

software. p-values < 0.05 were considered as statistically significant.
Results

Oxidative stress-associated differentially
expressed genes

In total, 1,194 DEGs were identified from the GSE9210 dataset.

The volcanic map of all DEGs (Figure 2A) and the heatmap of the

top 40 DEGs (Figure 2B) were constructed. Moreover, 1,792

oxidative stress-associated genes were obtained from the

GeneCards database with a criterion of >5 scores. After the

intersection, 109 DEOSGs were identified (Figure 2C).
Frontiers in Endocrinology 05
Immune cell infiltration analysis and
WGCNA results

Application of the CIBERSORT algorithm revealed that

8/22 immune cells (plasma cells, CD8+ T cells, CD4+ naïve T

cells, CD4+ memory-activated T cells, follicular helper T cells,

monocytes, M2 macrophages, and resting mast cells) were found

to be significantly different between the NOA and OA control

groups (Figures 3A–C).

WGCNA revealed that the soft-threshold power was calibrated

to 9 (R2 = 0.86) (Figure 4A), and a total of nine modules were

identified (Figures 4B, C). Among them, the yellow module had the

most strongly positive correlations with CD8+ T cells (Figure 4C).

Owing to its significance in relation to immune infiltrating cells, the

yellow module including 189 genes was chosen for further

investigation. Nineteen DEIOSGs were identified as the

intersection between the 109 DEOSGs and the yellow module

genes (Figure 5A).
B

CA

FIGURE 2

Identification of oxidative stress-associated differentially expressed genes (DEOSGs). (A) Volcano plot of differentially expressed genes (DEGs).
(B) Heatmap of the top 40 DEGs. (C) Venn diagrams of generating DEOSGs.
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GO and KEGG

GO and KEGG enrichment analysis based on 19 DEIOSGs were

conducted. The biological processes of GO analysis were engaged in the

regulation of reactive oxygen species metabolic process, mesenchymal
Frontiers in Endocrinology 06
cell differentiation, and other functions. The cellular components of the

GO analysis included endoplasmic reticulum lumen, the external side

of the plasma membrane, and collagen-containing extracellular matrix.

The molecular functions of GO analysis predominantly included

growth factor binding, proteoglycan binding, and testosterone
B

C

A

FIGURE 3

Immune infiltration analysis based on the CIBERSORT algorithm and non-obstructive azoospermia (NOA) dataset. (A) Relative percentage of 22
immune cells in each sample. (B) Heatmap of 22 immune cells in each sample. (C) Comparison of 22 immune cells between non-obstructive
azoospermia (NOA) samples and control samples.
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dehydrogenase activity (Figures 5B, C). KEGG analysis of 19 DEIOSGs

was predominantly engaged in human papillomavirus infection,

MAPK signaling pathway, steroid hormone biosynthesis, and other

pathways (Figure 5D).
Identification of hub genes

From the 19 DEIOSGs, 2, 2, and 3 genes were identified using

LASSO (Figure 6A), SVM-RFE (Figure 6B), and RF (Figure 6C)

analyses, respectively. Intersection of these gene lists identified one

common gene, SHC1 (Figure 7C). Furthermore, we identified

another hub gene, FGFR1, through the intersection of genes from

12 cytoHubba algorithms in PPI networks (Figures 7A, B, D).

Eventually, these two hub genes (SHC1 and FGFR1) were identified

as novel immune-related oxidative stress biomarkers for NOA.
Frontiers in Endocrinology 07
Expression validation

In NOA samples, the expression of the two hub genes was found

to be significantly higher than those in the OA control samples

(Figures 8A, B). This observation was further confirmed by

analyzing an external NOA dataset (GSE145467), which further

revealed that two hub genes were more highly expressed in NOA

samples compared to OA control samples (Figures 8C, D). All of

these comparisons were statistically significant.
ROC curve for predicting the
NOA phenotype

ROC curve analysis was performed and the AUCs were

calculated to detect the diagnostic accuracy of the two hub genes.
B

C

A

FIGURE 4

Construction of weighted gene co-expression networks analysis (WGCNA). (A) Choosing the best soft-threshold power. (B) Dynamic tree cut and
merged dynamic in WGCNA. (C) Nine immune-related gene modules revealed by the WGCNA.
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To predict the NOA phenotype, AUCs were 0.99 (95% CI: 0.965–

1.0) for SHC1 and 0.954 (95% CI: 0.861–1.0) for FGFR1

(Figures 9A, B) in the integrated training group (GSE9210). This

observation was further confirmed through analysis of an external

NOA dataset (GSE145467), which revealed that the AUCs of SHC1

and FGFR1 were 0.84 (95% CI: 0.64–0.98) and 0.87 (95% CI: 0.66–

1.000), respectively (Figures 9C, D). All AUCs in these datasets for

predicting the NOA phenotype were relatively high.
Single-gene GSEA assessment

GSEA of the hub gene SHC1 was predominantly enriched in

allograft rejection, autoimmune thyroid disease, leishmania infection,

toll-like receptor (TLR) signaling pathway, and type I diabetes mellitus

(Figure 10A). GSEA of the hub gene FGFR1 revealed predominant

enrichment in cardiac muscle contraction, drug metabolism

cytochrome P450, leishmania infection, leukocyte trans-endothelial

migration, and the WNT signaling pathway (Figure 10B).
Frontiers in Endocrinology 08
Regulatory network construction and
potential drug prediction

Evaluation of the two hub genes in the JASPAR database

identified 24 TFs (Figure 10C). Among them, two (FOXC1 and

PPARG) had a degree of ≥2. Using the TarBase database, 82 miRNAs

were predicted (Figure 10C). Among them, 11, including has-mir-

200b-3p and has-mir-124-3p, had a degree of ≥2. An overall

regulatory network comprising hub genes, TFs, and miRNAs was

further constructed (Figure 10C). Moreover, a total of 111 potential

drugs were predicted from the DSigDB database based on the two

hub genes (Additional file 1 Supplementary Table S2).
Immunohistochemical location

The localization distribution of hub genes in human testis

tissues was explored in the HPA database. SHC1 was highly

positive in spermatogonia (Figure 11A). SHC1 was moderately
B

C D

A

FIGURE 5

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on 19 differentially expressed immune-
related oxidative stress genes (DEIOSGs). (A) Venn diagrams of generating DEIOSGs. (B) Bubble plot of GO enrichment analysis outcomes. (C) Circle
plot of GO enrichment analysis outcomes. (D) Bar plot of KEGG enrichment analysis outcomes.
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expressed in Leydig cells, Sertoli cells, pachytene spermatocytes,

preleptotene spermatocytes, and round or early spermatids.

However, SHC1 expression was negative in peritubular cells and

elongated or late spermatids. Moreover, FGFR1 was lowly expressed

in the seminiferous tubules and Leydig cells (Figure 11B).
scRNA-seq data analysis

The scRNA-seq data were analyzed to assess the distribution of

SHC1 and FGFR1 in 11 cell clusters from the human testis NOA

atlas in the Male Health Atlas database (Figures 12A, B). The results
Frontiers in Endocrinology 09
revealed that SHC1 was the most highly expressed in endothelial

cells (Figures 12C, E), while FGFR1 was the most highly expressed

in Leydig, peritubular myoid, endothelial, and vascular smooth

muscle cells (Figures 12D, F).
RT-PCR and Western blot validation in
clinical samples

We collected testis tissue samples from patients with NOA and

patients with OA who underwent tissue sampling. The gene

expression levels of the two hub genes were validated using RT-
B

C

A

FIGURE 6

Hub genes identified by three machine learning algorithms based on 19 differentially expressed immune-related oxidative stress genes (DEIOSGs).
(A) Outcomes of least absolute shrinkage and selection operator (LASSO) regression algorithm. (Left) LASSO plot showed that the variations in the
size of coefficients for parameters shrank as the value of k penalty increased. (Right) LASSO logic coefficient penalty diagram. (B) Outcomes of the
support vector machine–recursive feature elimination (SVM-RFE) algorithm. (Left) The relationship between the prediction accuracy of SVM-RFE and
the number of features. (Right) The relationship between the prediction error rate of SVM-RFE and the number of features. (C) Outcomes of random
forest (RF) algorithm. (Left) The error rate confidence intervals for random forest mode. (Right) The dot graph illustrating the relative importance of
genes in the random forest model.
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B

C D

A

FIGURE 7

Hub gene identification by the protein–protein interaction (PPI) network. (A) The PPI network from the STRING database based on 19 differentially
expressed immune-related oxidative stress genes (DEIOSGs). (B) PPI network visualization using the Cytoscape software. (C) Venn diagrams for
intersecting the genes from three machine learning methods. (D) Flower Venn diagrams for intersecting the genes from 12 algorithms using the
cytoHubba plugin in the Cytoscape software.
B

C D

A

FIGURE 8

Hub gene expression and external validation. (A, B) Expression of two hub genes in the GSE9210 dataset. (C, D) Expression validation of two hub
genes in an external dataset, GSE145467.
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PCR. RT-PCR results revealed that two hub genes were statistically

different between NOA and OA testis tissue samples (Figure 13A).

Compared to that in OA control samples, mRNA expression of

SHC1 and FGFR1 were significantly upregulated in NOA testis

tissue samples, which is consistent with the findings from the

microarray data. Furthermore, we used testis tissue samples of

patents with NOA and OA to validate the protein expression

levels of the two hub genes using Western blot (Figure 13B).

Similarly, the protein expression profiles of SHC1 and FGFR1

were both significantly upregulated in the NOA group than in the

OA control group (Figure 13C), which is consistent with the RT-

PCR results.
Frontiers in Endocrinology 11
Discussion

Men with NOA generally present with varying severities and

etiologies of abnormalities in spermatogenesis, while the exact

pathogenesis remains unclear. Some previous reports have

mentioned that genetic alternations could be associated with

spermatogenesis abnormalities (24–26). The current management

strategies for NOA are limited due to individual differences,

necessitating the development of novel molecular markers that

can aid in the pathogenesis of NOA. Thus, identifying novel

biomarker genes is vital to improve the management of patients

with NOA. Immune infiltration and oxidative stress have been
B

C D

A

FIGURE 9

Receiver operating characteristic (ROC) curve for predicting the non-obstructive azoospermia (NOA) phenotype using hub genes. (A, B) Two hub
genes were analyzed using ROC curves for predicting the NOA phenotype in the GSE9210 dataset. (C, D) Two hub genes were analyzed using ROC
curves for predicting the NOA phenotype based on an external dataset, GSE145467.
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found to exert a substantial impact on the progression of NOA (13,

27). In this study, we identified two genes associated with immune

and oxidative stress, SHC1 and FGFR1, that serve as novel

biomarkers for NOA. ROC curve analysis revealed that both hub

genes had outstanding diagnostic value and accuracy. The

expression levels and distributions of these hub genes in single-

cell clusters were validated through the analysis of an external

dataset and the scRNA-seq dataset. Moreover, we collected the testis
Frontiers in Endocrinology 12
tissues of patients with NOA and OA controls to validate the

mRNA and protein expression by RT-PCR and Western blot.

Our findings offer new opportunities for the pathogenesis of

NOA and male infertility.

SHC1 resided within zone 1, region 2 of human chromosome 1

(28). SHC1 was thought to control the receptor tyrosine kinase

pathway and regulate neuronal death (29). Deep investigation into

SHC1 revealed that the gene was crucial for numerous cancer cells (30).
B

C

A

FIGURE 10

Single-gene gene set enrichment analysis (GSEA) and mRNA–microRNA–transcription factors (TFs) regulatory network construction based on two
hub genes. (A) GSEA outcome of SHC1. (B) GSEA outcome of FGFR1. (C) mRNA–microRNA–TFs regulatory network construction.
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Acting as the adapter protein, SHC1 possessed SH2 domains, which

were shared among signal proteins of the cytoplasm (31, 32). This was

related to numerous receptor-related signal processes including

antigen, hormone, and growth factor (33). In contrast to their non-

transformed counterparts, numerous types of transformed cells

contained SHC1, which was also highly phosphorylated (34). SHC1

regulates cancer growth owing to its tumor-specific activation,

suggesting that it served as a useful predictive marker and a target

for therapeutic intervention (35, 36). However, the role of SHC1 in

NOA has not received much attention in the literature. The present

study showed that SHC1 was significantly increased in the testis tissues

of NOA cases, indicating an extremely high diagnostic accuracy.

Furthermore, functional enrichment analysis indicated that oxidative

stress and immune processes were related to SHC1, which may be the

primary mechanism responsible for SHC1 participation in NOA.

FGFR1, a member of the fibroblast growth factor receptor

(FGFR) family, plays a crucial role in biological process (37).

Fibroblast growth factor (FGF) binds to the extracellular domain

of FGFR, resulting in its activation. Subsequently, receptor

dimerization occurs, leading to the phosphorylation of the C-

terminal tyrosine (38). The key kinase and pathways were

phosphorylated and activated as a result of the activation of the

FGF tyrosine kinase family by various FGF ligands, thus regulating

multiple physiological responses such as embryogenesis and

angiogenesis (39). In various human malignancies, FGFR1 gene

translocation, mutation, and amplification can result in the
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abnormal activation of the FGFR signaling system, thereby

promoting carcinogenesis and tumor progression (40–42). FGF

can also promote angiogenesis by activating FGFR1 in endothelial

cells (43). For example, FGFR1 activation contributes to the

epithelial–mesenchymal transition (EMT) and metastasis in

breast cancer (44), as well as the carcinogenesis and EMT of

prostate cancer (45). Consequently, FGFR1 was associated with

the emergence of many disease and function disorders. However,

studies on the involvement of FGFR1 in NOA development are

lacking. The present study showed that FGFR1 was highly expressed

in the testes of patients with NOA, and it could be related to the

pathogenesis of this condition. This finding opens the door for

FGFR1 to be used as a novel NOA diagnostic marker.

Single-gene GSEA of the hub gene SHC1 revealed enrichment of

the TLR signaling pathway. TLR has the ability to detect the

molecular mode associated with causative agents. This detection

triggers a series of gene expression alternations, which work in

concert to eliminate harmful bacteria (46). The TLR signaling

pathway plays a direct role in the activation, growth,

differentiation, development, and functioning of T cells in various

physiological activities (47). TLR is of utmost importance in the

protection against infections, immunodeficiency, and tumor

growth. Based on our findings, the TLR signaling pathway may

be activated by the high expression of SHC1 in testis tissues and

result in inflammation and activation of the immune response, thus

mediating the occurrence of NOA. However, this finding
B

A

FIGURE 11

Immunohistochemistry images on hub gene expression based on testis tissues from the Human Protein Atlas (HPA) database. (A) Representative
immunohistochemistry results of SHC1. (B) Representative immunohistochemistry results of FGFR1. Black arrow indicates positive cells.
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necessitates additional confirmation through in vivo and in

vitro experimentation.

Single-gene GSEA of the hub gene FGFR1 revealed enrichment

of the Wnt signaling pathway. The Wnt pathway plays a pivotal role

in various evolutionary and illness-related processes. As such, it is a
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crucial factor in the development and maintenance of organic

tissue functions by regulating their native stem cells (48). Recent

studies have further shed light on the involvement of the

Wnt signaling pathway in the differentiation of human primordial

germ cells and the maintenance of mouse spermatogonial
B

C D

E F

A

FIGURE 12

Single-cell RNA sequencing data analysis. (A, B) T-distribution stochastic neighbor embedding (TSNE) analysis outcomes of 11 cell clusters based on
human testis non-obstructive azoospermia atlas in the Male Health Atlas database. (C, D) The expression distribution of two hub genes (SHC1 and
FGFR1) in 11 cell clusters. (E, F) The violin plot showing the expression distribution of two hub genes (SHC1 and FGFR1) in 11 cell clusters. SPG,
spermatogonia; SPC, spermatocyte; SPT, spermatids/sperm; SC, Sertoli cell; LC, Leydig cell; PTM, peritubular myoid cell; EC, endothelial cell; SMC,
vascular smooth muscle cell; MAC, macrophage; MC, mast cell; T, T cell.
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stem cells (49–51). Moreover, several previous studies have reported

that the downregulation of Wnt signaling in spermatogonia was

strongly related to the development of NOA (52). These studies

further proposed the significance of the Wnt signaling pathway in

inducing human spermatogonial stem cells. Additionally, they

indicated that the absence of spermatogonial stem cells in testis

tissues of azoospermia could be linked to the inactivation of the

Wnt signaling pathway. Similarly, our study also showed that the

Wnt signaling pathway significantly decreased in the testis tissues of

patients with NOA. Furthermore, our results indicated that FGFR1-

medicated Wnt signaling pathway alternations could be a

significant aspect of the pathogenesis of NOA.

Our study has some limitations that should be considered. First,

our findings are predominantly based on publicly available data.

Despite performing expression validation using testicular samples,

further experimental validation with larger and multi-center samples

is required to validate the results. Second, although the HPA is an

extremely helpful tool to verify the protein expression levels in

normal tissues, the formalin-fixed material depicts a minor cellular

preservation and the spermatogenesis does not seem to be intact. It

will be more encouraging to perform immunohistochemistry on the

testis samples in the future. Our study revealed that oxidative stress-

and immune-related hub genes, SHC1 and FGFR1, could be primary

factors in the development of NOA, and these genes are closely

interconnected. The findings of immune analysis indicate that mast

cells, T cells, monocytes, and macrophages were crucial to the

pathogenesis of NOA. Moreover, enrichment analysis indicated

that hub genes were primarily concentrated in TLR and Wnt
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signaling pathways, and were associated with the occurrence of

NOA. Thus, focusing on these hub genes and important signaling

pathways might be crucial and hopeful. Moreover, in this study, we

identified two key genes using machine learning and WGCNA, with

validation of their importance performed using single-cell RNA-seq

data, RT-PCR, andWestern blot. As such, our study has the potential

to contribute to a deeper understanding of the pathogenesis of NOA

and could further aid in the identification of crucial targets for

pharmaceutical exploration.
Conclusions

This study identified SHC1 and FGFR1 as oxidative stress- and

immune-related hub genes. These hub genes were significantly

upregulated in the testes of patients with NOA and had good

predictive values for the NOA phenotype. The TLR and Wnt

signaling pathways might be related to the development of NOA.

SHC1 and FGFR1 could be novel immune-related oxidative stress

biomarkers and crucial targets for the pathogenesis of patients

with NOA.
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FIGURE 13

Two hub genes’ (SHC1 and FGFR1) mRNA and protein expression levels validated by RT-PCR and Western blot using testes tissue samples collected
from patients with NOA and OA in our center. (A) Relative mRNA expression of SHC1 and FGFR1. (B) Western blot outcomes of two hub genes
(SHC1 and FGFR1). (C) Relative protein expression of SHC1 and FGFR1. *p < 0.05; **p < 0.01; ***p < 0.001.
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