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Endothelial dysfunction in
vascular complications of
diabetes: a comprehensive
review of mechanisms
and implications
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and Yu Wang1*

1Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen,
Guangdong, China, 2Department of Pathophysiology, Shenzhen University Medical School, Shenzhen,
Guangdong, China
Diabetic vascular complications are prevalent and severe among diabetic patients,

profoundly affecting both their quality of life and long-term prospects. These

complications can be classified into macrovascular and microvascular

complications. Under the impact of risk factors such as elevated blood glucose,

blood pressure, and cholesterol lipids, the vascular endothelium undergoes

endothelial dysfunction, characterized by increased inflammation and oxidative

stress, decreased NO biosynthesis, endothelial-mesenchymal transition,

senescence, and even cell death. These processes will ultimately lead to

macrovascular and microvascular diseases, with macrovascular diseases mainly

characterized by atherosclerosis (AS) and microvascular diseases mainly

characterized by thickening of the basement membrane. It further indicates a

primary contributor to the elevated morbidity and mortality observed in individuals

with diabetes. In this review, we will delve into the intricate mechanisms that drive

endothelial dysfunction during diabetes progression and its associated vascular

complications. Furthermore, we will outline various pharmacotherapies targeting

diabetic endothelial dysfunction in the hope of accelerating effective therapeutic

drug discovery for early control of diabetes and its vascular complications.
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1 Introduction

Diabetes is a chronic and severe metabolic disorder characterized by consistently high

blood sugar levels. According to the International Diabetes Alliance statistics, the number

of individuals living with diabetes worldwide in 2021 is around 537 million, with an

estimated increase to 783 million in 2045 (1). The health burden of diabetes is largely due to
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diabetic vascular complications. Diabetic vascular complications

include macrovascular complications, such as coronary artery

disease (CAD), cerebrovascular disease, peripheral artery disease

(PAD), and microvascular diseases, including diabetic nephropathy

(DN), diabetic retinopathy (DR), diabetic neuropathy (DPN), and

cardiomyopathy (Figure 1). These complications are critical factors

that contribute to a huge burden on individuals with diabetes (2).

The vascular endothelium is a continuous lining within the

vascular system that is responsible for maintaining vascular tension,

angiogenesis, and hemostasis. Additionally, it provides crucial

antioxidant, anti-inflammatory, and antithrombotic surfaces.

Endothelial dysfunction can be narrowly defined as a decrease in

vasodilation capacity or, more broadly, as any changes affecting

endothelial homeostasis function. Although the interaction between

endothelial dysfunction and vascular complications of diabetes is

not fully understood, the existing view shows that a high glucose

environment leads to the impairment of endothelium-dependent

vasodilation capacity by increasing oxidative stress and

inflammation, reducing vasodilation factor activity, increasing

reactive oxygen species (ROS) production, promoting the

uncoupling of endothelial nitric oxide synthase (eNOS), and so

on (3). Endothelial dysfunction is also an important early indicator

of atherosclerosis (AS) and identifies patients at a higher vascular

risk, providing a “barometer” for vascular health (4). Therefore,

endothelial dysfunction can be an early event in the vascular

complications of diabetes. Understanding the importance of

endothelial dysfunction is particularly crucial for controlling
Frontiers in Endocrinology 02
diabetic vascular complications and lowering the prevalence of

diabetic vascular diseases. Additionally, researchers have

established the detrimental role of endothelial dysfunction in the

onset and development of serious diabetic microvascular diseases,

such as heart failure, cognitive decline, and worsening metabolic

dysfunction, in addition to vision loss, renal insufficiency, and

neuropathy (5). We further confirmed the research keywords

related to diabetic vascular complications through visual

analysis and identified endothelial function as a hot topic in this

field. Therefore, impaired endothelial function could become a

promising target for preventing vascular complications in

patients with diabetes, especially in DR and CAD (Figure 2).

However, there has not been an updated review on the

mechanisms and therapies of diabetic vascular complications,

especially focusing on endothelial dysfunction. We aim to provide

a comprehensive summary of diabetic endothelial dysfunction,

which may offer a deeper insight into endothelial dysfunction to

not only help prevent the deterioration of diabetes and its vascular

complications but also accelerate the process of developing more

beneficial therapies.

In this review, we present the research progress on the

mechanisms of endothelial dysfunction in diabetes and its

vascular complications, mainly focusing on inflammation,

oxidative stress, endothelial-to-mesenchymal transition (EndMT),

and cell death. We also summarized the effects and limitations of

common hypoglycemic agents and novel regulators on the

vascular endothelium.
FIGURE 1

A schematic overview of diabetic vascular complications. Diabetic vascular complications include macrovascular complications (diabetic coronary
artery disease, cerebrovascular disease, and peripheral vascular disease) and microvascular complications (diabetic retinopathy, nephropathy,
cardiomyopathy, and neuropathy). Continued exposure to risk factors causes endothelial dysfunction, leading to lipid retention in the endothelium.
Monocytes differentiate into macrophages, internalize modified lipoproteins, and form foam cells. Activated foam cells induce inflammation by
secreting cytokines through several downstream signals. In addition, endothelial cells undergo EndMT, cell death, etc., further exacerbating the
atherosclerotic process.
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2 Mechanisms of diabetic
endothelial dysfunction

2.1 Inflammation

Chronic, low-grade inflammation is widely considered to be a

significant factor in the development of diabetes. Hyperglycemia

can activate various pathways and pro-inflammatory factors that

induce endothelial dysfunction. It triggers the nonclassical nuclear

factor kappa-B (NF-kB) signaling pathway, produces cytokines and
chemokines, promotes inflammation, and damages b cellular

function (6). Many early findings have identified the

proinflammatory effect of NF-kB, tumor necrosis factor-a (TNF-

a), and interleukin-6 (IL-6) on endothelial dysfunction in diabetes

(3). TNF-a in particular can activate critical intracellular signaling

molecules in various inflammatory signaling systems, such as c-Jun

amino-terminal kinases (JNK) and IkappaB kinase beta (IKKb) (7,
8), leading to impaired insulin action. Under normal conditions,

insulin activates the phosphatidylinositol 3-kinase (P13K) pathway,

which phosphorylates eNOS at Ser1177 in endothelial cells (ECs) to

produce nitric oxide (NO) to maintain normal endothelial function

(9). In an insulin-resistant state, this pathway is disrupted, leading

to the imbalance between the phosphoinositide-3 kinase (PI-3K)/

protein kinase B (Akt/PKB) and mitogen-activated-protein kinase

(MAPK)/extracellular signal-regulated kinases (ERK) pathways.

This will eventually disrupt vascular homeostasis. Activation of

the MAPK pathway can release inflammatory mediators such as

vascular cell adhesion protein 1 (VCAM-1), intercellular adhesion

molecule 1 (ICAM-1), E-selectin, and plasminogen activator

inhibitor-1 (PAI-1), which can compromise normal endothelial

function (10). In addition, in experimental models of cardiovascular

end-organ damage associated with diabetes, ANG- (1–7) has been

shown to act as an anti-inflammatory agent (11). It regulates the

expression of VCAM-1 induced by ANG II by reducing the nuclear

translocation of NF-kB in ECs (12). WNT5A, a ligand of the Wnt

signal pathway, gained attention for its pro-inflammatory effects
Frontiers in Endocrinology 03
and its role in the pathogenesis of diabetic complications (13).

Researchers discovered that SETD8 (SET8) can modulate WNT5A

function and control the production of proinflammatory enzymes

and endothelial adhesion. Overexpression of SETD8 reduced

inflammation by decreasing the activation of the NOD-like

receptor pyrin domain 3 (NLRP3) inflammasome and the

expression of microtubule-affinity regulating kinase 4 caused by

hyperglycemia in human umbilical vein endothelial cells

(HUVECs) (14, 15). Further to this, vascular endothelial growth

factor (VEGF) levels change significantly in diabetic patients and

play a vital role in diabetic microvascular complications (16).

Activation of vascular endothelial growth factor receptor 1

(VEGFR1) in ECs attracts inflammatory cells to white adipose

tissue in type 2 diabetes mellitus (T2DM). This effect can be

alleviated by VEGF-B deficiency targeting the VEGFR1-EC

axis (17).

Intracellular hyperglycemia can increase production of

advanced glycation end products (AGEs), promoting the

interaction of AGEs and the advanced glycosylation end product-

specific receptor (AGER, also known as RAGE). This receptor acts

as a pattern-recognition receptor that initiates specific cell signaling

(18). AGE-RAGE is associated with multiple signal transduction

pathways that promote atherosclerotic formation. This includes

increased expression of VCAM-1, macrophage inflammatory

protein-1 (MIP-1), matrix-metalloproteinase 9 (MMP9),

interleukin-1b (IL-1b), and TNF-a, which mediate leukocyte

adhesion and vascular inflammatory responses (19). Serum

albumin glycosylation in a high glucose environment forms AGE-

modified human serum albumin (AGE-HSA). In diabetic patients,

it can activate the production of macrophages C-C chemokine

ligand 5 (CCL-5) and IL-8, driving an increase in the inflammatory

response. Inflammatory cytokines may increase the total amount of

AGE-HAS in the body, leading to a vicious cycle (20).

In addition to the pathways mentioned above, hyperglycemia

also genetically regulates inflammation in endothelial dysfunction.

By partially suppressing signal transduction and activators of
FIGURE 2

The bibliometric data obtained using VOSviewer. It shows the frequency of keywords in the literature related to diabetes and its vascular
complications. The color of dots and lines represent the average year of publication for the corresponding term.
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transcription 1 (STAT1), hyperglycemia upregulates the expression

of proinflammatory target genes, including CCL5, CXCL10, and

ICAM1. This causes tumor necrosis factor-like weak inducer of

apoptosis (TWEAK) to demonstrate its pro-atherosclerotic

tendency (21). Moreover, Zhu et al. found that, when exposed to

high glucose levels, the activation of the mechanosensory ion

channel Piezo1 upregulates genes involved in inflammatory

pathways (such as IL1B). This, in turn, increases the risk of

pathological mechanics-induced thrombosis by enhancing the

prothrombin reaction of platelets, erythrocytes, and neutrophils,

ultimately leading to disrupted blood flow (22). In this disordered

blood flow state, ECs are affected by turbulent mechanical

stimulation, which causes an increase in Piezo1 expression

beyond the threshold, which activates the NF-kB pathway and

finally leads to atherosclerosis (23).
2.2 Oxidative stress

Oxidative stress occurs when the balance between intracellular

pro-oxidation and antioxidant systems is disrupted. In diabetic ECs,

intracellular hyperglycemia can increase mitochondrial ROS

(mtROS) generation, which accelerates endothelial dysfunction.

ROS were thought to be primarily produced by the NADPH

oxidase (NOX) family in phagocytic cells (24, 25). NOX1 and

NOX4 were upregulated in aortas and mesenteric arteries of

T2DM mice (26). Enhanced NOX4 activity and expression were

also found in rats with type 1 diabetes (27). Both may lead to an

increase in ROS. Angiotensin converting enzyme-2 (ACE2)

promotes angiotensin (ANG)-(1-7)-dependent vasodilation and

may inhibit NOX-induced ROS production in ECs. Therefore, in

diabetes-induced kidney injury, mice deficient in ACE2 exhibit an

increase in oxidative stress (12, 28). Ang-(1-7) treatment also

attenuated the elevation of renal NOX activity in the kidneys of

diabetic spontaneously hypertensive rats, reducing the degree of

hyperglycemia. It significantly prevented the diabetes-induced

reduction in catalase activity, as well as the reduction in PPAR-

gamma mRNA and protein levels in vitro (27, 29). High

levels of ROS generation or low antioxidant activity can result in

endothelial mitochondria dysfunction (30). Mitochondrial calcium

uptake 1 (MICU1) in the mitochondrial inner membrane regulates

calcium uptake and maintains calcium homeostasis. Endothelial

MICU1 expression decreased in diabetes and other vascular

illnesses including diabetic cardiomyopathy. Inhibiting MICU1

resulted in an increase in mitochondrial ROS production

(31). The impaired mitochondria isolated from hyperglycemia-

treated cells showed increased palmitoylcarnitine oxidation,

decreased pyruvate oxidation, and Uncoupling protein 2 (UCP2).

These findings suggest that hyperglycemia may cause excessive

mitochondrial ROS formation by increasing fatty acid oxidative

damage or uncoupl ing the mi tochondr ia l ox ida t ive

phosphorylation system (32). ECs motility, proliferation,

angiogenesis, and death are all reliant on mitochondrial

metabolism (33). Therefore, the damaged mitochondrial

metabolism induced by hyperglycemia may impact normal EC

function, leading to endothelial dysfunction.
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Sun indicated that oxidative stress activates Sirtuin 1 (SIRT1),

which deacetylates the forkhead box transcription factor O1

(FOXO1) and traps it in the nucleus, enhancing its transcriptional

activity. FOXO1 enhancement may inhibit the repair of glycolysis-

dependent oxidative DNA damage, which can worsen endothelial

oxidative damage (34). However, another study showed that SIRT1

promotes insulin secretion and pancreatic beta cell survival by

interacting with FOXO, which can alleviate diabetes (35).

Additionally, restoring aortic SIRT1 levels can significantly improve

endothelial dysfunction and vascular compliance by enhancing eNOS

activity and inhibiting NOX-associated oxidative stress (36). SIRT1

can improve vascular function in diabetes by deacetylating the 66-

kDa Src homology 2 domain-containing protein (p66Shc) and

reducing ROS production (37). The differences in experimental

materials, the degree of FOXO activation, and the complicated

functions of SIRT1 may lead to the differences in the above

research findings. Besides, healthy ECs normally undergo a

metabolic shift to glycolysis to facilitate prompt DNA repair

responses after H2O2 treatment. However, overactivation of

FOXO1 in hyperglycemia can cause DNA damage, leading to

endothelial dysfunction (34). Consequently, the function of SIRT1

and FOXO in diabetic endothelial function needs further exploration.
2.3 Endothelial-to-mesenchymal transition

EndMT is a process in which ECs transform into mesenchymal

stem cells under certain pathological situations, such as high

oxidative stress, disturbed metabolism, hypoxia, and shear stress

force (38). Notably, EndMT has been discovered to exist in a

majority of diabetic complications (39). If a significant proportion

of ECs undergo EndMT, this may lead to an endothelial layer

disruption resulting in plaque erosion and finally accelerating the

progression of atherosclerotic disease (40).

Hyperglycemia activates many downstream signaling pathways

to initiate EndMT in diabetic Ecs (39). These signaling pathways

can be divided into TGF-b signaling and non-TGF-b signaling (41).

TGF-b signaling contains canonical Smad2/3-mediated pathways

and noncanonical Smad2/3-independent signaling pathways such

as MAPK, RhoA, and c-Jun NH2-terminal kinases (JNK). Non-

TGF-b signaling mainly includes Notch signaling, the canonical

Wnt pathway, and other regulatory mechanisms mediated by

cytokines and some inflammatory mediators (42). Of all the

signaling pathways, EndMT is thought to be most significantly

influenced by the TGF-b signaling pathway, specifically the

canonical downstream Smad pathway (43).

Hyperglycemia induces EndMT by directly increasing TGF-b
signaling and non-TGF-b signaling. TGF-b signaling is activated by

hyperglycemia as a part of EC metabolic memories, which can cause

EndMT in Ecs even after the culture condition is changed to normal

glucose levels (44). By directly increasing the production of

angiotensin II (Ang II), hyperglycemia causes EndMT in primary

human aortic endothelial cells, which damages the endothelium

(45). The negative effects of Ang II/AT1 pathway in Ecs can be

counteracted by the Ang (1-7)/Mas pathway. The equilibrium of

Ang II and Ang (1-7) might be a crucial factor in the
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pathophysiological events that result in endothelial dysfunction (12,

46). Additionally, the crosstalk of the TGF-b pathway and Wnt/b-
catenin signaling also regulates EndMT and contributes to

endothelial problems in diabetic situations, since increased b-
catenin expression enhances TGF-b sensitivity in hyperglycemic

situations (47).

Except for the direct role of hyperglycemia in EndMT, the

higher context of inflammation and oxidative stress can regulate

EndMT in many ways. NF-kB activation-mediated EndMT can be

induced by IL-1b plus TGF-b2 or TNF-a and IL-6 stimulation of

ECs (48, 49). EndMT can also be induced by oxidative stress. The

expression of endothelial and fibrotic markers changed with

increasing dosages of H2O2 (0.1–10 mM) and initiated the

transformation process in HUVECs. This was accompanied by

increased expression of TGF-b1 and TGF-b2 and was found to be

reliant on activin receptor-like kinase 5 (ALK5) expression, Smad3

activation, and NF-kB activity (50). Moreover, SIRT1 can block

EndMT in human ECs via deacetylating the Smad4 pathway (51).

AMP-activated protein kinase (AMPK) activates SIRT1, which can

inhibit Smad2/3 nuclear translocation, thereby decreasing TGFb-
induced EndMT. This suggests that AMPK may be involved in

EndMT-induced diabetic endothelial damage (52, 53).
2.4 Cell death

Cell death can be classified into two categories: programmed

and accidental. The main form of accidental cell death is called

necrosis, where intracellular contents are released because of the

rupture of the plasma membrane (54). Regulated cell death caused

by an intracellular program is referred to as programmed cell death

and includes apoptosis, autophagy, pyroptosis, ferroptosis, and

necroptos is . Regulated ce l l death influences var ious

pathophysiological situations, including inflammation,

immunology, tissue homeostasis, and cell growth. Diabetic

endothelial injury is significantly associated with cell death (55).

Apoptosis is a crucial feature of vascular injury under some

circumstances, such as high levels of ox-LDL, AGE, oxidative stress

in the blood, and disturbed blood flow (3). A recent study reported

that TNF-related apoptosis-inducing ligand-deficient diabetes mice

fed a high-fat diet displayed accelerated AS. These mice also showed

more widespread necrotic cores in plaques and enhanced

macrophage infiltration and apoptosis in islets (56). Endothelial

WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) can

preserve cell survival and prevent apoptosis by targeting DEAD-box

helicase 3 X-linked (DDX3X) for K63-linked polyubiquitination

and proteasomal degradation, thus preventing endothelial injury

(57). In addition, knocking down nuclear factor erythroid 2-related

factor 2 (Nrf2) increases apoptosis and hinders tube formation in

endothelial progenitor cells (EPCs) sourced from healthy donors

and wild-type mice. However, overexpression of Nrf2 reduced

apoptosis and restored tube formation in EPCs obtained from

diabetic patients and db/db mice (58).

Autophagy is a life-sustaining process that helps maintain

endothelial function (59). It can be classified into two categories:

selective and non-selective. Selective autophagy such as mitophagy,
Frontiers in Endocrinology 05
lysophagy, and ER-phagy specifically targets and engulfs substrates.

High glucose levels suppress the CAV1-CAVIN1-LC3B-mediated

autophagic degradation of CAV1, a component of caveolae. This

process promotes the transcytosis of LDL across ECs, ultimately

resulting in the subendothelial retention of atherogenic lipids (60).

The impairment of autophagosome-lysosome fusion and the

inhibition of autophagy-related 14 (Atg14) expression, meditated

by FOXO1, leads to autophagic apoptosis in ECs induced by AGEs

(59). Most studies have shown that mitophagy protects

hyperglycemia-treated ECs. To counteract mitochondrial ROS

and prevent aging, high glucose increases mitophagy in human

aortic ECs (61). Hyperglycemia dramatically inhibited mitophagy in

HUVECs by downregulating PTEN-induced kinase 1 (PINK1),

Parkin, LC3 II, Beclin-1, and autophagy-related gene 5 (ATG5)

(62). Another study found that diabetic mice have higher levels of

PINK1 and Parkin in the vascular wall. The PINK1-Parkin pathway

induces mitophagy to prevent metabolic stress-induced

endothelium damage (63). However, increases or decreases in

PINK1 and Parkin conflict. The difference may be attributed to

empirical materials and the high-glucose duration of treatment.

Hence, more research is required to confirm the precise changes in

Parkin and PINK1 levels.

Ferroptosis is a type of regulated necrosis that depends on iron

and results from significant damage to cell membranes due to lipid

peroxidation. It typically occurs alongside significant iron

accumulation and lipid peroxidation during cell death (64).

Vascular ECs exposed to high glucose levels in vitro exhibited

higher levels of ferroptosis-associated proteins (65). The

expression of heme oxygenase 1 (HMOX1) markedly increased in

diabetic mice and diabetic ECs treated with high glucose and high

lipid. HMOX1 upregulation is associated with increased ferroptosis

in diabetes-induced endothelial injury. Suppression of HMOX1 can

effectively rescue the negative effects of high glucose and high lipids

by rebalancing iron and oxidative stress and blocking excessive

ferroptosis (66). Moreover, glutathione peroxidase 4 (GPX4), an

antioxidant enzyme, facilitates the removal of excess lipid

peroxides. It’s a crucial upstream regulator of ferroptosis (67).

The intracellular GPX4 reduction in hyperglycemia environments

then leads to an overabundance of ROS and Fe2+ in various cells,

including ECs. These elements are considered critical factors in the

initiation of ferroptosis (68). Hyperglycemia and IL-1b leads to ECs

ferroptosis and dysfunction by downregulating xCT (the substrate-

specific subunit of system Xc-) expression through activation of

p53-XcT-glutathione (GSH) axis (69).

Pyroptosis is a recently discovered form of programmed cell

death that involves an early disruption of the plasma membrane,

leading to the extracellular leakage of intracellular contents (70). In

recent years, researchers have extensively studied the connection

between pyroptosis and diabetic microvascular complications. In

diabetic retinopathy, treatment of human retinal microvascular

endothelial cells (HRMECs) with hyperglycemia resulted in

decreased cell viability and increased caspase1 activity, indicating

hyperglycemia’s induction of HRMECs pyroptosis (71). In addition,

the pyroptotic pathway mediated by caspase1-GSDMD was activated

by hyperglycemia in glomerular endothelial cells (GECs), which

induced the development of diabetic nephropathy (72).
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In summary, hyperglycemia and related risk factors, including

high lipids and a disordered blood flow state, contribute to

endothelial dysfunction through several pathways, such as

increased inflammation, reactive oxygen species (ROS)

production, EndMT, and cell death. The compromised

endothelium is responsible for initiating vascular dysfunction,

which may progress into more severe vascular problems without

continuous glucose control and treatment over time (Figure 3).
3 Diabetic
macrovascular complications

Diabetic macroangiopathy mainly contains AS in large and

medium arteries (aorta, coronary, basilar, and peripheral arteries),

leading to vascular disorders including coronary artery disease

(CAD), peripheral artery disease (PAD), and cerebrovascular

disease. AS is characterized by the accumulation of fatty and/or

fibrous material in the intima. Endothelial dysfunction is required

for the initiation of AS, which has been identified as a major cause

of diabetic macrovascular complications (73).
3.1 Diabetic atherosclerosis

Previous research has demonstrated that diabetes mellitus and

AS share the same endothelial pathological response (74). As

mentioned above, hyperglycemia can lead to endothelial

dysfunction via various mechanisms. Endothelial dysfunction is
Frontiers in Endocrinology 06
indeed the key factor in triggering AS, so diabetes can promote the

onset and development of AS.

As previously mentioned, many studies have proved that high

glucose induces ROS production, which in turn causes AS. Excessive

ROS can accelerate AS by directly activating proinflammatory

pathways and indirectly by increasing the formation of ox-LDL,

promoting insulin resistance, activating ubiquitination-related

pathways, and decreasing the activation of adiponectin, AMPK,

and eNOS (24). In hyperglycemic macrovasculature damage, ROS

and inflammatory cytokines cause signaling dysregulation and

EndMT. EndMT produces mesenchymal cells that express and

deposit ECM proteins, accelerating the development of AS by

acting as a support for developing plaque (75, 76). Hyperglycemia-

induced TGF-b signaling activation also prompts EndMT and AS

(77). Eventually, atherosclerotic plaque encroaches on the artery

lumen, causing flow-limiting lesions and serious vascular

consequences. Thus, without diabetes control and therapy, a

damaged endothelium will worsen, causing AS and other vascular

complications in diabetes (Figure 4).
3.2 Diabetic coronary artery disease

Despite the significance of all T2DM complications,

cardiovascular disease (CAD) remains the leading cause of

morbidity and mortality in individuals with diabetes (78). It is

worth highlighting that people with T2DM have a higher risk of

developing cardiovascular diseases compared to those without

diabetes, with the risk being two to four times higher (79).
FIGURE 3

Molecular mechanisms of diabetic endothelial dysfunction. The mechanisms of diabetic endothelial dysfunction are complicated and include
oxidative stress, inflammation, EndMT, and cell death. Most of these related factors work together to accelerate the process of diabetic endothelial
dysfunction through different signaling pathways, which ultimately lead to diabetic vascular complications.
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CAD and its related complications are believed to be strongly

associated with oxidative stress (80). As stated above, diabetics have

high oxidative stress due to the inequality between the production of

ROS and the protection systems of both enzymatic and non-

enzymatic antioxidants. This can lead to endothelial dysfunction

and AS of the coronary arteries (81). CAD has been linked to AGEs

accumulation in patients diagnosed with T2DM (82). Diabetic

patients with obstructive CAD have higher serum AGEs

concentrations compared to T2DM patients without obstructive

CAD (83). In comparison to those with CAD alone, patients with

CAD and T2DM had impaired endothelium-dependent vasodilation

and enhanced mitochondrial H2O2 production and AMPK activation

in primary human saphenous vein endothelial cells mediated by

mtROS (84). Additionally, the elevated plasma concentration of

TNF-a and its receptor observed in the coronary arterioles of db/

db mice enlightens the role of inflammation in DM patients with

CAD (85). With the increase in intima/media thickness ratio in CAD

patients, atheroprotective Mitogen-activated protein kinase 7

(MAPK7) expression decreased, whereas Zeste Homolog 2 (EZH2)

expression increased. MAPK7-EZH2 reciprocity may indicate an

autoregulatory feedback loop in ECs that maintains endothelial

homeostasis. Disruptions in this relationship that promotes EZH2

expression can cause endothelial dysfunction and EndMT,

aggravating the severity of human CAD (86).
3.3 Diabetic cerebrovascular disease
and stroke

Numerous studies have shown increased infarct size, edema,

and hemorrhage in hyperglycemic animals as compared to their
Frontiers in Endocrinology 07
normal counterparts (87). Ischemic stroke is the most common

cerebrovascular complications of diabetes (88). Stroke related to

diabetes is often caused by extracranial carotid artery disease and

intracranial large and small vessel diseases. It is the second highest

cause of death among patients with T2DM (79).

Endothelial dysfunction aggravated by diabetes is an essential

factor in stroke development in diabetic patients and may

contribute to endothelial dysfunction after cerebral ischemia (88,

89). Additionally, in the normal cerebral microcirculation and

major cerebral arteries, endothelium generates NO both basally

and in response to various vasoactive stimuli. However, in diabetic

encephalopathy, there is a decrease in the expression of VEGF and

eNOS. This leads to a diminished vascular autoregulatory response

and impaired cerebral artery endothelial function, further

worsening diabetic cerebrovascular disease (90). As a risk factor

for cerebrovascular diseases in DM patients, serum homocysteine

(Hcy) increases significantly in T2DM patients (91). Hcy harms

vascular endothelium directly by oxidative stress and endoplasmic

reticulum stress or indirectly by the cytokine and the immune

response (92, 93). Ischemic stroke initiates a let-7i/TGF-bR1
double-negative feedback loop that causes EndMT in ECs and

vascular fibrosis. This suggests that EndMT could be a target for

treating cerebral vascular fibrosis (94).

Diabetic macroangiopathy and microangiopathy exacerbate

each other. Macrovessel obstruction may lead to brain perfusion

deficiency and microvascular diseases. Microvascular dysfunction

also affects macrovessel collateral circulation, increases the risk of

stroke, and worsens prognosis (95). As the main part of the cerebral

microvascular system, blood-brain barrier (BBB) dysfunction may

worsen cerebral macroangiopathy dysfunction by affecting cerebral

microangiopathy indirectly. Higher expression of proinflammatory
FIGURE 4

Molecular mechanisms of diabetic macrovascular complications. Hyperglycemia leads to endothelial dysfunction, atherosclerosis (AS), and diabetic
macrovascular disorders, including coronary artery disease (CAD), cerebrovascular disease, and peripheral vascular disease. These conditions affect
each other in a vicious cycle if they are not treated appropriately.
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factors such as IL-1b, IL-6, and TNF-a and accumulation of AGEs

in a diabetes-induced inflammatory environment can all harm the

BBB (95, 96). Tight junctions (TJs) intercellularly among ECs

effectively close gaps between adjacent cells. They are reduced by

DM in the parenchymal blood vessels, which disrupts the BBB and

makes it easier for albumin and inflammatory factors to enter the

brain (97).
3.4 Diabetic peripheral vascular disease

Peripheral arterial disease (PAD), an occlusive atherosclerotic

disease in the arteries of the lower limbs, is the most common initial

manifestation of cardiovascular disease in T2DM (98). Despite this,

it is frequently overlooked. Patients with diabetes may experience

diabetic foot ulcers (DFUs) and PAD as two typical displays of

diabetic peripheral vascular disease. DFU is a common cause of

lower limb loss by amputation and are long-term consequences of

diabetes. Diabetes-related mortality has DFUs as a major

contributing factor (99).

Bapir et al. assessed endothelial function by flow-mediated

dilation (FMD). They discovered that the femoral artery (FA)-

FMD was considerably lowered in T2DM patients compared to

healthy individuals, indicating a limb arterial endothelial

impairment of T2DM patients (100). The levels of AGEs, MDA,

and TNF-a in diabetic patients with DFU is significantly higher.

These elements are necessary for the secretion of soluble vascular

endothelial growth factor receptor-1 (sVEGFR-1), which ultimately

decreases the expression of VEGF compared to the diabetic group

without DFU and interrupts the wound healing process in diabetic

patients (101). Other scientists found that VEGF, Gremlin-1, and

HIF-1a increased in DFU patients. As an oxygen concentration-

dependent transcription factor, HIF-1a can control a variety of target

genes, most notably VEGF. Gremlin-1 is a coactivator of VEGF and

can induce microangiogenesis, which is a process involved in the

pathogenesis of diabetic lower limb ulcers (102). Consequently, these

all lead to more severe DFU. Metabolomics studies have shown that

amino acid metabolism disorders are the main metabolic hallmarks

of PAD patients. In T2DM patients with lower extremity PAD,

asprosin levels are very high, which promotes EndMT by activating

the TGF-b pathway (103). Neutrophils are more suitable for

neutrophil extracellular trap (NET)osis in diabetic wounds.

NETosis delays diabetic wound healing by inducing EndMT via the

Hippo-Yes-associated protein (YAP) pathway. The Hippo pathway

mediates ECs dysfunction and regulates angiogenesis by inducing

EndMT via the transcription factor Smad2 (104).
4 Diabetic
microvascular complications

4.1 Diabetic nephropathy

Hyperglycemia is a key factor in the onset of DN and has been

identified as one of the significant long-term consequences of DM

that affects the microvasculature (105, 106).
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Glomerular endothelial cells (GECs) are specialized vascular

cells found in the kidney that help maintain renal homeostasis by

forming the walls of the glomerular tufts. The inflammatory

environment of diabetes can result in GECs dysfunction, leading

to proteinuria and renal fibrosis. The GECs of diabetic mice have a

high representation of genes involved in the oxidative stress

pathway. Hyperglycemia raises leucine-rich a-2 glycoprotein 1

(LRG1) and G protein-coupled receptor 56 (GPR56) mRNA and

protein levels. LRG1 promotes DN pathogenesis by enhancing

TGF-b/activin receptor-like kinase 1 signaling in ECs (107). The

overexpression of GPR56 reduced the phosphorylation and

expression of eNOS, which may impair normal endothelial

function (108). Additionally, elevated glucose levels lowered lysine

methyltransferase 8 (SETD8) expression and increased myeloid

zinc finger 1 (MZF1) expression. Their changes raise the

expression of p-p65 and other endothelial inflammatory markers

in hyperglycemic HGECs by adjusting Wingless-type family

member 5 (WNT5A) transcription, which eventually causes

damage to GECs (14). DN patients have higher levels of VCAM-1

and ICAM-1. Moreover, pro-inflammatory cytokines can bind to

receptors on GECs, activating the NF-kB signal pathway (61, 109,

110). These results highlight the interactions between oxidative

stress and inflammation in the context of hyperglycemia as major

stimulators of DN endothelial dysfunction.

EndMT also plays a role in the initial phases of DN

development as numerous fibroblasts in the kidneys of diabetics

originate from the endothelium, which is triggered by TGF-b (111).

Gremlin-1 actively upregulates the expression of TGF-b in DN,

which results in a more severe development of kidney fibrosis (112,

113). Rho-associated kinase 1(ROCK1), an effector of TGF-b, is
elevated in hyperglycemic environments and stimulates EndMT in

DN (114). Ang-(1-7) treatment can normalize the levels of ROCK1

and ROCK2 in a diabetes-related context, providing a beneficial

effect (115). In addition, ECs of the kidney are responsible for

maintaining the glomerular filtration barrier (GFB). EndMT

negatively affects the functional abilities of the glomerular

filtration barrier (GFB) by decreasing the production of

endothelial junctional proteins and increasing the deposition of

extracellular matrix (ECM) proteins (116, 117). In early DN, ATP-

binding cassette A1 (ABCA1) loss caused damage to glomerular

endothelial cells through endoplasmic reticulum stress (ERS)-

induced inflammation and apoptosis, which finally resulted in

DN progression (118). Hyperglycemia significantly induced

cytotoxicity and increased the expression of necroptosis markers

in rat GECs. This result suggested that endothelial dysfunction

induced by cell death can also partially explain the mechanisms

underlying DN (119).
4.2 Diabetic retinopathy

Diabetic retinopathy (DR) is a common microvascular

complication of diabetes mellitus and is the main cause of visual

loss in the elderly (120). Two stages comprise the pathological

process of diabetic retinopathy: non-proliferative (NPDR) and

proliferative (PDR). Microvasculopathy in the DR retina is
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characterized by reduced capillary flexibility, heightened vascular

permeability, localized inflammation, and the presence of growth

factors that facilitate the development of neovascularization (95).

Hyperglycemia leads to the impairment of retinal endothelial

cells (RECs) by ischemia, oxidative stress, and the release of pro-

inflammatory factors. Patients with DR may experience increased

vessel wall permeability and capillary occlusion as a result of

increased adhesion molecule expression and decreased

vasodilation found in retinal microvessels (121). Retinal binding

protein 3 (RBP3) reduces inflammatory cytokines and inhibits

VEGF’s activities in the retina, which may prevent the

advancement of DR (122). In addition, excessive ROS (H2O2)

accumulation in pathological situations such as hyperglycemia

can activate the transcription factor HIF-1a, which increases the

expression of inflammatory mediators and VEGF, damaging retinal

microvessels (123, 124). Li et al. recently reported the anti-oxidative

stress effect of F-box andWD repeat domain containing 7 (FBXW7)

in ECs. FBXW7 alleviates harmful processes that lead to DR, such as

DNA damage, mitochondrial dysfunction, ROS elimination, and

PARP overactivation (125).

The death of RECs may accelerate the development of DR. In a

hyperglycemic setting, increased homocysteine levels elevate the

activity of dynamin-related protein 1 (Drp1) by causing its

nitrosylation in RECs. This further fractures the mitochondria

and elevates the apoptosis of RECs, finally aggravating diabetic

retinopathy (126). Hyperglycemia-induced pyroptosis in human

retinal microvascular endothelial cells (HRMECs) is characterized

by increased caspase-1 activity, IL-b, NLRP1, NOX4, TXNIP, and
NLRP3 expression (71). AGEs cause HRMECs and corneal ECs to

undergo pyroptosis through cleaved caspase 1 and active gasdermin

(GSDM), leading to blindness (127, 128). Hyperglycemia may

promote TRIM46-mediated GPX4 ubiquitination, thereby

lowering the expression of GPX4 in retinal capillary ECs, leading

to more EC ferroptosis (129). RECs also help maintain the blood-

retinal barrier (BRB). Loss of endothelial properties through

EndMT affects REC barrier function and increased matrix protein

deposition in mesenchymal cells may thicken the basement

membrane, increasing vascular permeability in DR (39, 130, 131).
4.3 Diabetic neuropathy

Endothelial dysfunction often develops in the early stages of

diabetes, impacting both the peripheral nervous system (PNS) and

central nervous system (CNS), which can result in sciatic nerve

irritation and diabetic neuropathy (132). DPN is a length-

dependent injury of peripheral nerves that starts proximally in

the feet and eventually moves to the hands. It is also a common

consequence of diabetic microvascular disease (133). The

thickening of the basement membrane and endothelial

dysfunction with anomalies in endoneurium capillaries are

characteristics of the diabetic nerve (133). Recent research has
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identified additional pro-oxidant enzymes, including NOXs,

which are now known to be powerful ROS producers in DPN

(134). Particularly, Nox2 and Nox4 are overexpressed in diabetic

nerves and are involved in the degeneration of both structural and

functional nerves (135, 136). Diabetic sciatic nerves contain less

desert hedgehog. Inhibiting hedgehog signaling in ECs is sufficient

to cause blood nerve barrier (BNB) breakdown and neuropathy. In

addition, VEGFA increased BNB permeability induced by desert

hedgehog deficiency and the severity of microangiopathy (137).

Therefore, diabetic endothelial dysfunction in the neurovascular

system is closely related to the state of oxidative stress.
4.4 Diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) is characterized by abnormal

cardiac structure and function in the absence of cardiac risk factors

in patients with diabetes, which can result in heart failure (HF)

(138). According to a meta-analysis, diabetes reduces long-term

survival and hospitalization in acute and chronic HF patients (139).

The development of diabetic cardiomyopathy is probably due to

a combination of factors, such as endothelial dysfunction, glucose

toxicity, mitochondrial dysfunction, and lipotoxicity (140). The

diabetic heart has increased fatty acid oxidation but decreased

glucose oxidation. It also exhibits elevated levels of pro-

inflammatory cytokines and higher leukocyte infiltration (141,

142). Fibrosis is one characteristic of diabetic cardiomyopathy.

EndMT can contribute to activated cardiac myofibroblasts.

Therefore, in hyperglycemia, increased EndMT leads to excessive

fibroblast activation and causes extracellular matrix protein

overproduction, interstitial fibrosis, and a thicker basement

membrane (143, 144). Moreover, both RAGE and AGEs increase

in diabetes. Knocking out RAGE can decrease the degree of EndMT,

accompanied by decreased expression of autophagy-related

proteins (LC3BII/I and Beclin 1), and alleviate cardiac fibrosis in

mice (145). The expression of mitochondrial calcium uptake 1

(MICU1) was decreased in the myocardial microvascular

endothelial cells (CMECs) of diabetic mice. The reduction of

MICU1 in diabetic CMECs showed a significant increase in

inducible nitric oxide synthase (iNOS) enzymes related to

nitrification stress and inflammation-related molecules. These

changes led to exacerbated cardiac hypertrophy and fibrosis (31).

Impaired NO signaling is closely correlated with diabetic

cardiomyopathy. In diabetic rat hearts, eNOS level decreased in

ECs when compared to non-diabetic controls (146). However,

myocardial BH4 oxidation and NOS dysfunction are not always

present in the cardiomyopathic phenotype or as early indicators of

diabetes mellitus, suggesting a more significant role of vascular

endothelium in diabetic cardiomyopathy (147). Moreover,

substantial inflammatory reactions in diabetic cardiac tissue cause

elevated levels of IL-1b, IL-18, IL-6, and TNF-a. EPC dysfunction

leads to adverse remodeling in the diabetic heart, which can be
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improved by bone morphogenetic protein-7 (BMP-7) (148). Though

the role of ECs in diabetic cardiomyopathy is not directly confirmed,

there has been extensive discussion on the crosstalk between ECs and

cardiomyocytes, especially their metabolisms and angiogenesis

functions mediated by VEGF (149). For instance, a study has

suggested that cardiomyocyte-derived exosomes can modulate

endothelial glucose transport and metabolism by sending glucose

transporters and the associated glycolytic enzymes to the ECs (150).

Thus, adverse changes in cardiomyocytes can indirectly affect

myocardial ECs by their metabolism interaction. Nevertheless, a

deeper understanding of ECs in diabetic cardiomyopathy still needs

further investigation (Figure 5).
5 Current therapies

5.1 Metformin

Metformin is a first-line therapy for treating type 2 diabetes due

to its robust and pleiotropic effects on glucose metabolism.

Metformin can protect the endothelium beyond lowering blood

glucose levels. It has various effects on ECs (3, 4). Improved

endothelium-dependent vasodilation from in vivo and in vitro

studies showed a positive impact of metformin treatment on

vascular endothelial function in diabetes (151).

Metformin can regulate the expression of inflammatory

markers and slow the progression of diabetic vascular

complications, including DN and PAD, by inhibiting

inflammation in diabetes. It also has a favorable impact on
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certain cardiovascular risk markers (152, 153). Metformin inhibits

NF-kB activation via AMPK activation and blockade of the PI3K-

Akt pathway, which reduces the expression of proinflammatory and

adhesion molecule genes (154, 155). In vivo investigations found

that metformin can prevent diabetic nephropathy by reducing

LRG1 and TGF-b1/ALK1-induced kidney angiogenesis and

decreasing inflammatory cytokine levels (156). Moreover,

metformin prevented the induction of femoral artery

ultrastructural changes and the expression of vascular AGEs, ET-

1, and iNOS, dyslipidemia. This resulted in an improvement in

lower extremity arterial endothelial function by reducing the

inflammation state in a rat model of diabetes-induced lower

extremity arterial disease (LEAD) for 12 weeks. This resulted in

an improvement in lower extremity arterial endothelial function

(157). Metformin decreases the production of ROS from

mitochondria by stimulating both AMPK-dependent and AMPK-

independent pathways in human leukocytes and ECs (158, 159). It

also regulates EC function, survival, proliferation, and senescence

through the SIRT1 and LKB1/AMPK pathways (95). It restores

Hedgehog pathway activity to suppress hyperglycemia-induced

autophagosome production in diabetic retinal vasculature and

cultured HUVECs (160). Metformin has been shown to protect

vascular ECs by enhancing autophagy flux and diminishing lipid

accumulation (161).It attenuated the development of diabetes-

accelerated AS by reducing Dynamin-related protein (Drp1)-

mediated mitochondrial fission in an AMPK-dependent

manner (162).

However, metformin has some noticeable side effects, such as

nausea, vomiting, bloating, a metallic taste in the mouth, abdominal
FIGURE 5

Molecular mechanisms of diabetic microvascular complications. In diabetic endothelial dysfunction, individuals are susceptible to microvascular
complications such as diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. The development of these
complications is due to some common factors such as increased inflammation, ROS, EndMT, and endothelial cell death. For diabetic neuropathy,
the upregulation of NOX2, NOX4, and VEGFA and the downregulation of Dhh can enhance its progression. Diabetic nephropathy can be accelerated
by the upregulation of LRG1, GRP56, RIPK1, RIPK3, and TGF-b/ALK1 and the downregulation of ABCA1 and cAMP/PKA. In diabetic retinopathy, the
exacerbations of ET-1, HIF-1a, FBXW7, and Hcy can worsen the condition. For diabetic cardiomyopathy, higher expression of GLU-1, MICU1, and
iNOS contributes to its development.
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pain, cramps, and changes in intestinal motility, which may result in

loose stools and diarrhea that can be challenging to manage.

Around 25% of patients experience gastrointestinal side effects

and about 5% are unable to tolerate metformin (163).

Additionally, metformin has been linked to increased levels of

homocysteine and vitamin B12 deficiency, which can exacerbate

diabetic neuropathy (164).
5.2 Dipeptidyl peptidase-4 inhibitors

Dipeptidyl peptidase-4 inhibitors (DPP-4i) are commonly used

treatments for patients with T2DM and include vildagliptin,

linagliptin, sitagliptin, teneligliptin, and others. It blocks the

breakdown of glucagon-like peptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide (GIP) to decrease blood

glucose levels. In the vascular system, DPP4 is widely expressed

by ECs, cardiomyocytes, and many other cell types (165), implying

its role in diabetic vascular disease.

Increasing data suggests DPP-4i inhibitors have a protective

role in endothelium and AS, independent of their hypoglycemic

effects (3, 165). DPP-4i treatment decreased carotid intima-media

thickness (IMT) in individuals with diabetes, which slowed the

development of AS (166). Vildagliptin prevents hyperglycemia-

induced endothelium damage in a GLP-1-independent way. It

directly activates TRPV4 to promote Ca2+ absorption, AMPK

activation, and SIRT1. In this way, it promotes endothelial-

dependent vasorelaxation to protect against hyperglycemia-

induced endothelial dysfunction (167). Sitagliptin’s activation of

AMPK prevented the formation of ROS, the collapse of

mitochondrial membrane potential, and the apoptosis of

HUVECs induced by high glucose (168). It triggered the AMPK/

unc-51-like autophagy activating kinase 1 signaling pathway to

restore basal autophagy in EPCs, preventing EPC apoptosis. Thus, it

preserves EPC angiogenic function, improving diabetic ischemia

angiogenesis (169). In hyperglycemia, teneligliptin enhances

HUVEC proliferation and inhibits HUVEC apoptosis by

promoting B-cell lymphoma 2 (BCL2) expression, decreasing

proapoptotic genes (BAX and CASP3), and expressing cell-cycle

inhibitor hallmarks (P27, P21, and P53) (170). Adenosine AMPK

phosphorylation by DPP4 promotes vascular ECs apoptosis and

autophagy, while microRNA 5680 inhibits this process as a

DPP4i (171).

DPP-4i have a significant impact on the development and

progression of diabetic vascular disorders. It protects brain

microvascular ECs against high-glucose and hypoxic conditions

(172). Linagliptin effectively inhibits TNF-a-induced NF-kB
nuclear protein p65 accumulation and promotes activation in

RECs. It also reduces TNF-a-induced vascular cytokine

production, such as IL-6, IL-8, ICAM-1, and VCAM-1 (173). In

diabetic kidney ECs, linagliptin inhibited TGF-b2-induced EndMT

by suppressing levels of microRNA 29s (174). It can cause a
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decrease in endothelial toll-like receptors 2 (TLR2) expression

and a subsequent increase in NO bioavailability. Linagliptin

reduced ET-1-induced basilar arteries contraction in diabetic rats,

improving diabetic cerebrovascular dysfunction (175). In addition,

evogliptin directly interferes with pathological retinal

neovascularization (NV) by blocking VEGF-induced adenosine

5′-diphosphate ribosylation factor 6 (Arf6) activation in ECs (176).

Nevertheless, research has shown an increased risk of heart

failure with DPP-4i, especially saxagliptin. Patients with moderate

renal dysfunction were found to have an increased risk of heart

failure. Further research is necessary to comprehend the impact of

declining renal function on the cardiovascular safety of DPP-4

inhibitors (177). Furthermore, the use of sitagliptin increases the

odds ratio for reported pancreatitis by a factor of six. Additionally,

there was an increase in reported cases of pancreatic and thyroid

cancer compared to other therapies. These findings suggest that

further studies on the effects of DPP-4i on the thyroid gland and

exocrine pancreas in humans are necessary (178).
5.3 Glucagon-like peptide 1
receptor agonists

Glucagon-like peptide 1 (GLP1) is a type of incretin hormone

released from gut endocrine cells (179). It regulates blood glucose

levels by enhancing insulin secretion in pancreatic b cells and

reducing glucagon release (180). Glucagon-like peptide 1 receptor

agonists (GLP-1RA) are artificial mimics or analogs of human GLP-

1, including exenatide and liraglutide. The cardiovascular benefits

of GLP-1RA in patients with T2DM and established cardiovascular

diseases have been indicated through many clinical trials (179, 181).

Previous studies have demonstrated that GLP-1RA have the

ability to enhance endothelial function in diabetic patients (3, 179,

182). Exenatide decreased high-glucose-induced ROS production

and the apoptotic index in CMEC. This protective effect is reliant on

the downstream suppression of Rho via a cAMP/PKA-mediated

pathway (183). Additionally, it protects ECs from oxidant stress

through reducing autophagy, which is dependent on the restoration

of histone deacetylase 6 (HDAC6) in a GLP-1R-extracellular signal-

regulated kinase (ERK)1/2-dependent way (184). In vivo and in

vitro studies show that exendin-4 decreases HHcy-induced ER

stress and enhances endothelial function by upregulating

endoplasmic reticulum oxidoreductase (ERO1a) via AMPK in

ECs and arteries. AMPK activation improves EC protein folding

to reduce ER stress (185). In addition, liraglutide prevents

hyperglycemia-induced Smad2 phosphorylation and EndMT via

the AMPK pathway, indicating the prevention of liraglutide

towards hyperglycemia-induced EndMT (186). The GLP-1

metabolite GLP-1(9-36) amide enhanced human aortic EC

viability in response to hypoxic injury and hydrogen peroxide

treatment via a NO- and mitochondria-dependent mechanism

(187). Large-scale cardiovascular outcome trials have shown that
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GLP-1RAs improve cardiovascular outcomes in T2DM patients

with high cardiovascular risk or established atherosclerotic

cardiovascular disease (181, 188, 189), mainly through their anti-

atherosclerotic properties. T2DM increases carotid intima-media

thickness (CIMT), while CIMT decreases in the GLP-1RA-treated

group, suggesting a slowing of the atherosclerotic process (190). In

the context of ischemic cardiac injury, GLP-1RA’s cardioprotective

actions mainly target GLP-1R in mouse Tie2+ endothelial cells. The

cardioprotective functions of liraglutide were attenuated in

Glp1rTie2-/- mice (191). The cellular localization of GLP-1R in the

heart may provide insight into the mechanism of GLP-1RA in

diabetic MI and other cardiovascular complications. In a

concentration-dependent way, liraglutide improved the function

of hyperglycemia-treated HUVECs and phosphorylated Akt, eNOS,

and ERK1/2 in vitro and in vivo. Therefore, liraglutide may help

treat hind-limb ischemia in type 2 diabetic mice (192).

Current findings indicate that GLP-1RA have a favorable safety

profile and do not increase cardiovascular risk in patients with

T2DM. Ongoing trials will further assess their cardiovascular effects

(193). However, exenatide and sitagliptin have similar side effects

that can increase the risk of pancreatitis, thyroid cancer, and

pancreatic cancer. When taken together, there is a significantly

increased association with these therapies and the development of

thyroid and pancreatic cancer (178). GLP-1 RA were found to be

significantly associated with gastrointestinal adverse events. Among

these, semaglutide had the highest risk of nausea, diarrhea,

vomiting, constipation, and pancreatitis, while liraglutide had the

highest risk of upper abdominal pain (194).
5.4 Sodium-glucose cotransporter
2 inhibitor

Approximately 97% of the total renal glucose reabsorption is

attributed to SGLT2 (195). SGLT2i inhibits this high-capacity

glucose transporter, SGLT2, in the proximal convoluted tubule

and helps the kidneys excrete glucose in the urine to lower blood

glucose (196). SGLT2i improved obesity, aberrant lipid metabolism,

inflammation, endothelial dysfunction, and nephropathy in diabetic

mice after 4-week repeated dosing (197). The main types of SGLT2i

are canagliflozin, dapagliflozin, and empagliflozin.

Based on numerous clinical trials, patients with diabetic chronic

heart failure and CAD showed marked improvement in their flow-

mediated dilation (FMD) and blood pressure after empagliflozin

and canagliflozin treatments (198). Moreover, several types of

SGLT2i prevented diabetic nephropathy in rodents (199). El-Daly

et al. suggest that hyperglycemia-induced oxidative stress affects

protease-activated receptor 2-mediated vasodilation in the

endothelium through a NOX-triggered signaling cascade, which

can be suppressed by SGLT2i (200). Furthermore, the inhibition of

mitochondrial fission induced by empagliflozin protected cardiac
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microvascular endothelial cell barrier function by suppressing

mtROS production and oxidative stress, thereby preventing

senescence of cardiac microvascular endothelial cells .

Furthermore, it helps to maintain eNOS phosphorylation,

endothelium-dependent relaxation, and the integrity of heart

microvascular barrier (201). In vivo studies showed the

improvement of endothelial dysfunction in diabetic ApoE-/- mice

after treatment with empagliflozin. This is due to the anti-

inflammatory effect of empagliflozin, which decreases the levels of

TNF-a, ICAM-1, and vasoconstrictive eicosanoids (202). In

addition, empagliflozin significantly increased the levels of the

Beclin1 protein, the LC3B-II/I ratio, and the p-AMPK protein,

inducing autophagy in HUVECs via the AMPK signaling pathway,

which delays the evolution of AS (203). Li et al. found that

empagliflozin reduced EndMT in the proximal tubule and ECs in

diabetic mice, decreasing kidney fibrosis and potentially protecting

the kidneys (204). Oral empagliflozin improved coronary

endothelial function by increasing L-arginine/asymmetric

dimethylarginine ratio and NO bioavailability (205).

In addition, other types of SGLT2i also improve endothelial

function through different mechanisms. The Canagliflozin and

Renal Events in Diabetes with Established Nephropathy clinical

evaluation trial showed that SGLT2 blockade slows the progression

of established diabetic kidney disease and reduces the risk of

cardiovascular death, myocardial infarction, stroke, and

hospitalization due to heart failure in T2DM patients (206). In

human coronary artery ECs from donors with DM (D-HCAECs)

exposed to TNF-a, canagliflozin reduces inflammasome activation

and ROS generation. It reduces inflammasome activation by

inhibiting intracellular Ca2+ and extracellular signal regulated

kinase (ERK) 1/2 phosphorylation (207). Additionally,

dapagliflozin reduces endoplasmic reticulum (ER) stress in

human coronary artery endothelial cells (208).

However, SGLT-2i have common side effects, such as urinary

tract infections, euglycemic ketoacidosis, orthostatic hypotension,

dehydration, and cardiovascular adverse events (209). Additionally,

they are associated with increased risks of diabetic ketoacidosis and

lower-limb amputations. The risk of lower-limb amputations is

higher in patients with a history of amputation and peripheral

vascular disease. Dapagliflozin is specifically associated with a high

risk of toe amputation (210, 211). In general, SGLT2i are a

beneficial treatment option for type 2 diabetes. However, their use

should be thoroughly assessed and supervised to minimize potential

adverse effects.

Taken together, conventional therapeutic approaches have

distinct targets aimed at alleviating endothelial dysfunction in the

context of diabetic vascular complications. Here we focus on the

potential benefits of metformin, DPP-4 inhibitors, GLP-1 receptor

agonists, and SGLT-2 inhibitors in the improvement of diabetic

vascular disorders, especially their ability to improve inflammation,

oxidative stress, cell death, and EndMT. Additionally, we discuss
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some common side effects of these therapies that should be noted.

The objective is to identify additional therapeutic applications for

these medications in treating various types of diabetic

vascular complications.
6 Future directions and
novel regulators

6.1 MicroRNA therapies

MicroRNAs (MiRNAs) are short, endogenous, non-coding

RNAs with a normal length of 22 nucleotides that regulate gene

expression post-transcriptionally. They target more than half of the

transcripts that code for proteins, making them implicated in

almost all animal developmental and pathological processes (212).

Research indicates that they are important for preserving optimal

vascular homeostasis and preventing the sequelae of diabetes-

induced end-organ destruction. MiRNAs have been shown to

regulate endothelial dysfunction in many aspects and also

regulate the diabetic microvasculature in many diabetes-

associated complications (213).

In human aortic endothelial cells, high glucose and thrombin

reduce miR-146a expression when combined. Overexpression of the

miR-146a mimic can downregulate IL-6 and IL-8 in hyperglycemia/

thrombin-stimulated human aortic endothelial cells (HAECs)

(214). Moreover, miR-146a CAN rescue senescent HUVECs. In

vivo and in vitro results demonstrate that miR-146a-5p mimics

inhibit endothelial interleukin-1 receptor-associated kinase-1

(IRAK-1) and ICAM-1 expression, indicating an anti-

inflammatory function in vessels (215). MiR-30 promotes

oxidative stress, lipid peroxidation, and endothelial dysfunction in

cultured ECs by regulating exogenous fatty acid oxidation. Thus, it

might represent a potential therapeutic target for diabetic

microvascular dysfunction (216). Mir-20a-5p reverses the

expression of high phosphatase, tensin homolog, and autophagy-

related 7 and promotes AKT and mTOR phosphorylation in high

glucose circumstances, inhibiting EPC autophagy and apoptosis

(217). This suggests that mir-20a-5p has a protective effect against

cell death induced by hyperglycemia.

The evolving role of miRNAs in diabetic vascular

complications has become a hot topic in recent years. In the

glomerular vascular ECs of the kidney of DN patients, the

expression of miR-155 was increased. Human renal glomerular

Ecs undergo an inflammatory response and apoptosis due to

negative regulation of miR-155 by E26 transformation-specific

sequence 1 (ETS-1) and its downstream components VCAM-1,

MCP-1, and cleaved caspase-3 (218, 219). Overexpression of miR-

375 in ECs increases proliferation, wound closure, spheroid

sprouting, and tube formation by targeting Kruppel-like factor 5
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via altering phospho-p65 NF-kB signaling in diabetic critical limb

ischemia (220). Overexpression of miR-181a-5p in HUVECs

impaired the endothelial barrier and decreased gene expression

of OCLN variants 1 and 2, the genes that meditate occludin

expression. Occludin downregulation in various organs may

cause DR or DN due to elevated miR-181a-5p levels (221). In

DR, research has shown that miR-15b-5p inhibits the expression

of COL12A1, a gene encoding collagen type XII a 1 chain, and

inhibits the proliferation, migration, and angiogenesis of

hyperglycemia-induced human retinal vascular endothelial cells

(222). HG induced pyroptosis in a cell culture model of DR,

whereas miR-590-3p inhibited pyroptosis by targeting the NLR

family pyrin domain containing 1 (NLRP1) and inactivating the

NOX4 pathway (71). In human retinal microvascular endothelial

cells cultured in high glucose, miR-93 expression increases

dramatically, while the overexpression of miR-93 exacerbates

ferroptosis by increasing ROS generation and causing Fe2+

accumulation (223). MiR-126 overexpression can reduce EC

apoptosis and promote angiogenesis by modulating VEGFR2

signaling. Consequently, it may ameliorate ischemic stroke in

diabetic mice (224).

However, the use of miRNA technology at the clinical level is a

potential challenge due to certain physiological barriers that affect

their stability. The advanced drug delivery systems such as

nanoparticles, however, have emerged as novel carriers for

miRNA targeting to help solve this. There are still many

problems such as the complexity of advanced drug delivery

systems, especially for lipid-based nanocarriers, and the concerns

of safety of the substance incorporated in these systems (225).

Nanoparticles also cause possible side effects including

inflammatory reactions, oxidative stress, and cell apoptosis,

leading to cytotoxicity (226). MiRNAs also have the potential to

target multiple genes, which can lead to unintended consequences

and off-target effects. Another challenge is the complexity in the

tissue and cell-specific expression and functions of specific miRNAs

in the same diabetic complication. This could be related to the cell-

type specific patterns, different model systems and animals studied,

time of sampling, or the severity of the complications in the models

studied (227).
6.2 Stem cell therapies

Stem cell-based therapy is an important field of regenerative

medicine that regulates endogenous stem cells to enhance tissue

homeostasis and regeneration (228). Mesenchymal stem cells

(MSCs) are the main cell source used in stem cell-based therapy.

MSC-based cell therapy has been recognized as an effective

treatment for diabetes mellitus and its complications, serving as a

means of preventing diabetic damage to the vascular endothelium

(229, 230). As MSCs have long been considered a key source of cells
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in regenerative medicine, we will also discuss the effects of MSC-

derived exosomes and extracellular vesicle (EVs) on diabetic

endothelial dysfunction.

In vitro, human umbilical cord-derived MSCs restored high

glucose-damaged HUVEC survival, wound healing, migration,

angiogenesis, and senescence through a MAPK/ERK signaling

mediated paracrine effect (230). Delivery of circ-Snhg11 from

hypoxia-pretreated adipose-derived stem cell-originating

exosomes (ADSC-HExo)-embedded GelMA hydrogels (GelMA-

HExo) can improve EC survival and function by activating miR-

144-3p/NFE2L2/HIF1a signaling, implicating the role of ADSC-

Exos in diabetic wound healing (231). Similarly, exosomes from

atorvastatin-pretreated MSCs may improve endothelial cell

function via the AKT/eNOS pathway by upregulating miR-221-3p

(232). MSC-derived small extracellular vesicles (sEV) therapy

enhanced angiogenesis, migration, and proliferation in senescent

HUVECs. It also ameliorated mitochondrial dysfunction and

reduced ROS levels while providing protection against

senescence-related problems. Its subcutaneous injection can

promote skin wound healing in an animal model of aging and

type-2 diabetes (233).

The increasing number of studies focusing on miRNA and stem

cells holds the potential to improve the treatment of diabetic

complications by providing a more fundamental approach

(Table 1). However, it is important to note that translating stem

cells research into therapies is complex and challenging.

Uncontrolled proliferation of transplanted stem cells may lead to
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tumor formation in the treatment of diabetes. Improving stem cell

efficacy is also a challenge, though there has been discussion about

enhancing their differentiation potential through coculture

techniques to address this (234). Stem cell translation may also

lead to an unavoidable immune response. Research is ongoing on

gene editing and nuclear transfer techniques in stem cells to help

stem cells escape the immune response in the human body (235).

Overcoming these obstacles through further research is critical to

the development of effective novel therapies in the future.
7 Conclusions

Significant advancements have been made in the study of

endothelial dysfunction in diabetes and its associated vascular

complications. This review has discussed the fundamental

mechanisms of diabetes and its associated vascular disorders,

including inflammation, oxidative stress, cell death, and EndMT.

Based on the findings of these studies, it is evident that there are many

promising targets and therapies, such as metformin, DPP-4i, GLP-

1RA, SGLT2i, miRNA, and stem cells, which hold potential for

clinical use. In contrast to the more well-known processes of

inflammation and oxidative stress, the mechanisms of diabetic

endothelial dysfunction underlying cell death and EndMT remain

poorly understood. Furthermore, there are still numerous limitations

and side effects of the traditional therapies and novel regulators
TABLE 1 Regulators with endothelium-protective effect in diabetic complications.

Diabetic complication Therapy Mechanism Reference

CAD GLP-1RA Anti- atherosclerosis (191)

SGLT2i Reduce ER stress
Suppress mtROS

(209)
(202)

Cerebrovascular disease and stroke DPP-4i Decrease TLR2 (176)

MiR-126 (225)

Metformin Suppress inflammation, AGEs, and ET-1 (158)

GLP-1RA Phosphorylate Akt and eNOS (193)

Peripheral artery disease ADSC-Exos Activate miR-144-3p/NFE2L2/HIF1a signal (232)

Metformin Suppress inflammation, oxidative stress,
and fibrosis

(154, 157)

DPP-4i Inhibit EndMT (175)

Diabetic nephropathy SGLT2i Inhibit EndMT (205)

Metformin Suppress autophagosome (161)

DPP-4i Suppress inflammation and Arf6 activation (174, 177)

Diabetic retinopathy MiR-15b-5p Inhibit COL12A1 (223)

MiR-590-3p Inhibit pyroptosis (72)
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targeting diabetic vascular complications (Table 2). Therefore, given

the uncertainties surrounding these variables and the intricate nature

of alterations in diabetic endothelial dysfunction, further research is

warranted to elucidate these mysteries.
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TABLE 2 The targets and side effects or limitations of diabetic vascular complications regulators.

Therapy Targets Reference Side effects
or Limitations

Reference

Metformin PAD (153, 158) Gastrointestinal diseases (164)

DN (154, 157) Vitamin B12 deficiency (165)

DR (161) Increased Hcy (165)

DPP-4i DR (174, 177) Heart failure (29)

DN (175) Pancreatitis (179)

Cerebrovascular disease (176) Pancreatic cancer (179)

Thyroid cancer (179)

GLP-1RA PAD (193) Pancreatitis (179)

Cardiovascular disease (180, 192) Thyroid cancer (179)

Pancreatic cancer (179)

Gastrointestinal diseases (195)

SGLT2i CAD (199, 208) Ketoacidosis (211, 212)

DN (200, 205, 207) Lower-limb amputations (210)

AS (204) Urinary tract infections (210)

Cerebrovascular disease (207) Cardiovascular risk (210)

MiRNA PAD (221) Instable (226)

DN (219, 220) Unsafe drug delivery system (226, 227)

DR (72, 223) Off-target effects (228)

Cerebrovascular disease (225) Pleiotropy (228)

Stem cell PAD (231, 232, 234) Tumor formation (235)

Inefficient (235)

Immune response (236)
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