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Diabetes is a common chronic metabolic disease with complex causes and

pathogenesis. As an immunomodulator, vitamin D has recently become a

research hotspot in the occurrence and development of diabetes and its

complications. Many studies have shown that vitamin D can reduce the

occurrence of diabetes and delay the progression of diabetes complications,

and vitamin D can reduce oxidative stress, inhibit iron apoptosis, promote Ca2+

influx, promote insulin secretion, and reduce insulin resistance. Therefore, the

prevention and correction of vitamin D deficiency is very necessary for diabetic

patients, but further research is needed to confirm what serum levels of vitamin

D3 are maintained in the body. This article provides a brief review of the

relationship between vitamin D and diabetes, including its acute and

chronic complications.
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1 Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterized by chronic

hyperglycemia, caused by defects in insulin secretion and/or utilization. Over the past 30

years, the prevalence of diabetes in China has significantly increased. A thyroid iodine

nutrition status and diabetes epidemiological survey conducted by the Endocrinology

Branch of the Chinese Medical Association from 2015 to 2017 showed that the prevalence

of diabetes among the Chinese population aged 18 and above was 11.2% (1). Vitamin D, a

fat-soluble vitamin, not only plays a role in calcium and phosphorus regulation but is also

closely related to diabetes, cardiovascular diseases, immune regulation, tumors, muscle
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strength enhancement, and fall prevention. Studies have shown that

vitamin D is closely related to pancreatic function, immunity,

genetic polymorphism, and the occurrence of diabetic

complications. In recent years, the relationship between vitamin

D and the development of diabetes has become a research focus in

the field of diabetes. This article provides a brief overview of the

effects of vitamin D on the pathogenesis and progression of

complications in different types of diabetes.
2 Overview of vitamin D

Vitamin D, a derivative of steroids, belongs to the cyclopentane

polyhydrophenyl compound class. It is chemically stable, except for

being light-sensitive. There are two main sources of vitamin D: one

is converted from 7-dehydrocholesterol in the skin under the

influence of ultraviolet light; the other is from vitamin D2 in

mushrooms exposed to sunlight and vitamin D3 in foods such as

liver, milk, and cod liver oil. The vitamin D2 and D3 obtained from

these sources are inactive forms, and they cannot be converted into

each other, collectively referred to as vitamin D. To obtain

biologically active 1,25(OH)2D3, it needs to undergo two

hydroxylations in the body (Figure 1). Firstly, the inactive vitamin

D is converted to 25(OH)D3 in the liver under the catalysis of the

25-hydroxylase enzyme. 25(OH)D3 is the main storage form in the

body, and its level reflects the nutritional status of vitamin D. Then,

25(OH)D3 is further converted to 1,25(OH)2D3 in the kidneys

under the action of 1a-hydroxylase. 1,25(OH)2D3 binds to
Frontiers in Endocrinology 02
vitamin D receptors(VDR) widely present in tissues and exerts its

effects in the body (2).
3 Relationship between vitamin D
levels and diabetes

3.1. Vitamin D and diabetes

A number of studies have been conducted in the population to

explore the relationship between vitamin D3 and glycemic control

(Table 1). Serum 25(OH)D3 levels have been shown to have a

negative dose-response correlation with the risk of type 2 diabetes

mellitus (T2DM) (3), and vitamin D supplementation reduces the

risk of T2DM (4), decreases the risk of T2DM in pre-diabetic

patients, and increases the chances of restoring normal glucose

tolerance (5). However, the benefits of vitamin D3 for the

prevention of T2DM may be limited to non-obese subjects (5) or

patients with vitamin D deficiency (6).

Achieving blood glucose control is one of the goals of diabetes

treatment. Serum 25(OH)D 3 levels can be an independent risk

factor for increased levels of glycated hemoglobin in T2DM, with

women being at a higher risk of vitamin D deficiency (7). In

addition to finding that vitamin D can be a risk factor for

glycemic control, it is interesting to note that in patients with

T2DM, the combined administration of metformin and vitamin D

resulted in better glycemic and glycosylated hemoglobin control

compared to metformin alone (8). The efficacy of vitamin D on
FIGURE 1

Metabolic pathways of vitamin D.
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glycemic stability and insulin function was also found in patients

with prediabetes (9). Similar results were obtained in animal

experiments. Vitamin D supplementation reduced blood glucose,

insulin levels, and improved insulin resistance (IR) in rats in a

prediabetic model, and this efficacy was proportional to the dose of

vitamin D supplementation (10). The above findings suggest that

vitamin D helps in blood sugar control. However, there is still a

need for larger studies in the future to examine the dose, duration,

and most appropriate population for vitamin D supplementation to

determine the relationship between vitamin D and glycemic control

in diabetes. Serum 25(OH)D3 insufficiency is closely related to the

development of type 1 diabetes mellitus (T1DM) in children (11).
3.2 Vitamin D and diabetic complications

Vitamin D is not only related to the occurrence and

development of diabetes, but numerous studies have also

confirmed that vitamin D deficiency is closely associated with

diabetic complications (Figure 2).

Although vitamin D does not reduce all-cause mortality in older

adults (12). However, there are still a series of studies proving that

vitamin D can prevent cardiovascular risk in people with diabetes.

The incidence of cardiovascular diseases in T2DM patients

increases by 2 to 3 times (13), and a follow-up study of T2DM

patients confirmed that vitamin D deficiency is the strongest

correlating factor for the occurrence of cardiovascular diseases in
Frontiers in Endocrinology 03
these patients (14). Vitamin D deficiency is also related to

endothelial dysfunction and atherosclerosis (15, 16). The non-

high-density lipoprotein cholesterol/high-density lipoprotein

cholesterol ratio (NHHR) is a new comprehensive index of

atherosclerotic lipids (17). NHHR is negatively correlated with

vitamin D in T2DM patients (18). A higher NHHR index

indicates a greater tendency for peripheral cholesterol deposition,

and an increased distribution of cholesterol to the periphery may

lead to IR or pancreatic b-cell dysfunction (19), resulting in vitamin

D deficiency. Supplementing vitamin D can slow down the

progression of myocardial dysfunction in T2DM patients without

complications (20).

A prospective study on T2DM patients found that higher serum

25(OH)D3 levels can reduce the risk of diabetic retinopathy,

diabetic nephropathy, and diabetic neuropathy, and serum 25

(OH)D3 levels within a certain range (10-106 nmol/L) have a

linear dose-response relationship with diabetic retinopathy and

diabetic nephropathy (21). Inflammation has been shown to

contribute to the occurrence and development of diabetic

retinopathy (22–27). The pathogenesis of diabetic retinopathy is

related to inflammation and fibrosis (23), and it has been reported

that the production of pro-inflammatory cytokines such as IL-1,

TNF-a, and VEGF increases in the vitreous body of patients with

diabetic retinopathy and in animal models of the retina (22, 24).

High glucose-induced upregulation of pro-inflammatory cytokines

can lead to the destruction of the blood-retinal barrier (BRB), cell

death, and angiogenesis (22, 25). Supplementing vitamin D can
frontiersin.or
TABLE 1 The relationship between vitamin D and diabetes.

Reference Year Sample
size

Research
Design

Conclusion of the study

(3) 2020 6940 Cohort
studies

In subjects with healthy sleep patterns, the higher the serum 25(OH)D3 concentration, the lower the risk of
developing T2DM.

(4) 2022 2423 Randomized
clinical

trials (RCT)

Supplementing with 4,000 IU of vitamin D per day can reduce the risk of diabetes. Vitamin D had a small
beneficial effect on change in fasting plasma glucose.

(5) 2020 4896 Meta-analysis Vitamin D supplementation reduces the risk of T2DM in participants with prediabetes. Reversion of
prediabetes to normoglycemia was significantly increased by vitamin D supplementation. The benefit of the
prevention of T2DM appears to be confined to nonobese subjects.

(6) 2019 2423 Clinical
trial (CT)

Among persons at high risk for T2DM not selected for vitamin D insufficiency, vitamin D supplementation
at a dose of 4000 IU per day did not result in a significantly lower risk of diabetes than placebo.

(7) 2023 1074 A cross-
sectional
study

In the T2DM patient cohort, the mean blood 25(OH)D3 levels were 17.05 ng/ml. In comparison to the
winter and spring, both males and females showed higher 25(OH)D3 levels in the summer. HbA1c and
vitamin D levels were negatively correlated.

(8) 2021 130 RCT Oral daily doses of vitamin D improve HbA1c levels over the 3-month and 6-month period, followed by a
significant decrease in advanced oxidation protein products levels over the 3-month period when higher
vitamin D doses are given.

(9) 2021 1932 Meta-analysis Vitamin D supplementation significantly improved fasting blood glucose, postprandial blood glucose, and
quantitative insulin sensitivity check index in diabetes and prediabetes with baseline 25(OH)D3<30 ng/ml.
Higher percentages regressing from prediabetes to normal glucose status and lower percentage progressing
from prediabetes to diabetes were found in the supplementation group. The positive effects of vitamin D
supplementation on body mass index, waist, HDL-C, LDL-C, and CRP were also demonstrated.
T2DM, type 2 diabetes mellitus.
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protect retinal epithelial cells from high glucose-induced oxidative

stress, inflammation and ferroptosis which may be one of the

mechanisms by which vitamin D prevents the progression of

diabetic retinopathy (28, 29).

Diabetic nephropathy is a major cause of disability and death in

middle-aged and elderly patients with T2DM, significantly affecting

their quality of life and safety. Progressive proteinuria and renal

function deterioration are the main clinical symptoms of diabetic

nephropathy (30–32). A study on elderly T2DM patients in China

found that the incidence of vitamin D deficiency was significantly

higher in patients with proteinuria than in those without (33). In

animal experiments, vitamin D can prevent podocyte damage,

thereby reducing proteinuria and glomerulosclerosis (34).

Peripheral nerve damage is also a common complication of

diabetes mellitus. Patients lacking vitamin D are more likely to
Frontiers in Endocrinology 04
experience nerve function deficits associated with diabetic peripheral

neuropathy than those with sufficient vitamin D (35). Among the

Kurdish population, lower levels of vitamin D and higher levels of

HbA1c are predictive risk factors for painful diabetic peripheral

neuropathy (36). Controlling blood glucose alone cannot prevent the

progression of peripheral neuropathy in T2DM. Chen T (37) found

that monthly intramuscular injections of high-dose vitamin D

improved peripheral neuropathy. This may provide new ideas for

treating diabetic peripheral nerves. However, more research is needed

to determine the exact course of treatment and dosage. In a study of

diabetes mellitus in children (38), children with vitamin D deficiency

did not complain of peripheral neuropathy, but sensory nerve action

potential of sural nerve and motor peroneal nerve velocity were

statistically significantly lower in diabetic patients with vitamin D

deficiency compared to diabetic patients with normal vitamin D levels.
frontiersin.or
FIGURE 2

The relationship between vitamin D and diabetic complications.
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Diabetic ketosis is one of the acute complications of diabetes

mellitus. Serum 25(OH)D3 levels are lower in ketosis-prone

T2DM compared to non-ketosis-prone T2DM (39, 40), and

serum 25(OH)D3 levels are related to the severity of pancreatitis

concurrent with diabetic ketoacidosis (41).
4 Vitamin D and the pathogenesis
of diabetes

4.1 Vitamin D and pancreatic function

Vitamin D may affect pancreatic function through several

signaling pathways (Figure 3). Glucose-6-phosphatase (G6Pase)

and phosphoenolpyruvate carboxykinase (PEPCK) are two key

enzymes that convert non-carbohydrate substances into glucose

(42, 43). Their abnormal expression is closely associated with

enhanced gluconeogenesis and considered a marker for T2DM

(44). Combined treatment with vitamin D and aerobic exercise

can upregulate protein kinase B (AKT) in liver cells of T2DM rats,

downregulate PEPCK and G6Pase expression, improve liver

function, and alleviate IR (45). Vitamin D-binding protein

(VDBP) is the primary plasma carrier maintaining vitamin D and

its metabolites. Deficiency of VDBP may lead to pancreatic a-cell
atrophy and proliferation, alters Na+ channel conductance, reduces

cellular activation by glucose, and decreases the rate of glucagon

secretion in vivo, potentially increasing the incidence of late-onset

T1DM (46). A double-blind, randomized, controlled clinical trial

(47) showed that vitamin D supplementation improved b-cell
Frontiers in Endocrinology 05
function in patients with serum 25(OH)D3 levels below 12 ng/mL

compared to placebo.

Intraperitoneal injection of 1,25(OH)2D3 treats dexamethasone-

induced IR in rats and improves islet function. The reason is related

to the alteration of calcium ions after activation of L-type voltage-

dependent calcium channel (VDCC), K+-ATP, K+-Ca2+, and Kv

channels by 1,25(OH)2D3, followed by activation of downstream

PKC, PKA, and so on, which promotes insulin secretion (48). In vitro

studies indicate that vitamin D can activate AMP-dependent protein

kinase, inhibit the mammalian target of rapamycin (mTOR)

pathway, thereby inhibiting the activation of the NLRP3

inflammasome and reducing b-cell apoptosis, promoting insulin

release (49). Vitamin D may also reduce b-cell apoptosis in T2DM

by inhibiting nuclear factor kB and downregulating the expression of

divalent metal transporter 1 (DMT1) , alleviating pancreatic iron

overload (50).

Ferroptosis, a newly discovered form of cell death, is considered a

crucial factor in the pathogenesis of many inflammatory diseases (51).

Ferroptosis is also considered a new target for diabetes (52). In the rat

diabetes model, ferroptosis-related indicators such as GPX4 and

SLC7A11 were downregulated (53) and ACSL4 was upregulated

(54). 1,25(OH)2D3 treatment not only lowered blood glucose, but

also reversed the changes in the above metrics. The mechanism is

related to 1,25(OH)2D3/VDR/FOXO1. Binding of 1,25(OH)2D3 to the

VDR inhibits ferroptosis in pancreatic b-cells and ameliorates IR by

down-regulating FOXO1 expression (54). Vitamin D induces cellular

autophagy while inhibiting streptozotocin-induced b-cell apoptosis,
increasing insulin secretion and increasing b-cell resistance to cellular

stresses encountered in hyperglycemic states (55). Excessive or
FIGURE 3

Mechanisms of vitamin D involvement in pancreatic function. (AKT, protein kinase B; PEACK, phosphoenolpyruvate carboxykinase; G6Pase, Glucose-
6-phosphatase; AMPK, Adenosine 5’-monophosphate (AMP)-activated protein kinase; mTOR, mammalian target of rapamycin).
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prolonged exposure to nitric oxide leads to b-cell dysfunction, whereas
vitamin D induces and maintains high levels of the A20 gene protein

and reduces nitric oxide levels, thus serving to protect b-cell
function (56).
4.2 Vitamin D and immune function

Type 1 diabetes is an autoimmune disease. Vitamin D, by binding

with its receptor, reduces pro-inflammatory cytokines in immune

cells and has an immunomodulatory effect (57, 58). CD4+ T

lymphocytes are the primary immune-mediated cells in the

development of T1DM (59). Vitamin D supplementation can

downregulate cathepsin G (Cat G) expression, hindering CD4+ T

lymphocyte activation, thus enhancing pancreatic b-cell function
(60). Systemic lupus erythematosus (SLE) is an immune disease. It

has been found that IR is more prevalent in SLE patients than in

controls (61), while serum vitamin D is negatively correlated with

CD4+/CD8+ T cells (62), IFN-a levels (63), IL-17, IL-23 (64) in SLE

patients. 25(OH)D3 is further converted into 1,25(OH)2D3 in the

kidneys by 1a-hydroxylase, which is expressed by antigen-presenting

cel l s (65) , indicat ing an associat ion of the immune

microenvironment with active vitamin D production, suggesting

that vitamin D may mediate the disease process in T1DM.

Complement can trigger the contraction of CD4+ type 1 helper T

cell responses by inducing the intrinsic expression of VDR and

vitamin D-activating enzyme CYP27B1, enabling T cells to both

activate and respond to vitamin D (66). Vitamin D deficiency can

epigenetically suppress Jarid2 expression in hepatic stellate cells
Frontiers in Endocrinology 06
(HSCs) and activate the Mef2/PGC1a pathway, leading to fat

macrophage infiltration. Macrophages secrete MiR-106b-5p,

inducing downregulation of the PIK3CA/PIK3R1/PDPK1/AKT

signaling pathway, promoting fat IR (67). Vitamin D

supplementation can reduce IR in diabetic rats by lowering

phosphorylation levels of insulin receptor substrate 1 (IRS1),

leading to impaired glucose transporter 4 and reduced glucose

uptake, as well as increasing peroxisome proliferator-activated

receptor g expression and reducing nuclear factor kB
phosphorylation levels (10). In addition, vitamin D increases

insulin secretion and sensitivity by up-regulating mitogen-

activated protein kinase phosphorylase-1 (MKP-1), inhibiting

lipopolysaccharide-induced p38 phosphorylation, suppressing the

production of IL-6 and TNF-a in human monocytes (68), and

increasing the activity of the antioxidant system (69). Vitamin D

has a strong protective effect on chronic kidney diseases (70, 71). The

possible mechanism is that 1,25(OH)2D3 reduces oxidative stress by

increasing renal antioxidant capacity, inhibiting hyperglycemia-

induced cell apoptosis, preventing podocyte damage, promoting

anti-inflammatory action, and improving endothelial function (72–

74) (Figure 4). In T1DM, some patients may experience a clinical

remission period, also known as the “honeymoon phase”, after

receiving insulin therapy in the early stage of the disease, in which

the islet function of the patient may partially or completely return to

normal levels, and vitamin D may reduce the concentration of serum

TNF-a through immunomodulatory effects, thereby reducing the

inflammatory response during the honeymoon phase and prolonging

the duration of the honeymoon phase (75), but the amount of

vitamin D supplementation needs to be further studied.
FIGURE 4

Vitamin D is involved in diabetes through immunization.
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4.3 Vitamin D polymorphism and diabetes

Polymorphism in the VDR gene plays a role in the control and

progression of T1DM, with higher levels of vitamin D providing

protection for pancreatic cells (76). Polymorphisms in the 25-

hydroxylase (CYP2R1) gene, rs12794714 and rs10766196, are

associated with a higher risk of T1DM (77). It was found that

CYP2R1 mRNA expression in the livers of mice fed a high-fat diet

was significantly lower than in those fed a low-fat diet (78). As well,

an activity analysis of the isolated liver showed that obese mice

produced significantly less 25(OH)D3 than lean mice, indicating

that reduced circulating 25(OH)D3 is partly due to the decreased

expression of CYP2R1 in obese mice. The onset of T1DM might

also be related to polymorphism in the CYP27B1 gene located on

chromosome 12, where polymorphisms in the CYP27B1 gene could

lead to reduced levels of 1a-hydroxylase, thereby affecting the

conversion of vitamin D to 1,25(OH)2D3 and increasing the

susceptibility to T1DM (79). Tangjittipokin (80) found that VDR

gene-related variations of ApaI (rs7975232), TaqI (rs731236), and

BsmI (rs1544410) were negatively associated with vitamin D and

IL-10 levels in children with T1DM. Alleles of DHCR7, GC,

CYP2R1, and CYP24A1 play a synergistic role in susceptibility to

type 1 diabetes by functioning in the vitamin D pathway and serum

vitamin D levels (81). A genome-wide association Meta-analysis

study by Jiang X et al. (82) of 79,366 European individuals suggests

that CYP24A1 (rs17216707) is negatively correlated with 25(OH)

D3 levels. The correlation between VDR gene rs739837

polymorphism and susceptibility to T2DM and gestational

diabetes mellitus (GDM) (83) pointed out that the VDR gene

rs739837 polymorphism is significantly correlated with

susceptibility to T2DM. Studies in gestational diabetes mellitus

(84, 85) confirmed that single nucleotide polymorphisms (SNPs)

mutations at VDR-rs10783219 and MTNR1B-rs10830962

significantly increased the risk of GDM, ApaI-rs79785232, BsmI-

rs1544410, FokI-rs2228570 and TaqI-rs731236 are associated with

GDM occurrence in the Saudi Arabian region (Table 2).
5 Conclusion and prospects

In recent years, from D to D, the role of vitamin D in the

occurrence and development of diabetes has gained attention. The

relationship between vitamin D and the onset, progression of

diabetes, the ideal daily dosage of vitamin D supplementation,

and the optimal serum 25(OH)D3 levels for maximum benefits in

diabetes risk individuals, early-stage patients, blood sugar control,

and diabetes-related complications still require more reliable

clinical studies and basic experiments for confirmation. Current

research suggests that moderate supplementation of vitamin D can

improve the onset and progression of diabetes and its

complications, but routine large-dose supplementation is not

recommended. It is believed that the relationship between the two

will be further verified in the near future.
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40. Nóvoa-Medina YA-O, Barreiro-Bautista M, Perdomo-Quinteiro M, González-
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