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Melatonin’s effect on
hair follicles in a goat
(Capra hircus) animal model
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1College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China, 2Northern
Agriculture and Livestock Husbandry Technical Innovation Center, Chinese Academy of Agricultural
Sciences, Hohhot, China, 3Institute of Animal Husbandry, Heilongjiang Academy of Agricultural
Sciences, Harbin, China
Introduction: Melatonin can treat androgenetic alopecia in males. Goats can be

used as animal models to study melatonin treatment for human alopecia. In this

study, a meta-analysis of melatonin’s effects on goat hair follicles was pursued.

Methods: Literature from the last 20 years was searched in Scopus, Science

Direct, Web of Science and PubMed. Melatonin’s effect on goat hair follicles and

litter size were performed through a traditional meta-analysis and trial sequential

analysis. A network meta-analysis used data from oocyte development to

blastocyst. The hair follicle genes regulated by melatonin performed KEGG and

PPI. We hypothesized that there are differences in melatonin receptors between

different goats, and therefore completed melatonin receptor 1A homology

modelling and molecular docking.

Results: The results showed that melatonin did not affect goat primary follicle or

litter size. However, there was a positive correlation with secondary follicle

growth. The goat melatonin receptor 1A SNPs influence melatonin’s

functioning. The wild type gene defect MR1 is a very valuable animal model.

Discussion: Future studies should focus on the relationship between goat SNPs

and the effect of embedded melatonin. This study will provide theoretical

guidance for the cashmere industry and will be informative for human

alopecia research.
KEYWORDS

alopecia, cashmere, molecular docking, network meta-analysis, single nucleotide
polymorphism
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GRAPHICAL ABSTRACT

To clarify the suitability of goats as an animal model for melatonin treatment studies in human alopecia, literature from the past 20 years was
searched for in Scopus, Science Direct, Web of Science, and PubMed for melatonin’s effects on goat hair follicles, oocyte development in vitro, and
litter size. Three types of meta-analyses were performed, including traditional meta-analysis, network meta-analysis, and trial sequential analysis. The
hair follicle genes regulated by melatonin were analysed by KEGG and PPI. The results showed that melatonin did not affect goat primary follicles
and litter size. However, there was a positive correlation with secondary follicle growth. Goat melatonin receptor 1A SNPs affect melatonin. The
wild-type gene defect of MR1 is a very valuable animal model. Future studies should focus on the relationship between goat SNPs and the effect of
embedded melatonin.
Highlights
Fron
• Melatonin did not affect goat primary follicle and litter size.

However, there was a positive correlation with secondary

follicle growth.

• Goat melatonin receptor 1A SNPs affects melatonin to exert

its function.

• Wild-type gene defect of MR1 is a very valuable

animal model.
Introduction

Alopecia (hair loss) due to endocrine disorders has always

plagued humans (1, 2). Animal models for studying hair follicles

in humans are usually rats (3), mice (4), guinea pigs (5), rabbits (6),

and dogs (7). In addition, the goat PLP2 (proteolipid protein 2) gene

expressed only in the inner root sheath, suggesting that it may be

associated with alopecia (8). Thus, goat hair follicle research can be

applicable for human alopecia (9). It can be used as an animal

model for human alopecia research (10).

Melatonin regulates physiological activity in the whole body.

Melatonin-associated pathways possibly alleviate radiotherapy-

induced alopecia (11). A recent meta-analysis showed evidence to

support the use of melatonin to promote scalp hair growth, with

melatonin being more effective in men with androgenetic alopecia
tiers in Endocrinology 02
(12). Moreover, melatonin regulates gene expression in the hair

follicles of goats and affects hair follicle growth (13).

Melatonin affects oocyte development in humans (14); there has

been a study on goat oocyte development (15). In addition, studies

on melatonin, luzindole, and cysteamine mixed effects have also

been reported (16, 17), and such research data are suitable for

network meta-analysis.

Embedding melatonin under the skin of goats can increase

cashmere production (18, 19). Melatonin can increase goat

secondary follicle density and does not affect the growth of

primary follicle density (18, 20). On the contrary, melatonin

significantly reduces primary follicle density in goats (21, 22). It is

necessary to analyze the effect of melatonin on goat hair follicles.

This study provides theoretical guidance for the cashmere industry.
Methods

Database search strategy and
study inclusion

Three scholars searched for related studies in Scopus, Science,

Web of Science, and PubMed published between 01/01/2003 and

01/09/2023. Two searches were performed. In the first, we searched

for effects of melatonin on goat hair follicle growth. The search

terms were melatonin AND (hair follicle) AND (goat OR ram OR

ewe OR ovine). This search strategy includes hair follicle data as

well as data on regulatory genes. In the second search, we looked for
frontiersin.org

https://doi.org/10.3389/fendo.2024.1361100
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Rong et al. 10.3389/fendo.2024.1361100
effects of melatonin on goat oocyte development. The search

keywords were melatonin AND (ovine OR goat OR ewe OR ram)

AND (oocyte OR implant). Each of the three scholars worked

independently and negotiated any disagreements. Literature

mentioned random trials or what the author believes are

individuals randomly selected from a population. Literature was

included according to the following points: (1) The studied species

included goats but were not restricted to goats. (2) The writing was

in English. (3) Hair follicle growth or oocyte development was

studied in the paper. The process of study inclusion is shown

in Figure 1A.
Data extraction

Study data were extracted as continue-type data that included

the number of study individuals, observations, and SD (standard

deviation) or SE (standard error). SE was converted to SD for

extraction. If the data were in figures, the GetData Graph Digitizer

(version 2.26) was used to obtain the data (23). When extracting
Frontiers in Endocrinology 03
data of melatonin’s effect on gene expression, only the genes

mentioned in the study were obtained and the data uploaded to

the database were not used.
Traditional and network meta-analysis

A traditional meta-analysis was used to analyze hair follicle and

litter size data. Specifically, primary and secondary hair follicle

densities, cashmere yield, cashmere fiber length, and litter size were

treated as continuous data. Using ReviewManager (version 5.4), the

meta-analysis was performed according to the random model. Java

(version 1.8.0) was used to perform the trial sequential analysis

(TSA) on the above data.

Network meta-analysis data from the development of oocytes to

blastocysts were used. R software (version 4.1.2) and the “coda,”

“rjag,” and “gemtc” packages in JAGS (Just Another Gibbs Sampler,

version 4.3.0) were used for the analysis. The results of the network

meta-analysis were landscaped and processed using 3DMax

software (version, 2023).
B

C D

A

FIGURE 1

PRISMA diagram of the process of study selection and traditional meta-analysis. (A). We followed the steps to screen the retrieved literature and ended up
with 22 articles. Two articles had both hair follicle findings and litter size. Hair follicle, litter size, in vitro oocyte, and gene data performance traditional and
network meta-analysis. (B). Traditional meta-analysis of follicle density, cashmere fibre diameter, and yield. (C). Traditional meta-analysis of melatonin’s effect
on cashmere fibre length. (D). Traditional meta-analysis of melatonin’s effect on goat litter size. Black diamond block represents 95% CI.
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KEGG enrichment analysis and PPI
network analysis

For the genes regulated by melatonin, DAVID (https://

david.ncifcrf.gov) was used to procedure the KEGG enrichment

analyses. The reference species was chosen as the goat Capra hircus.

GraphPad Prism (version 9.0.2) was used to visualize the obtained data.

For the same genes regulated by melatonin procedure PPI

(protein–protein interaction networks) construction analysis,

STRING (https://cn.string-db.org/) was used to establish an

original PPI network data. The data were visualized using

Cytoscape (version 3.7.2).
Homology modelling of melatonin
receptor 1A 3D structures and
molecular docking

To elucidate the reasons for the discrepancies in the data

reported in the various studies, we hypothesized that there

are differences in melatonin receptors in different goats. SNPs

(single-nucleotide polymorphisms) were previously reported to

affect cashmere production in goats (24) through melatonin

receptor 1A (25). Five SNPs (190, 424, 577, 589 C>T, and 421

T>C) NCBI data (gene number, AF419334) were downloaded.

Each mutation was translated into an amino acid sequence, and a

homology model was created based on the Swiss model (https://

swissmodel.expasy.org/).

The ligand structure of melatonin was downloaded from

PubChem. AutoDock (version 4.2.6) conducts protein and ligand

docking and estimates the affinity. The docking results were

analyzed using PyMOL (version 2. 6. 0).
Frontiers in Endocrinology 04
Results

Study selection and characteristics

A total of 607 studies were retrieved, including 525 studies

involving hair follicles and 82 studies on oocytes. Figure 1A shows

that 22 papers were eventually obtained for this study (Table 1).

The results of effects on goat hair follicle and litter size are listed in

two papers that mentioned both hair follicles and litter size (19, 29).

Melatonin regulator goat secondary hair follicle genes are listed in

Table 2. Table 3 shows melatonin’s effect on goat oocyte

development in vitro.
Traditional meta-analysis

Figures 1B, D show that melatonin did not correlate with

primary follicle density and litter size in goats. Embedding

melatonin under the skin of goats was positively correlated with

secondary follicle density (SMD = 1.27, 95% CI = 0.31–2.22; p < 0.

001), cashmere yield (SMD = 2.35, 95% CI = 0.74–3.95; p < 0. 001),

and fiber length (Figure 1C, SMD = 2.7, 95% CI = 1.14–4.25; p < 0.

001). However, there was a negative correlation to cashmere fiber

diameter (SMD = −1.70, 95% CI = −3.1–(−0.31); p < 0. 001).
Network meta-analysis and TSA

The results of this network meta-analysis are shown in

Figures 2A, B. This includes three two-arm and two three-arm

studies. Adding melatonin to the in vitro culture medium was

positively correlated with the development of goat oocytes to
TABLE 1 Characteristics of selected studies’ effects of melatonin on goat hair.

Study and year Breed Body weight or age Embed concentration Gender Duration Number

1 #Diao, 2023a (20) Cashmere 1 day 2 mg/kg every 2 months NM 2 years 32

2 #Diao, 2023b (18) Cashmere 2, 3, 4, 5, 6, and 7 years 2 mg/kg every 2 months NM 60 days 180

3 #Liu, 2021 (26) Cashmere 2 years 2 mg/kg every 2 months Female 1 year 12

4 #Wuliji, 2006 (27) NM
2 years

10 months
18 mg, 6 weeks Female 4 months 80

5 #Yang, 2021 (28) Mongolian Cashmere 3 years 2 mg/kg every 2 months Female 2 years 24

6 #Yang, 2020 (21) YiWei White Ewe 2, 3, and 4 years 2 mg/kg every 2 months Female 8 months 24

7 #Yang, 2019 (22) Mongolian Arbace 12 days 2 mg/kg every 2 months NM 1 year 16

8 *#Wu, 2018 (19) YiWei White 37. 2 kg 2 mg/kg every 2 months Female 1 year 150

9 *#Duan, 2015 (29) YiWei White 2 years 2 mg/kg every 2 months Female 1 year 18

10 *Cetin, 2009 (30) NM 1.5–2.5 years 18 mg Female 3 months 80

11 *Zarazaga, 2012a (31) Mediterranean 50 kg 18 mg Female 7 months 32

12 *Zarazaga, 2012b (32)
Payoya

Murciano–Granadina
50 kg–80 kg 18 mg

Female
Male

3 years 1560
fr
Studies marked with # denote an effect of melatonin on goat hair follicles. Studies marked with * denote effects of melatonin on goat litter size.
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blastocysts. Neither melatonin plus luzindole nor cysteamine

showed correlations in this process.

The TSA results for cashmere yield are shown in Figure 2C. The

amount of information required for TSA is 229, and the Z-curve

crosses the monitoring boundary. Melatonin’s effects on cashmere

yield in goats are considered credible. Figure 2D shows the effect of

melatonin on goat litter size. The curve crosses the monitoring

boundary. However, the required information size was not reached.

The results of the effect of melatonin on cashmere production in

goats are considered credible. However, more research is needed to

support this conclusion.
Gene enrichment analysis and PPI
network analysis

The KEGG results of melatonin regulator genes are shown in

Figure 3A. The 19 pathways with the highest p-values were selected,

which included the MAPK signaling pathway, BMP (bone
Frontiers in Endocrinology 05
morphogenetic proteins) genes, and receptors, which are the

pathways we have been focusing on (38). The results of the PPI

network analysis are shown in Figure 3B. BMP proteins and

receptor proteins are also included.
Homology modelling of melatonin
receptor 1A 3D structures and
molecular docking

In total, five SNPs (190, 424, 577, and 589 C>T and 421 T>C) were

analyzed individually. The SNP 589 C>T has a terminator at amino

acid 197 and is not able to translate a complete protein. SNPs 190, 424,

577 C>T, and 421 T>C do not affect the higher structure of melatonin

receptor 1A. SNP 577 C>T is closer to the melatonin docking position,

and thus we were simulating ligand docking. Figure 4 shows

melatonin docking of 577 C (193Cys) and 577 T (193Arg), with no

change in the docking pocket. A total of 195 Phe hydrogen bonds were

2.1 and 2.3 A. The binding energies were 6.53 and 6.35, respectively.
TABLE 3 Characteristics of selected studies’ melatonin effects on goat oocyte in vitro.

Study
and year

Breed
Oocyte

collection
Concentration Stage IVM medium

Embryo
medium

Duration

1
Agarwal,
2018 (15)

NM Puncture 30 ng/ml IVM
TCM199 foetal
bovine serum

Cook Medical 10 days

2
Berlinguer,
2009 (16)

Sarda Ovariectomy/slice 18 mg
Implant
27 days

TCM199 estrous
goat serum

SOF 7 days

3
Saeedabadi,
2018 (36)

NM NM 1 µM, 1 nM, 1 pM IVM
HTCM199 foetal
bovine serum

CR1aa 8 days

4
Soto-Heras,
2018 (37)

Spanish
breeds

Slice
0.01 nM, 1 nM, 0.1

µM, 1 mM
IVM

TCM199 foetal
bovine serum

SOF 8 days

5
Soto-Heras,
2019 (17)

NM Slice 0.1 mM IVM
TCM199 foetal
bovine serum

SOF 8 days
f

NM, not mentioned.
TABLE 2 Characteristics of selected studies’ melatonin regulator goat secondary hair follicle genes.

Study
and year

Breed Age Concentration Duration Detected genes

1
Diao,

2023 (20)
Cashmere 1 day

2 mg/kg every
2 months

2 years
circMPP5, Ki-67, K-14, Wnt-10a, Fn1, FGF2, FGF21,

FGFR3, MAPK3

2
Diao,

2023b (18)
Cashmere 2, 3, 4, 5, 6, and 7 years

2 mg/kg every
2 months

60 days
NFkB, AP-1, COX1, COX3, SOD3, GPX1, NFF2L2,

TIMP2, TIMP3, CCL21, CXCL12

3 Liu, 2021 (26) Cashmere 2 years
2 mg/kg every
2 months

1 year
Wnt-10b, b-catenin, SFRP1, CHP2, FGF21, NTRK2,

FGF14, NFKB1, DLL3, TCHHL1

4 Liu, 2022 (13)
Mongolia
White

1 year
2 mg/kg every
2 months

1 year PDGFRA, WNT5A, BMPR1A, BMPR2

5 Lu, 2023 (33)
Mongolia
Albasi

1 year old
2 mg/kg every
2 months

1 year RORa, TCHHL1, b-catenin, SFRP1

6 Wu, 2012 (34)
Mongolia
Cashmere

1 year NM 1 year Hoxc13, b-catenin

7
Zhang,

2021 (35)
NM

Secondary hair follicles in
vitro culture

0 ng/L–5,000 ng/L 0–84 h
CTNNB1, TCF4, LEF1, C-JUN, C-MYC, CYCLIND1,

CDK6, BMP4, RORA, Noggin
NM, not mentioned.
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BA

FIGURE 3

KEGG enrichment and PPI network. (A). Melatonin-regulated gene KEGG enrichment. Orange represents the pathway; green represents the genes.
(B). PPI network of melatonin-regulated genes. Proteins are ordered by the numbers of interactions.
B

C

D

A

FIGURE 2

Network meta-analysis and TSA. (A). Network plot of melatonin’s effects on goat oocyte development in vitro. (B). Forest plot of melatonin’s effects
on goat oocyte development in vitro. (C). Trial sequential analysis (TSA) of cashmere yield. The orange line represents the horizontal line in the
traditional sense. The TSA mathematical expected value is 229. (D). TSA of melatonin’s effect on goat litter size.
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Discussion

Androgenetic alopecia is a widespread problem, and hair follicle

growth studies are key to treating alopecia (39, 40). Melatonin may be

a potential treatment for androgenetic alopecia (12). Rats (3), mice

(4), guinea pigs (5), rabbits (6), and dogs (7) are animal models for

studying human hair follicles. Comparative studies on the impact of
Frontiers in Endocrinology 07
diacylglycerol O-acyltransferase 1 (DGAT1) on mouse and dog

alopecia suggest that mice may be an especially sensitive species (41).

Melatonin affects hair regeneration

Melatonin promotes hair follicle growth in humans (12) and

goats. Primary hair follicles are generally considered the hair that has
FIGURE 4

Homology modelling and ligand docking of melatonin receptor 1A structure. 577T and 577C represent the T>C mutation, which results in the amino
acid chain 193Cys>Arg. The top and middle show that this mutation does not cause a change in the higher structure of the protein. Below is a
magnification of melatonin receptor 1A structures and ligand docking binding pocket; the hydrogen bonding site is 195Phe, which does not involve
the 193rd position on the amino acid chain.
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already developed. The secondary follicles are the newly grown hairs.

The results of the present study showed that there was no correlation

between melatonin and goat primary follicle density. However,

melatonin was positively correlated with goat secondary follicle

density. This suggests that melatonin can promote hair regrowth.

Melatonin promotes the expression of MTNR1A (melatonin

receptor 1A) in human and rex rabbit hair follicles (42, 43) and also

enhances the expression of goatWnt10b and beta-catenin (26). The

signaling pathways involved in the regulation of hair follicle growth

by melatonin are the PI3K/AKT signaling (43), Hippo, TGF-beta,

MAPK signaling (13), and AKT/GSK3beta/beta-catenin signaling

pathways (44). The results of the present study suggest that the

MAPK signaling pathway is also at the forefront of KEGG

enrichment. We have been focusing on the effects of the signaling

pathways on reproduction (38). In addition, oral melatonin exerts a

systemic effect on all cells, tissues, and organs, and it plays a key

regulatory role in female reproduction (45). Therefore, the effect of

embedded melatonin on goat litter size was considered in this study.
Melatonin and goat litter size

Adding melatonin in vitro can promote oocyte development in

humans (14), mice (46), bovines (47), sheep (48), and swine (49).

Our network meta-analysis results also showed that melatonin

could promote goat oocyte development in vitro. However,

melatonin did not affect goat litter size. There are three possible

reasons for this. First, embedded melatonin enters the bloodstream

then passes through the blood-follicle barrier (BFB), where the
Frontiers in Endocrinology 08
concentration changes dramatically. Second, melatonin affects

sheep litter size, not through direct action, but by regulating

hormonal changes in the whole body (48). Third, melatonin may

play different roles at different stages of oocyte development. An

example of a similarity is that follistatin inhibits oocyte maturation

before meeting sperm. However, it promotes zygote development to

blastocysts after fertilization (38).

We previously reported that melatonin can be positively

correlated with sheep litter size (48). However, the results of our

analysis did not correlate with goat litter size. We believe that this is

because the purposes of the experiments were different and the

treatments of embedded melatonin were different. Goats embedded

with melatonin produced more cashmere if it was embedded for 6

months at 2 mg/kg every 2 months (18, 28). Sheep were generally

embedded with melatonin 35 days to obtain more lambs (48).
Comparative analysis of melatonin on
human and goat hair follicle
growth promotion

Figure 5 compares the promotion of hair follicles by melatonin

in humans and goats, which can provide more reference for goats as

a model animal. Melatonin regulates both reproduction and

alopecia in humans (12, 45). Promotion of secondary hair follicle

growth has also been obtained in studies on goats (13). Melatonin

plays a promotional role during in vitro maturation of goat and

human oocytes (14, 17). Appropriate oral administration melatonin

can enhance whole-body physiology. For example, it improves sleep
FIGURE 5

Effect of melatonin on hair follicle growth in humans and goats. Melatonin promotes hair follicle growth in humans and secondary hair follicle
growth in goats. Melatonin promotes human and goat oocyte competence under in vitro culture conditions. That increase development rate of
oocyte to embryo. Melatonin regulates the human reproductive system.
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and boosts immunity. However, excessive melatonin may lead to

depression (50).
Effect of goat melatonin receptor 1A SNPs
on experimental results

Melatonin regulates the body’s biological clock and sleep

rhythms by binding to receptors. Melatonin receptors 1A and 1B

(MT1 and MT2) are members of the family of G protein-coupled

receptors (GPCRs)) (51). MT3 (quinone reductase 2) has low

binding affinity with melatonin (52). Melatonin receptor 1A and

1B genes are differentially expressed at different locations in the

brain and may perform different physiological functions (53). We

investigated the SNPs and ligand docking of melatonin receptor 1A

and found that 589 C>T has a terminator at the 197th amino acid.

That leads to the loss of function of melatonin receptor 1A, which

may lead to uncertain results if such goat individuals are mixed into

experimental groups. This could also explain the inclusion of

literature where opposite results were seen. Future studies should

screen goat SNPs before embedding melatonin. More studies focus

on SNPs of human melatonin 1A receptors (54). Goat wild-type

genes defective for MR1 can be used as an animal model to study

alopecia (24).
Limitations

Melatonin can interact with enzymes, molecular channels,

transporters, and signaling molecules to perform physiological

functions (45, 55). This study only considered melatonin receptor

1A, and this has some limitations. In addition, there is very limited

research on human secondary follicles and melatonin. This will also

be a limitation for goats as a research model for human alopecia.

Intestinal melatonin concentrations were 400 times higher than

those of the pineal gland (56), with uncertainty in the results when

the effect of intestinal flora was ignored. For our inclusion study,

both experimental and control groups were under the same feeding

management conditions, and we defaulted to a negligible effect of

intestinal flora. For the same reason, whether oral administration of

melatonin in humans and embedded melatonin behind the ears of

goats would have the same effect also needs further investigation

because oral magnesium sulphate administration (57) can achieve

completely different pharmacological effects than injection (58).
Conclusion

Goats can be used as an animal model for human alopecia

research. Melatonin does not affect goat primary follicle or litter

size. However, there is a positive correlation with secondary follicle

growth. Melatonin was positively correlated with the development
Frontiers in Endocrinology 09
competence of goat oocytes. Goatmelatonin receptor 1A SNPs affect

melatonin to exert its function. The wild-type gene defect of MR1 is

a valuable animal model. Future studies should focus on the

relationship between goat SNPs and the effect of embedded

melatonin. This study can provide a reference for improving

cashmere production and a suggestion for animal models of

human alopecia.
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