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Background: To clarify the causal relationship between gut microbiota and

diabetic nephropathy (DN), we employed Mendelian randomization (MR).

Despite a strong correlation observed, establishing causality is still unclear. By

utilizing MR, we aimed to investigate this relationship further and shed light on

the potential causal effect of gut microbiota on DN.

Methods: Genetic instrumental variables for gut microbiota were obtained from

a GWAS with 18340 participants. DN summary statistics (1032 cases, 451248

controls) were sourced from a separate GWAS. The primary analysis used the

inverse-variance weighted (IVW) method. Reverse MR analysis was conducted to

explore reverse causation. Rigorous sensitivity analyses were performed to

ensure the resilience and reliability of the study’s findings.

Results: We found two bacterial traits associated with an increased risk of DN:

genus LachnospiraceaeUCG008 (OR: 1.4210; 95% CI: 1.0450, 1.9322;

p = 0.0250) and genus Terrisporobacter (OR: 1.9716; 95% CI: 1.2040, 3.2285;

p = 0.0070). Additionally, phylum Proteobacteria (OR: 0.4394; 95% CI: 0.2721,

0.7096; p = 0.0008) and genus Dialister (OR: 0.4841; 95% CI: 0.3171, 0.7390; p =

0.0008) were protective against DN. Sensitivity analyses consistently supported

these results. In the reverse MR analysis, no statistically significant associations

were observed between DN and these four bacterial traits.

Conclusions: Our analyses confirmed a potential causal relationship between

certain gut microbiota taxa and the risk of DN. However, additional studies are

required to elucidate the underlying mechanisms through which gut microbiota

influences the development of DN.
KEYWORDS
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Background

Diabetes is a globally prevalent disease with high rates of

incidence and mortality, affecting over 10.5% of the population in

2021 (1). Diabetic nephropathy (DN) is the most common

complication among individuals with diabetes, impacting around

40% of those affected (2). DN refers to kidney damage caused by

diabetes and its prevalence is on the rise due to increasing rates of

diabetes and obesity (3). Unfortunately, effective treatment options

for DN are limited. Lifestyle interventions and medication

management for blood sugar, blood pressure, and lipid control

are currently the main strategies for managing the condition (4, 5).

The pathogenesis of DN involves complex interactions

between genetic and environmental factors that are not yet fully

understood (6). Recent studies have indicated that the gut

microbiota may play a significant role in the development of

DN (7). The concept of the gut-kidney axis, introduced in 2011,

highlighted the influence of the intestinal tract on chronic kidney

disease (CKD). Researchers have observed specific microbial

changes in DN patients, such as a reduction in Roseburia

intestinalis and an increase in Bacteroides stercoris (8). In a

comprehensive analysis of fecal samples, enriched genera like

Klebsiella, Citrobacter, and Escherichia coli were associated with

DN, while Roseburia was found to be decreased (9). Variations in

the abundance and diversity of gut microbiota have also been

observed across different stages of DN, with specific genera like

Shigella, Oscillatoria, and Hemophilus potentially serving as

microbial biomarkers for diagnosing DN (10). These findings

provide valuable insights into the relationship between the gut

microbiota and DN, opening doors for future research and

potential therapeutic interventions.

The intricate relationship between the gut microbiota and DN

has been acknowledged, but establishing a definitive causal link

remains challenging. Mendelian randomization (MR) analysis has

emerged as a robust approach to address this challenge. MR helps to

avoid confounding factors by utilizing genetic variants as

instrumental variables (IVs). These genetic variants are randomly

allocated during meiosis and are assumed to be independent of

confounders. By leveraging these genetic variants, MR provides an

inherent control for confounding, similar to a randomized

controlled trial. Therefore, the associations reported in our study

are less likely to be influenced by confounding bias or reverse

causation (11).

To unravel the complex interplay between the gut microbiota

and DN and identify specific pathogenic bacterial groups, a two-

sample MR analysis was conducted using summary data from

genome-wide association studies (GWAS). This approach

provides more reliable and nuanced insights by using genetic

variation as a natural experiment, overcoming limitations

associated with observational studies and establishing a stronger

foundation for inferring causality. This research represents a

significant advancement in understanding the complexities of the

gut microbiota’s role in DN and contributes valuable knowledge to

the field of diabetes-related complications, paving the way for

targeted interventions.
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Methods

Data sources

This study employed a comprehensive genome-wide meta-

analysis conducted by the MiBioGen consortium, involving 18340

individuals from mixed ancestry, to investigate the genetic

variations associated with gut microbiota composition (12). The

genetic summary statistics specific to DN were derived from a

GWAS with 1032 cases and 451248 controls of European ancestry

(13, 14). Rigorous adjustments were made for various factors,

including age, sex, technical covariates, and genetic principal

components. After excluding unidentified gut microbes, the

analysis focused on 196 taxa out of the initially considered 211

taxa. The study’s design, outlined in Figure 1, establishes a flow

diagram for exploring the potential causal link between gut

microbiota composition and DN. Ethical review and approval was

not required for the study on human participants in accordance

with the local legislation and institutional requirements. Ethical

approvals or participant consents had been obtained from original

GWAS studies. Detailed information on data sources and

characteristics can be found in Table 1.
Instrumental variables

Instrumental variables (IVs) used for MR analysis should satisfy

three key assumptions: 1) IVs are strongly associated with the

exposure; 2) IVs should not associated with confounding factors;

and 3) IVs affect the outcome solely through its impact on the

exposure.(Figure 2) These assumptions form the foundation of MR

analysis, which utilizes genetic variants as tools to infer causal

connections between exposures and outcomes (15).

The selection of IVs for investigating DN involved a rigorous

process. A stringent p-value threshold (p < 1.0 x 10-5) was applied,

ensuring the IVs were highly associated with the exposure.

Independence among IVs was established using an LD threshold

(r2 < 0.001) and a clumping window of 10,000 kb, implemented

with the “TwoSampleMR” package and 1000 Genomes EUR data.

Instrument strength was assessed using F-statistics, with the

following equation: F = b2/se2, with values above 10 indicating

minimal weak instrumental bias (16). In reverse MR analysis, a

more stringent p-value threshold (p < 5 x 10-8) was applied for

selecting IVs associated with DN. These stringent criteria and

advanced statistical measures were employed to identify reliable

IVs and enhance the robustness of MR analyses when investigating

causal relationships with DN. Proxy SNPs is to represent or

substitute for the variations associated with the SNP of interest,

aiding researchers in assessing the causal relationship between that

SNP and specific traits (17). By setting the r2 threshold to 0.8, we

ensure a high degree of association between the proxy SNP and the

target SNP. Palindromic SNP refers to a single nucleotide

polymorphism that exhibits a palindrome structure, where the

nucleotide sequence reads the same forward and backward (17).

For our study, palindromic SNPs with intermediate effect allele
frontiersin.org

https://doi.org/10.3389/fendo.2024.1361440
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ye et al. 10.3389/fendo.2024.1361440
frequencies (effect allele frequency between 0.3 and 0.7) or SNPs

with incompatible alleles were excluded from the analysis.
Statistical analysis

To assess the potential causal connection between gut

microbiota and DN, we employed a variety of analytical methods,

including the IVW method, weighted median method, MR-Egger

regression, and MR-PRESSO test. The IVW method which

combined causal estimates of individual IVs was chosen as the

primary analysis. Sensitivity analyses were conducted to ensure the

reliability of our findings (18). MR-Egger regression was utilized to

detect potential horizontal pleiotropy, assuming an instrument

strength independent of direct effect (InSIDE). The intercept of

MR-Egger reflected degree of horizontal pleiotropy and a p-value

greater than 0.05 indicated no significant horizontal pleiotropy was

presented (18). The MR-PRESSO test was employed to detect

horizontal pleiotropic outliers and correct any potential

distortions (19). Heterogeneity was assessed by Cochran’s Q

value. Reverse MR analysis was selectively utilized to investigate

the influence of DN on gut microbiota. Scatter plot and forest plots

were drawn to visualize the causal effect of each individual IVs. All

MR analyses were conducted using R version 4.3.0 with the
Frontiers in Endocrinology 03
“TwoSampleMR” package, ensuring consistency and reliability

throughout the analytical procedures.
Results

Main results of the 196 bacterial traits with
the risk of DN

F-statistics of SNPs associated with 196 bacterial traits ranged

from 14.5893 to 88.4300 (20). Supplementary Tables 1 provides

information of IVs associated with gut microbiota. Supplementary

Table 2 showed association between these IVs and DN.

Supplementary Table 3 presented MR results for all traits and their

association with DN risk, revealing four traits with suggestive

associations using the IVW method. IVW method identified four

bacterial traits associated with DN risk (Figures 3, 4 and

Supplementary Table 4). The genetically predicted relative

abundance of four taxa, namely LachnospiraceaeUCG008,

Terrisporobacter, Dialister, and phylum Proteobacteria was assessed.

Employing the IVW method, a positive correlation emerged

between genetically predicted LachnospiraceaeUCG008 and DN

risk (OR = 1.4210; 95% CI: 1.0450, 1.9322; P = 0.0250). Both MR-

PRESSO and MR-Egger analyses detected no outliers or directional
TABLE 1 Details of the datasets used in the analyses.

Exposure or outcome Sample size Population Data source PMID

Human gut microbiome 18,340 Mixed https://mibiogen.gcc.rug.nl/ 33462485

Diabetic nephropathy 452,280 European https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018832/ 34594039
FIGURE 1

Mendelian randomization flowchart for gut microbiota and diabetic nephropathy.
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pleiotropic effects. However, despite these findings, both MR Egger

and weighted median analyses did not substantiate a causal link

between LachnospiraceaeUCG008 and DN. Similarly, the genus

Terrisporobacter exhibited a positive association with DN using the

IVWmethod (OR: 1.9716; 95% CI: 1.2040, 3.2285; P = 0.0070). MR-

PRESSO and MR-Egger analyses revealed no outliers or horizontal

pleiotropy, yet only the weighted median analysis supported a

causal positive relationship (OR: 2.3745; 95% CI: 1.2828, 4.3953;

P = 0.0059). Both MR Egger and weighted median analyses did not

substantiate a causal link between LachnospiraceaeUCG008 and

DN (Supplementary Table 5, Supplementary Table6).

Contrary to previous findings, the genus Dialister exhibited a

negative association with the risk of DN when assessed using the

IVW method (OR = 0.4841; 95% CI: 0.3171, 0.7390; P = 0.0008).

MR-Egger and MR-PRESSO tests indicating no evidence of

directional pleiotropy or pleiotropic effects. Direction of result of

MR Egger and weighted median analyses consistent with IVW

method. Similarly, the phylum Proteobacteria showed a negative

association with DN risk according to the IVW method (OR =

0.4394; 95% CI: 0.2721, 0.7096; P = 0.0008). No indications of

directional pleiotropy or outliers were observed in MR-Egger or

MR-PRESSO tests (Supplementary Table 5, Supplementary

Table 6). Result of weighted median method support the finding

of main analysis. Additional analyses presented in Supplementary

Table 7 demonstrated no significant heterogeneity among gut

microbiota IVs.
The result of reverse MR analysis

The associations between four bacterial traits and DN were

investigated through reverse MR analyses. Utilizing the inverse

variance-weighted (IVW) method, no statistically significant links

were observed: genus LachnospiraceaeUCG008 (OR: 0.9901; 95%

CI: 0.9481, 1.0338; P = 0.6508), phylum Proteobacteria (OR: 1.0208;

95% CI: 0.9936, 1.0487; P = 0.1354), genus Dialister (OR: 1.0161;

95% CI: 0.9829, 1.0505; P = 0.3457), and genus Terrisporobacter

(OR: 1.0131; 95% CI: 0.9687, 1.0596; P = 0.5698). Neither MR-

Egger nor weighted median analyses provided substantial support

for a causal relationship involving any of the investigated traits.

Sensitivity analyses were conducted to assess the stability of these
Frontiers in Endocrinology 04
findings, reinforcing the absence of a discernible causal link between

the examined bacterial traits and the risk of developing DN

(Supplementary Table 8, Supplementary Table 9).
Discussion

The current research primarily focuses on identifying

differences in the abundance of certain bacterial genera between

disease groups and healthy individuals, but direct causal

relationships between gut microbiota and diseases are still lacking.

Our study employed Mendelian randomization to demonstrate that

LachnospiraceaeUCG008 and Phylum Proteobacteria are risk

factors for DN, while Dialister and Terrisporobacter are

protective factors.

LachnospiraceaeUCG008, a member of the Lachnospiraceae family,

is known for fermenting plant-derived polysaccharides into short-chain

fatty acids and ethanol. Diabetes plays a crucial role in initiating CKD

and influencing the progression of renal failure and cardiovascular

complications (21). Disrupted glucose metabolism is significantly

associated with the bacterial family Lachnospiraceae, which may

explain its proliferation. Another study found a positive correlation

between the presence of LachnospiraceaeUCG008 and the secretion of

inflammatory factors (IL-6, HS-CRP, and TNF-a), suggesting a

potentially harmful role in inflammation management (22, 23).

Phylum Proteobacteria is positively associated with DN in this

study. Previous studies have investigated that the overgrowth of

Proteobacteria has been associated with metabolic syndrome and

inflammation (24). The main characteristics of type 2 DM are

hyperglycemia and insulin resistance, and the chronic inflammation

state exists throughout the whole progression of type 2 DM (25, 26).

The phylum Proteobacteria may be one of the variables influencing

DN. A study has discovered that patients with DN exhibit a greater

diversity of gut bacteria compared to a control group (27). This

research also pointed out an elevated presence of microbes from the

Proteobacteria phylum in individuals with DN. Furthermore, recent

findings have shown that an imbalance in the intestinal microbiome

can lead to a malfunction in the intestinal barrier and bacterial

translocation (28). This chain of events can ultimately induce a state

of continuous systemic inflammation in patients suffering from

CKD and finally evolve into DN.

Currently, the impact of Dialister and Terrisporobacter on serum

lipid concentrations need to be better understood due to insufficient
frontiersin.org
FIGURE 2

Assumptions in MR studies: a brief overview.
FIGURE 3

Forest plot: associations of genetically determined bacterial traits
with diabetic nephropathy risk.
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research. We noticed that both Dialister were relative to glucose

metabolism. At the genus/species levels, a decreased abundance of

Dialister, was observed in the disease groups in at least two studies,

which is consistent with our findings (29, 30). Diego A. Esquivel-

Hernández et al. pointed out that Terrisporobacter played an

important role in diabetes mellitus. However, further investigations

into the Terrisporobacter genus are required to elucidate these

observed correlations’ mechanisms and causal relationships. For the

first time, our findings confirm the protective potential of Dialister

and Terrisporobacter in humans, implying that this taxon could be a

novel biomarker. However, the underlying mechanism should be

further explored.

The human gut microbiome is a multifaceted ecosystem within

the body. It hosts not only bacteria but also viruses, fungi, and

archaea. Research has uncovered encouraging links between certain

fungal species and kidney health, specifically pointing to their

association with the estimated glomerular filtration rate (eGFR),

which may imply a beneficial role for these fungi in kidney

function. Furthermore, connections have been observed between

specific fungal genera, including Septoria, Nakaseomyces, and

Saccharomyces, and blood pressure regulation, notably in relation

to diastolic blood pressure. These findings suggest that these fungi
Frontiers in Endocrinology 05
could be influencing the mechanisms that control blood pressure

(31, 32). Research has also documented significant interactions

between bacteria and viruses within the gut, which are linked

with both health and disease states. Evidence from studies

indicates that Type 2 Diabetes (T2D) and DN are marked by

alterations in the diversity and taxonomic makeup of gut viruses

when juxtaposed with healthy individuals. A notable reduction in

viral diversity, shifts in particular viral species, a decrease in various

viral functions, and interruptions in the interplay between viruses

and bacteria all point to a crucial role for the gut virome in

contributing to the onset of T2D and DN (33).

Several limitations should be acknowledged in this study. Firstly,

the majority of participants in the GWAS were of European descent,

limiting the generalizability of the findings to other racial or ethnic

populations. Secondly, the IV selection process included a less

stringent p-value threshold (p< 1.0 × 10-5) to obtain adequate IVs.

However, this approach may introduce false positives or miss

significant genetic variants associated with the bacterial traits, so

using a traditional genome-wide significance level (p< 5 × 10-8) for

IVs selection would enhance the reliability of the results. Lastly, the

study did not explore DN’s subtypes or specific characteristics. DN is

a complex and heterogeneous condition, and investigating
B

C D

A

FIGURE 4

Scatter plot illustrating the associations between four bacterial traits on the risk of DN. (A) Causal effect of genus.LachnospiraceaeUCG008 on DN;
(B–D) Causal effect of 3 other bacterial traits on DN.
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associations with bacterial traits in different DN subtypes or clinical

features is crucial. These limitations underscore the need for future

research with larger GWAS datasource.
Conclusion

Th r o u g h MR s t u d i e s , w e d em o n s t r a t e d t h a t

LachnospiraceaeUCG008 and Phylum Proteobacteria are risk

factors for DN, while Dialister and Terrisporobacter are

protective factors. This discovery highlights the importance of

exploring the underlying mechanisms responsible for these

associations. Moving forward, it is crucial for future research to

prioritize investigating these mechanisms and developing targeted

interventions based on these findings. Our research has shed light

on the impact of altered diversity in the gut microbiota on DN,

emphasizing the need for further exploration in this area.
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28. Rysz J, Franczyk B, Ławiński J, Olszewski R, Ciałkowska-Rysz A, Gluba-Brzózka
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