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Ferroptosis-related biomarkers
for adamantinomatous
craniopharyngioma treatment:
conclusions from machine
learning techniques
Ying Feng, Zhen Zhang, Jiahao Tang, Yan Chen, Dan Hu,
Xinwei Huang and Fangping Li*

Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University,
Shenzhen, China
Introduction: Adamantinomatous craniopharyngioma (ACP) is difficult to cure

completely and prone to recurrence after surgery. Ferroptosis as an iron-

dependent programmed cell death, may be a critical process in ACP. The study

aimed to screen diagnostic markers related to ferroptosis in ACP to improve

diagnostic accuracy.

Methods: Gene expression profiles of ACP were obtained from the gene

expression omnibus (GEO) database. Limma package was used to analyze the

differently expressed genes (DEGs). The intersection of DEGs and ferroptosis-

related factors was obtained as differently expressed ferroptosis-related genes

(DEFRGs). Enrichment analysis was processed, including Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO),

gene set enrichment analysis (GSEA), and Gene Set Variation Analysis (GSVA)

analysis. Machine learning algorithms were undertaken for screening diagnostic

markers associated with ferroptosis in ACP. The levels of DEFRGs were verified in

ACP patients. A nomogram was drawn to predict the relationship between key

DEFRG expression and risk of disease. The disease groups were then clustered by

consensus clustering analysis.

Results: DEGs were screened between ACP and normal samples. Ferroptosis-

related factors were obtained from the FerrDb V2 and GeneCard databases. The

correlation between DEFRGs and ferroptosis markers was also confirmed. A total

of 6 overlapped DEFRGs were obtained. Based on the results of the nomogram,

CASP8, KRT16, KRT19, and TP63 were the protective factors of the risk of disease,

while GOT1 and TFAP2C were the risk factors. According to screened DEFRGs,

the consensus clustering matrix was differentiated, and the number of clusters

was stable. CASP8, KRT16, KRT19, and TP63, were upregulated in ACP patients,

while GOT1 was downregulated. CASP8, KRT16, KRT19, TP63, CASP8, and GOT1
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affect multiple ferroptosis marker genes. The combination of these genes might

be the biomarker for ACP diagnosis via participating ferroptosis process.

Discussion: Ferroptosis-related genes, including CASP8, KRT16, KRT19, TP63,

and GOT1 were the potential markers for ACP, which lays the theoretical

foundation for ACP diagnosis.
KEYWORDS

Adamantinomatous craniopharyngioma, machine learning, ferroptosis ,
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1 Introduction

Craniopharyngioma (CP) is a rare epithelial neoplasm,

accounting for about 2% to 5% of primary intracranial tumors (1,

2). According to histological typing, there is a higher percentage of

adamantinomatous craniopharyngiomas (ACP) compared with

papillary craniopharyngioma (PCP) (3). Due to its unique

location, complications, such as hypothalamic dysfunction,

endocrine deficiencies, and visual impairment result in a low

survival rate of CP patients (4). CP has malignant outcomes.

Radiotherapy, stereotactic radiosurgery, internal irradiation

therapy, and chemotherapy for the treatment of malignant

tumors are used as treatment for craniopharyngiomas (5, 6).

However, the risk of high recurrence rates and complications is

always present (7). More effective treatments need to be researched.

Molecular biology techniques provide more theoretical support

for genetic alterations in CPs, facilitate the identification of different

biomarkers, and offer new perspectives for target treatment (8). As

reported in a previous study, mutations in the Catenin Beta 1

(CTNNB1) cause the deposition of b-chain proteins in the

cytoplasm of the nucleus, which activates the Wingless-Type

MMTV Integration Site Family (WNT)/b⁃catenin signaling

pathway, leading to ACP occurrence (9). b⁃catenin mutations

activate the WNT pathway and cause alterations in the MEK/ERK

pathway, resulting in proliferation and invasion of ACP cells (10).

These ACP-specific genes have expanded therapeutic selectivity and

provided the basis for individualized treatment. Further translational

research and clinical trials are in progress, and more effective targets

are needed to provide a theoretical basis for drug development.

Ferroptosis is an iron-dependent and programmed cell death

distinct from apoptosis, necrosis, and autophagy (11, 12). In recent

years, it plays an important role in a variety of diseases, including

cancer (13), neurodegeneration (14) and ischemic organ damage

(15). Although ferroptosis has been studied in various diseases, its

mechanism in ACP remains unclear. Traditional methods for marker

screening included single-factor statistical analysis, multi-factor

statistical analysis, and single machine learning methods (16).

Weak screening ability, the complex panel of markers, and poor

accuracy of markers limited the screening ability. To screen potential
02
biomarkers with high sensitivity, accuracy, and stability, multiple

algorithms of machine learning methods for marker screening were

applied (17). Machine learning algorithms have been used to screen

precise biomarkers for the treatment of various diseases (18). In this

study, we screened differently expressed ferroptosis-related genes

(DEFRGs) via machine learning techniques, aiming to provide a

ferroptosis-related therapeutic target and further lay the theoretical

foundation for the ACP treatment.
2 Materials and methods

2.1 Data collection

Gene expression profiles, including GSE68015 (19) and

GSE94349 (20) were obtained from the gene expression omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Therefore,

the GSE68015 database contains 15 ACP samples and 16 normal

brain tissue samples. The GSE94349 database contained 9 ACP and

17 normal brain tissue samples. Using the “sva” R package, we

merged the two datasets. There are 24 ACP and 33 normal brain

tissue samples. The platform was Affymetrix HG-U133plus2 chips

(Platform GPL570). Through the “sva” R package, the two data sets

were merged and normalized. To eliminate the batch effect, we

normalized the gene expression matrices of the two datasets and

removed the genes that were missing from each other. The ComBat

function of the SVA package in R was used to eliminate the

batch effect.
2.2 Screening of DEFRGs

Limma package of R language was used to screen different

expressed genes (DEGs) between 24 ACP and 33 normal brain

tissue samples with the threshold of |LogFC| > 2 and P < 0.05. Then,

the ggVolcano package and TBtools were used to show the heatmap

and volcano plot, respectively. We obtained ferroptosis-related

factors from the databases of FerrDb V2 (zhounan. org/ferrdb/

current/) and GeneCard [GeneCards - Human Genes | Gene
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Database | Gene Search (weizmann. ac. il)]. Then, the intersection

of DEGs and ferroptosis-related factors was obtained as DEFRGs

for further analysis, which was shown by the Venn diagram.

Furthermore, protein-protein interaction (PPI) analysis of

DEFRGs was conducted based on the STRING website (STRING:

functional protein association networks (string db. org) to

demonstrate the regulatory relationships.
2.3 Enrichment analysis of DEGs

According to the database of DAVID (http://david.ncifcrf.gov/), the

candidate DEFRGs were processed for GO annotations. FunRich

tool (http://www.funrich.org/) was undertaken for the Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis. Disease

Ontology (DO) enrichment was conducted via OmicShare tools

(www.omicshare.com) The enrichment list with a P-value < 0.05

was screened with statistical significance. Msigdb database of gene

set enrichment analysis (GSEA, gsea-msigdb.org) was used to

analyze the enriched KEGG pathways. We used the GSVA

package of R software to analyze up- and down-regulated DEGs.
2.4 Machine learning techniques for
DEFRG screening

Least absolute shrinkage and selection operator (LASSO) and

support vector machine recursive feature elimination (SVM-RFE)

are two important algorithms of machine learning techniques.

Lasso linear regression (21–23) is capable of feature selection and

regularization. The basic principle is to add the absolute value of the

model weight coefficients to the loss function. The overfitting of the

model is prevented and the generalization ability of the model is

increased by reducing the weights and lowering the weight values.

The SVM-RFE algorithm (24) is a combination of SVM and RFE

algorithms. Importance assessment of features was performed by

SVM model and unimportant features were eliminated using the

iterative process of RFE. The SVM-RFE algorithm was based on the

principle of maximum interval of SVM, and scores of each feature

are ranked by model training samples. The features with the

smallest feature scores were removed using the RFE algorithm in

a step-by-step iterative manner. Then, the remaining features were

used to train the model again for the next iteration, and the optimal

feature combination was selected. In this study, we used these

algorithms to screen DEFRGs. e1071 and glmnet packages were

used for SVM-RFE and LASSO algorithms, respectively. The

screened genes were characterized by higher discriminative power

and variable, respectively. The overlapped genes were obtained as

key DEFRGs. Correlation analysis between DEFRGs was

undertaken, and visualized by ggplot 2.
2.5 Patients and tissue collection

The study was approved by the Medical Ethics Committee of

The Seventh Affiliated Hospital of Sun Yat-sen University
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(2019SYSUSH-020). A total of 35 ACP patients were included.

All patients were hospitalized and underwent surgery in our

hospital from Mar 2018 through May 2022, and they did not

receive radiotherapy and chemotherapy treatments. A total of 10

normal brain samples as controls were obtained by autopsies. All

patients or their family were informed and consented. ACP and

control tissues were obtained and refrigerated at −80°C.
2.6 Quantitative polymerase chain reaction
(Q-PCR) assay

Purlink RNA Mini assay kit (Thermo Fisher Scientific, Waltham,

MA, USA) was used for isolating the total RNA. Then, the obtained

RNAwas reversed and transcribed into complementary DNA (cDNA).

The primers were designed and obtained from Sangon Biotech

(Shanghai, China). These are shown as follows:
CASP8, (F) 5′-ATGGCTACGGTGAAGAACTGCG-3′,
(R) 5′-TAGTTCACGCCAGTCAGGATGC-3′;
GOT1, (F) 5′-CTGGGAGTGGGAGCATAT-3′,
(R) 5′-CAAGGGCAAGACGAGAAG-3′;
KRT16, (F) 5′- GAGATCAAAGACTACAGCCC-3′,
(R) 5′-CATTCTCGTACTTGGTCCTG-3′;
KRT19, (F) 3’-GCACTACAGCCACTACTACACGA-5’,

(R) 3’-CTCATGCGCAGAGCCTGTT-5’;

TFAP2C, (F) 5′-ATCGAAAAATGGAGGCCGGT-3′,
(R) 5′-CGGCTTCACAGACATAGGCA-3′;
TP63 (F) 5’-CAATGGCTGGAGACATGAATGGACTCA-3’,

(R) 5’-CTGCCTTCTGTGAGCCAGCTTATCAACC-3’.
The SuperReal PreMix Color kit (Tiangen, Beijing, China) was

applied to detect the expressions of the above genes. The 2-DDCt was

applied to show the expression levels of key DEFRGs. b-actin was

used as a reference.
2.7 Enzyme-linked immunosorbent
assay (ELISA)

Ferroptosis markers, including SLC40A1, NFE2L2, HSPB1,

GPX4, CHAC1, PTGS2, TF, TFRC, and FTH1 were detected

using ELISA kits (Multi Sciences Co., Ltd., China) according to

the instructions. The steps were as follows. A total of 20 mg of fresh

tissue was obtained and used to detect the expression levels of

ferroptosis markers, including SLC40A1, NFE2L2, HSPB1, GPX4,

CHAC1, PTGS2, TF, TFRC, and FTH1. The homogenizing medium

was added and centrifuged at 4°C, 1500×g for 10 min. The middle

layer was aspirated for the experiment. Specific anti-mouse

antibodies were pre-coated on an enzyme-labeled plate. The wells

of the plate were filled with a standard, the sample to be tested, and a

biotinylated detection antibody. After incubation, the unbound

antibody was removed and horseradish peroxidase-labeled

streptavidin (Streptavidin-HRP) was added. TMB was added and
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the color was developed avoiding light. After color development,

samples were detected by Automatic Microplate Reader

(MuhiskanMk3, Thermo Labsystems Ltd., USA).
2.8 Statistical analysis

R (version 4.1.2) was used for statistical analyses. Receiver operating

characteristic (ROC) curves were applied to validate the accuracy of

machine learning algorithms. Student t-test was used for comparison

between the two groups. P < 0.05 was the threshold of significance. All

experiments were repeated more than 3 times. According to the

multivariate Cox proportional hazards regression model, a nomogram

was drawn to predict the relationship between key DEFRG expression

and risk of disease. The disease groups were clustered by consensus

clustering analysis. The correlation analysis between 6 genes with 9

Ferroptosis related markers, including SLC40A1, NFE2L2, HSPB1,

GPX4, CHAC1, PTGS2, TF, TFRC, and FTH1 (25), was calculated

using the Pearson correlation method. The statistical software used was

Statistical Package for the Social Sciences (SPSS) 20.0.
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3 Results

3.1 Identification of DEFRGs

GSE68015 and GSE94349 were obtained from the GEO

database (Home - GEO - NCBI (nih.gov)). GSE68015 contains 15

ACP and 16 normal brain tissue samples. GSE94349 contains 9

ACP and 17 normal brain tissue samples. Using the “sva” R

package, we merged the two datasets and normalized them.

According to the threshold of | LogFC |>2 and P < 0.05,

differential analysis was conducted on 24 ACP and 33 normal

brain tissue samples. We obtained 2419 DEGs, including 1181

upregulated DEGs and 1238 downregulated DEGs. The heatmap

and volcano plot of these DEGs are shown in Figures 1A, B. The

intersection of DEGs and ferroptosis-related factors was shown by

the Venn diagram. A total of 579 ferroptosis-related factors were

obtained from the FerrDb V2 and GeneCard databases (Figure 1C).

Venn diagram showed that a total of 69 DEFRGs were identified.

Then, PPI network analysis was processed to show the regulated

relationship of these DEFRGs (Figure 1D).
FIGURE 1

Identification of DEGs between ACP sample and controls. (A) Volcano plot analysis. (B) The heatmap of DEGs. (C) The Venn diagram for screening
DEFRGs. (D) PPI Networks of DEFRGs. (C) Venn diagram for identification of DEFRGs. (D) PPI network analysis of DEFRGs.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1362278
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Feng et al. 10.3389/fendo.2024.1362278
3.2 Enrichment analysis of DEGs

According to the results of GO functional and KEGG pathway

enrichment analysis, DEGs were enriched in various functions, such

as synapse organization, synaptic membrane, neuronal cell body,

and channel activity (Figures 2A, B). KEGG pathways enriched by

DEGs included circadian entrainment, ECM-receptor interaction,

GABAergic synapse, and glutamatergic synapse (Figures 2C, D). As

shown in Figures 2E, F, these DEGs were enriched into many

diseases, including pervasive developmental disorder, ovarian

cancer, renal cell carcinoma, and cell-type benign neoplasm.

Based on the results of the GSEA analysis, critical pathways were

obtained. A total of 5 KEGG pathways were enriched, including

calcium signaling pathway, cardiac muscle contraction, long-term

depression, long-term potentiation, and neuroactive ligand-

receptor interaction. Besides, there were 5 KEGG pathways

obtained in the disease, including complement and coagulation

cascades, cytokine receptor interaction, ECM receptor interaction,

hemopoietic cell uncage, and pathways in cancer (Figure 2G). Then,

GSVA analysis was processed for up- and down-regulated DEFRGs.

The up-regulated DEGs were enriched in various pathways, such as

glycine serine and threonine metabolism, alanine aspartate and

glutamate metabolism, histidine metabolism, and tight junction.

While down-regulated DEGs were involved in different KEGG

pathways, including aminoacyl trna biosynthesis, spliceosome,

and riboflavin metabolism (Figure 2H).
Frontiers in Endocrinology 05
3.3 Identification of variable DEFRGs with
higher discriminative power

SVM-RFE and LASSO algorithms were used for the identification

of variable DEFRGs with higher discriminative power. As the results

are shown in Figures 3A, B, a total of 11 and 10 features were obtained

by SVM-RFE and LASSO algorithms, respectively. There were 6

overlapped DEFRGs were obtained, including CASP8, GOT1,

KRT16, KRT19, TFAP2C, and TP63 (Figure 3C). The ROC curves

of the six diagnostic markers are shown in Figure 3D. Their AUC

values showed the accuracy of the machine learning algorithm. These

Overlapped DEFRGs were located on chromosomes 2, 3, 10, 17 and 20

(Figure 3E). The correlation between 6 DEFRGs was calculated. GOT1

was negatively correlated with other DEFRGs, while KRT16, KRT19,

and TFAP2C were with positive regulate relationships (Figure 3F).
3.4 The expression levels of key DEFRGs
based on GSE68015 and
GSE94349 profiles

These 6 key DEFRGs were differentially expressed in the normal

and ACP disease groups based on GSE68015 and GSE94349 profiles.

Figures 4A–F showed that all five markers, including CASP8, KRT16,

KRT19, TFAP2C, and TP63, were upregulated in the disease group,

while GOT1 was downregulated in the ACP group.
FIGURE 2

Enrichment analysis of DEGs. (A, B) GO analysis. (C, D) KEGG analysis. (E, F) DO analysis. (G) GSEA snapshots of KEGG pathway enrichment analysis.
(H) GSVA analysis for up- and down-regulated DEGs.
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FIGURE 4

The expression levels of key DERGs in ACP patients based on GSE68015 and GSE94349 profiles. (A–F) The levels of CASP8, KRT16, KRT19, TFAP2C,
GOT1 and TP63.
FIGURE 3

Identification of variable DEFRGs by machine learning techniques. (A) Lasso regression analysis. (B) SVM analysis. (C) Overlapped DEFRGs. (D) The
ROC curves of the six diagnostic markers. (E) Location of diagnostic markers in human chromosomes. (F) Correlation of six diagnostic markers. The
shades of color had a positive relationship with correlation.
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3.5 Prediction of key DEFRGs for ACP

In ACP, total key DEFRGs as diagnostic markers were screened

by machine learning. The risk profile of the disease was predicted by

the expression levels of these six regulators. Based on the results of the

nomogram, CASP8, KRT16, KRT19, and TP63 were the protective

factors of the disease, while GOT1 and TFAP2C were the risk factors

(Figure 5). Except for TFAP2C, the other 5 DEFGRs were composite
Frontiers in Endocrinology 07
clinical expression features. CASP8, KRT16, KRT19, TP63, and

GOT1 were potential biomarkers for ACP disease.
3.6 Consensus clustering analysis

The samples in the dataset were clustered according to the

screened DEFRGs. When the k value was set to 2, the consensus
FIGURE 5

Nomogram to predict CASP8, KRT16, KRT19, TFAP2C, TP63 and GOT1 for ACP patients.
FIGURE 6

Consensus clustering analysis. (A) Consensus matrix. (B) Cumulative distribution function of consistency. (C) Delta Area Plot. (D) Mixture coefficients.
(E) Cluster analysis.
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clustering matrix was the most differentiated, the number of clusters

was the most stable, and the consistency scores across subtypes were

the highest. The samples could be categorized into 2 isoforms and

heat mapped, which showed that C2 expressed higher

(Figures 6A–E).
3.7 The expression levels of key DERGs in
ACP patients

A total of 5 key DEFRGs were differentially expressed in the

normal and ACP disease groups. The results of Figures 7A–F

showed that CASP8, KRT16, KRT19, and TP63, were upregulated

in the disease group, while GOT1 was downregulated in the ACP

group. However, TFAP2C was with no significant difference.

CASP8, KRT16, KRT19, TP63, and GOT1 might be the

biomarker for ACP diagnosis.
3.8 Screened key DEGs were significantly
related to ferroptosis

The correlation of the six key DEGs with nine ferroptosis

marker genes is shown in Figure 8A. GPX4, HSPB1, NFE2L2,

SLC40A1, CHAC1, and HSPB1 were significantly related to key

DEGs. Elisa assay was used for detecting the expression levels of 6

ferroptosis marker genes. CHAC1 and GPX4 expressed lower in

ACP disease group than control, while HSPB1, NFE2L2, SLC40A1,

and HSPB1 were up-regulated in the disease group (Figure 8B). A
Frontiers in Endocrinology 08
combination of CASP8, KRT16, KRT19, TP63, and CASP8, GOT1

might be the biomarker for ACP diagnosis via participating

ferroptosis process.
4 Discussion

Conventional treatment leads to poor complications and

adverse reactions in craniopharyngioma development (26).

Bioinformatics is applied to craniopharyngioma many times to

screen for possible biomarkers, such as immune-related genes (27,

28). Ferroptosis, a mechanism closely associated with the

development of various cancers (29–31), has not been studied in

ACP. In this study, candidate biomarkers of ferroptosis and ACP

were selected by functional enrichment analysis. Then, selecting

node genes from the constructed PPI network, and screening

candidate biomarkers with three machine learning algorithms

were processed. The expression levels of candidate genes were

compared, and ROC curves and nomograms were constructed to

screen biomarkers with higher accuracy.

In this study, we explored potential therapeutic targets and

molecular mechanisms related to ferroptosis in ACP. GSE68015

and GSE94349 databases were downloaded to analyze the DEGs

between the ACP sample and normal. Then, ferroptosis-related

genes and DEGs were overlapped, and 69 DEFRGs were screened.

Based on the result of the PPI network, hub nodes were obtained,

such as TP-53, CDKN2A, myc, and MJC1. GO and KEGG

enrichment analysis showed that these genes enriched in various

functions and pathways, such as ion channel activity, cell junction
FIGURE 7

The expression levels of key DERGs in ACP patients (A–F). The expression levels of TFAP2C, KRT19, KRT16, GOT1, CASP8, and TP63 in ACP patients
detected by q-PCR. *P < 0.05, **P < 0.01, ***P < 0.001.
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assembly, ECM-receptor interaction, and calcium signaling

pathway. Ferroptosis is the result of a dysfunctional balance

between intracellular lipid reactive oxygen production and

degradation (32). Ferroptosis is induced by a variety of

compounds, and the upstream pathway affects the activity of

glutathione peroxidase (GPXs) (33). It decreased cellular

antioxidant capacity, leading to an increase in lipid peroxidation

and an increase in lipid reactive oxygen species, causing the onset of

ferroptosis (34). As reported in a previous study, cell detachment

from the extracellular matrix (ECM) is a stress response to

ferroptosis (35). Ferroptosis-related functions and pathways

correspond to ACP development.

Based on the machine learning algorithm and in vitro

experiment, a total of 6 diagnostic markers, including CASP8,

KRT16, KRT19, TP63, and GOT1 were screened. The ROC
Frontiers in Endocrinology 09
curves of the six diagnostic markers were calculated, and the

AUC value of all biomarkers was 1, indicating the accuracy of

machine learning algorithms. CASP8 is a critical enzyme in the

apoptotic pathway (36). Polymorphisms in CASP8 have been

associated with the risk of developing a variety of diseases,

including gastrointestinal, digestive, colorectal, breast, and lung

cancers (37, 38). In ACP patients, CASP8 was up-regulated, and

the result was consistent with this study. KRT16 and KRT19

belonged to the keratin family. Keratin is an important

component of the epithelial cytoskeleton, with the primary

function of maintaining the stability of epithelial cells and tissues

(39). They are involved in intracellular signaling pathways (40). In

this study, KRT family members were involved in the estrogen

signaling pathway. Sex hormone signaling inhibited ferroptosis in

cancer cells through MBOAT21/2 mediated PL remodeling (41).
FIGURE 8

Screened key DEGs were significantly related to ferroptosis. (A) The correlation of the six key DEGs with nine ferroptosis marker genes. (B) ELISA
assay was used for detecting the expression of 6 ferroptosis marker genes. CHAC1 and GPX4 expressed lower in the disease group than control,
while HSPB1, NFE2L2, SLC40A1, and HSPB1 were up-regulated in the disease group. *P < 0.05, **P < 0.01, ***P < 0.001.
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TP63 has been confirmed to be up-regulated in ACP (42). Cao et al.

(43) referred that 89% of ACP patients were with high levels of

TP63. Similar results were obtained in this study. GOT1 was down-

regulated in ACP patients. GOT1 accelerated ferritinophagy, and

mediated SHK-induced ferroptosis (44). In various diseases, GOT1

inhibits cancer development by ferroptosis (44–46). GOT1

participated in ferroptosis and inhibited pancreatic cancer cell

death (45). GOT1-related pathway was associated with abnormal

ferroptosis in preeclampsia (47). Based on the results of nomogram

in this study, CASP8, KRT16, KRT19 and TP63 were the protective

factor of the risk of disease, while GOT1 was the risk factors.

CASP8, KRT16, KRT19 and TP63 might be potential markers for

ACP diagnose and treatment. CASP8, KRT16, KRT19, TP63,

CASP8 and GOT1 affect multiple ferroptosis marker genes in this

study. Combination of CASP8, KRT16, KRT19, TP63 and CASP8,

GOT1 might be the biomarker for ACP diagnosis via participating

ferroptosis process.

The ferroptosis and potential biomarkers (CASP8, KRT16,

KRT19, and TP63) were critical for ACP diagnosis. Because ACP

is a rare disease, there are few available samples and online data. In

further study, we will focus on in vivo and in vitro experiments. By

regulating the expression levels of these genes and ferroptosis-

related genes, the influence and corresponding mechanism will be

researched in ACP cells and tissues. The relationship between

ferroptosis and papillary craniopharyngioma will be researched in

the future.

In conclusion, 69 DEFRGs were narrowed down to 5 targets

with high biomarker potential through multiple rounds of assays

and statistical evaluations by machine learning methods. CASP8,

KRT16, KRT19, TP63, and GOT1 were the potential markers for

ACP treatment. Ferroptosis was confirmed to be a critical biological

process in ACP development. The targets predicted by the machine

learning approach are used in the medical diagnosis of ACP, which

helps to make more accurate predictions and treatments

for patients.
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