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Role of CRH in colitis and colitis-
associated cancer: a combinative
result of central and
peripheral effects?
Chao Zhu and Shengnan Li*

Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University,
Nanjing, China
Corticotropin-releasing factor family peptides (CRF peptides) comprise

corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3.

CRH is first isolated in the brain and later with UCNs found in many peripheral

cells/tissues including the colon. CRH and UCNs function via the two types of

receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1
&CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in

inflammation and cancers via both indirect central effects related to stress

response and direct peripheral influence. CRH, as a stress-response mediator,

plays a significant central role in promoting the development of colitis involving

colon motility, immunity and gut flora, while a few anti-colitis results of central

CRH are also reported. Moreover, CRH is found to directly influence the motility

and immune/inflammatory cells in the colon. Likewise, CRH is believed to be

greatly related to tumorigenesis of many kinds of cancers including colon cancer

via the central action during chronic stress while the peripheral effects on colitis-

associated-colon cancer (CAC) are also proved. We and others observe that

CRH/CRF1 plays a significant peripheral role in the development of colitis and

CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and

CAC. However, up to date, there still exist not many relevant experimental data

on this topic, and there seems to be no absolute clearcut between the central

and direct peripheral effects of CRH in colitis and colon cancer. Taken together,

CRH, as a critical factor in stress and immunity, may participate in colitis and CAC

as a centrally active molecule; meanwhile, CRH has direct peripheral effects

regulating the development of colitis and CAC, both of which will be summarized

in this review.
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1 Introduction

Ulcerative colitis (UC) and Crohn’s disease, the common

chronic inflammation in the gastrointestinal system, are the two

main forms of inflammatory bowel disease (IBD) (1, 2). The precise

cause of IBD is not thoroughly known yet. It is observed that UC

patients may have a dysregulated mucosal immune response to

commensal gut flora, resulting in bowel inflammation

characteristically restricted to the mucosal surface in the colon (3,

4). Chronic inflammation is fundamentally an immune response,

which provides microenvironment for tumorigenesis and accounts

for a big portion of cancer-causing factors (4), which is in concert

with the case between colitis and colorectal cancer (CRC) (5, 6),

although meta-analysis does not show an increased CRC risk over

time of inflammation (7). CRC is one of the most common forms of

malignant tumor worldwide, and patients with UC are at higher risk

for developing CRC, i.e., colitis-associated colon cancer (CAC),

than the general population (8). Therefore, anti-inflammation

treatment is likely a useful approach for preventing the

occurrence of CAC (9). However, despite constant studies and

advances in conventional and/or targeted therapy, the survival rate

of CRC patients is still not very high (10, 11).

Corticotropin-releasing factor family peptides (CRF peptides)

include 4 members, corticotropin releasing hormone (CRH),

urocortin (UCN1), UCN2 and UCN3, mediating their effects via

two distinct CRF receptor subtypes, CRF1 and CRF2, with CRH

being the selective agonist of CRF1, UCN1 of both, and UCN2-3 of

CRF2 (12–18) (Table 1).

Both CRF1 and CRF2 belong to the seven transmembrane

domain family positively coupled to adenylate cyclase via G

proteins (13–15). CRH, a 41-amino acid peptide, is observed to

activate cAMP/MAPK pathway via CRF1 (19, 20). It is recognized

as a primary regulator of the hypothalamic pituitary axis (HPA axis)

(17, 21–23). The paraventricular nucleus (PVN) of the

hypothalamus is the main source for CRH in the brain (17).

CRH, UCNs and the two receptors are also reported to express

widely in peripheral cells/tissues, being recognized as important

cardiovascular peptides and immune/inflammatory molecules (23–

28). Their presence in gastrointestinal system has been detected for

a long time since decades ago (29–31). Moreover, CRH and UCN3

are detected in the human colon (32) and UCN1 mRNA is observed

in the rat enteric nervous system (33). CRF1 and CRF2 are encoded

by specific genes (13). CRF1 is the main type of receptor in the brain

(13) while it is also abundant in some peripheral cells/tissues
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including skin, inflammatory cells and gastrointestinal system

(13, 28, 30, 34). And CRF2a is predominantly found in neurons

and CRF2b in both brain and peripheral tissues including cardiac &

skeletal muscle and the gastrointestinal tract (13, 35, 36). Both CRF1
and CRF2 are distributed within the rat colon: CRF1 is found in the

colonic crypts, the surface epithelium, and the lamina propria of the

proximal colonic mucosa. CRF1 expression is also detected in the

myenteric and submucosal nervous plexus. CRF2 expression is

found to be localized mainly in the luminal surface of the crypts

and in blood vessels of the submucosal layer (31). Also in the

human colonic mucosa, both CRF1 and CRF2 mRNA are detected

in lamina propria mononuclear cells (30). These results support a

role for the two receptors’ involvement in regulating peripheral

colonic effects of CRH and UCNs. Since this review focuses on the

selective CRF1 agonist, CRH, more about CRH/CRF1 effects will

be discussed.

The hypothalamus-pituitary-adrenal (HPA) axis, functionally a

hormone stimulating cascade, mainly CRH-adrenocorticotropin

(ACTH)-cortisol axis, is a critical element for stress response and

immune/inflammatory processes (37). Chronic stress, characterized

by activation of HPA axis and sympathetic nervous system, has

been reported to be an important reason in the development of

inflammation and tumorigenesis (38–40), suggesting that CRH

indirectly participate in inflammation and tumorigenesis via HPA

axis as a centrally active molecule. Furthermore, HPA axis

communicates with the immune system at multiple levels (41,

42). Bidirectional interactions between HPA and immunity

contribute to their role in inflammation and cancers: HPA

activation results in secretion of CRH, ACTH and cortisol

modulating the immune response while immunity-related

substances, such as interleukin-1 (IL-1), IL-6 and tumor necrosis

factor alpha (TNF-a) can backwards stimulate the HPA axis (42).

In addition, relationship between gut microbiome and the brain, i.e.

brain-gut-microbiota axis, has attracted much attention for its

complicated part in stress and IBD (43–45). The imbalance of

brain-gut-microbiota axis also leads to dysregulation of the HPA

axis (44). Therefore, it is reasonable that CRH, as the major

mediator of stress response, may take a part in IBD and CRC via

brain-gut-microbiota axis. Taken together, CRH is suggested to take

part in colonic inflammation and inflammation-based

tumorigenesis indirectly via HPA axis and brain-gut-

microbiota axis.

Moreover, peripherally direct participation of CRH in colonic

inflammation has been well proved (46, 47). The expression of CRH

in the large bowel of patients with UC is found considerably

enhanced in mucosal inflammatory cells and slightly increased in

colonic mucosal epithelial cells, suggesting CRH’s role via

modulating intestinal immune/inflammatory system in UC (47).

Also, it is reported that CRH may induce intest inal

hyperpermeability in human colon mucosa via mast cells (48).

We and others have also reported the direct peripheral role of CRH/

UCNs & receptors in immunity/inflammation and cancers (42, 49–

54), including colitis and colitis-associated colon cancer (CAC)

(55–58).

In summary, over recent decades, CRF peptides and receptors

have been found to be significantly correlated with the bowel
TABLE 1 Corticotropin-releasing family peptides (CRF peptides)
and receptors.

CRF peptides Targeting Receptors

Corticotropin releasing
hormone (CRH)

CRF1

Urocortin (UCN1) CRF1, CRF2 (CRF2a, CRF2ß)

Urocortin 2 (UCN2) CRF2 (CRF2a, CRF2ß)

Urocortin 3 (UCN3) CRF2 (CRF2a, CRF2ß)
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inflammation and the development of CAC. However,

controversies over the origin of CRH action sites have always

been existing. Up-to-date, taken together, it is understandable

that CRH, as both a centrally active endocrine hormone and

peripherally active peptide, may play an important role in colitis

and CAC via both indirect actions regulating chronic stress and

direct peripheral effects, although there still lack experimental

evidences showing direct relationship between central CRH effect

and colitis/CAC and only a few investigations show the direct

peripheral effects of CRH on CAC.
2 The central role of CRH in colitis
and CAC

Stress, inflammation and colon cancer are highly related,

forming a CRH-system driven crosstalk (38). Therefore, there

may not be an absolute clearcut between the central and

peripheral effects of CRH on inflammation and cancer. Up to

date, little evidence has suggested a direct relationship between

central CRH and the development of colitis and CAC. Instead, the

central role of CRH in inflammation and cancers is mainly thought

to be via mediating HPA axis as a stress mediator (38, 59, 60).

Under chronic stress, the HPA axis is activated and the release of

CRH from the PVN of the hypothalamus at its nerve endings in

eminence, which is carried to the pituitary gland through the portal

vessel, stimulating the secretion of ACTH, which in turn stimulates

the secretion of cortisol from the adrenal gland. The hypothalamus-

released CRH acts on CRF1 in the pituitary gland, causing ACTH

release from the anterior pituitary (13, 61). About half of CRH in

the brain is found to be bound with CRH binding protein (CRH-

BP). In exposure to stress, the expression of CRH-BP increases in a

time-dependent fashion, likely being a negative feedback

mechanism for CRH’s action on CRF1 (62).
2.1 Central role of CRH/CRF1 in colitis

There exist contrary reports about CRH’s role in colitis. As

summarized in the following, some researchers observe no effect or

anti-inflammatory effect while many others find its pro-

inflammatory actions in colitis.

2.1.1 The non-proinflammatory/anti-
inflammatory role of central CRH in colitis

CRH is a 41-amino acid peptide, a primary regulator of the

HPA axis and a coordinator of the gastrointestinal response to

stress (22, 63, 64). The most important effect of central CRH/CRF1
is to stimulate the pituitary gland to release ACTH causing cortisol

secretion of from the adrenal gland cortex, i.e., mediating the

function of HPA axis (61). Since cortisol is an anti-inflammatory

hormone, CRH is normally recognized to act in an anti-

inflammatory fashion. However, only a few reports present

consistent evidences in case of colitis. While acute colonic

inflammation induced CRH secretion from PVN in the
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hypothalamus, CRH level is found to remain at a high level in the

brain after the recovery of colitis (65), suggesting a weak link

between central CRH effect and colitis. On the other hand, Gue

et al. find that centrally injected CRH may have complicated

influences on colitis (66). By evaluating the influence of stress and

the involvement of CRH on experimental colitis in rats, it is

observed that centrally injected CRH antagonist, alpha-helical

CRH-(9-41) has no effect on trinitrobenzenesulfonic acid-induced

colitis but enhances the effects of stress on colitis, suggesting that

central CRH may only participate in controlling the process of

colitis in case of stress (66). Moreover, Million et al. observe a

protective role of brain CRH from stress-induced worsening of

colitis (67). They assess the role of central CRH in stress-induced

worsening of colitis in inbred rat strains with hypo (Lewis) and

hyper (Fischer344) CRH responses to stress. It is observed that

trinitrobenzenesulfonic acid induces colitis with similar severity in

both strains, which is inhibited by central injection of CRH.

Chronic stress aggravates colitis more in Lewis than Fischer rats,

which is reversed by central injection of the CRH antagonist

astressin, indicating that central CRH restrains the stress’

proinflammatory action in experimental colitis (67). Similarly, it

is reported that central CRH inhibits gastric motility, which can also

be abolished by the intracerebroventricular injection of astressin

(68). However, its effect on the colon motility is the opposite,

stimulating the movement and contributing to the process of colitis

(68) (see below 1.1.2).
2.1.2 The pro-inflammatory effect of central CRH
in colitis as a stress mediator

Compiling evidences show that central CRH plays indirectly a

proinflammatory role in colitis. HPA axis is the critical pathway of

stress response, which is elicited by physical or psychological stimuli

(stressors). A stress response involves activation of sympathetic-

adreno-medullar (SAM) axis, HPA axis, and immune system, and a

prolonged stressor exposure constitutes a chronic stress (69).

Chronic stress is known to promote IBD (64, 69), but the

underlying mechanism remains largely unresolved. IBD is a model

of microbial, immune and neuropsychological integration (70, 71).

It is reported that chronic stress sensitizes mice to dextran sulfate

sodium (DSS)-induced colitis and enhances the infiltration of

proinflammatory cells in colonic lamina propria (72). Also, a

marked increase in IL-6, a stress-inducible cytokine that further

activates HPA axis in a positive feedback manner, is observed (73).

Moreover, IBD is presumed to be a disorder of the brain–gut-

microbiome link associated with exaggerated response to stress (74,

75). Under stress, inflammation-promoting bacteria expand while

transferred gut microbiota from stressed mice facilitate DSS-

induced colitis, which is abrogated by broad-spectrum antibiotic

treatment (72). Therefore, it is obvious that chronic stress leads to

colitis via disturbing gut microbiota and hence triggering immune

system response. Based on these reports, CRH, as the main stress

mediator, is evidently a critical factor in the development of colitis.

Interestingly, researchers record colonic motility and reveal that

restraint stress, or intracerebroventricular injections of CRH,

produce significant increases in colonic motility although CRH
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inhibits gastric motility (68, 76), which contributes to the

occurrence of abdominal pain during IBD. Central injection of

astressin is observed to block exogenous CRH action and colonic

response to stress, showing an antagonistic action against CRH and

stress-related alterations of gastrointestinal motor function, without

an intrinsic effect in rats (68). Moreover, it is observed that the

colonic contractions induced by central CRH are eliminated by

intracerebroventricular pretreatment with astressin (76). On the

other hand, peripherally administered CRH partially mimics the

stress response of the gastrointestinal motility, exaggerated in IBD

patients (77), further suggesting that CRH plays an important role

in modulating brain-gut functions under stress.

CRH is also found to participate in IBD during acute stress.

Zhao et al. establishes a model of psychosocial stress by peripheral

administration of CRH and find that CRH aggravates DSS-induced

colitis via the enhancement of intestinal macrophage autophagy

(78). It is observed that peripherally used CRH aggravates the

severity of DSS-induced IBD, increasing overall and local

inflammatory reactions and infiltration. Under the IBD-related

inflammatory challenges, the autophagy levels in intestinal

macrophages are significantly increased, which is further

enhanced by CRH. The autophagy inhibitor, chloroquine,

markedly attenuates the detrimental effects of CRH reducing the

severity and inflammatory reactions (78). These results may suggest

that CRH, while working centrally mimicking stress ,

simultaneously exacerbates DSS-induced IBD via enhancing

intestinal macrophage autophagy. Therefore, it is reasonable to

believe that CRH and related receptors may be a potential

therapeutic target for the treatment of IBD. Another investigation

also shows that peripherally administered CRH mimic the effect of

acute psychological stress, leading to increased intestinal

permeability characterized in IBD (79). These findings further

provide new insights into the complex interplay between the

central and peripheral role of CRH in IBD since CRH is

administered peripherally for stress model.
2.2 Central role of CRH in colitis-
associated colon cancer

Rare evidence shows a direct relationship between the central

CRH and the development of cancers. However, the relationship

between chronic stress and tumor development has been frequently

reported and widely reviewed (38–41, 80, 81). Therefore, it is

believable that the central role of CRH in tumor is likewise

mainly via the indirect way through HPA axis-mediated stress.

Clinically, chronic stress is found common among cancer

patients due to stressors encountered (82). Primarily, chronic

stress activates the classic neuroendocrine systems, the HPA axis

and the SAM, whose continuous activations have been

demonstrated to take part in cancer-promoting processes by

altering the tumor microenvironment (TME) (39, 81, 83). Stress

hormones can promote colon cancer development through a variety

of mechanisms: 1) Corresponding changes in the body’s immune

function and inflammatory response (40, 83, 84); 2) Significant

influence on the gut flora, i.e. the brain-gut-microbiota axis,
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promoting the composition of pro-inflammatory microbiome and

hence resulting in colitis leading to CAC (85, 86).

Although the mechanisms might be complicated, it is believable

that the central CRH, the upper element of HPA axis and stress

mediator, plays a role in CAC based on that central CRH

participates in colitis (see 2.1) and the cross talks between

inflammation/immunity and cancer (87, 88). Recently, the

microbiota has been recognized as one of the key regulators of

gut-brain function. Many factors, stress in particular, can influence

microbiota composition (89). Importantly, dysbiosis of the gut

microbiome is found to be associated with the development of

colorectal cancer (90) (see below 2.2). As precedingly described,

individuals having IBD develop more easily into CAC (7, 57), and

gut microbiome is involved in colon inflammation and biosynthesis

of chemical carcinogens such as N-nitroso compounds that drive

carcinogenesis (90–92). Meta-analysis demonstrates that in patients

under stress gut microbiota perturbations are associated with loss of

certain anti-inflammatory bacteria but an enrichment of pro-

inflammatory bacteria (89), suggesting an interaction between the

central CRH and gut flora.

It is nowadays recognized that dietary mode is related to colon

microbiota (92, 93), leading to the idea that modulating the growth

of beneficial microbiota in the gut by dietary and life style

interventions may be a useful approach for prevention of colon

cancer (94, 95). Based on the importance of the brain-gut-microbe

axis during chronic stress, interfering chronic stress using CRH-

related drugs might also become a useful approach for CAC

prevention and treatment.
3 Peripheral roles of CRH in colitis
and CAC

As precedingly described, although CRH is first isolated in CNS

where it is initially recognized to be the main target site, CRH and

the other CRF peptides have then been observed existing and

functioning peripherally. Furthermore, the two receptors, CRF1
and CRF2 have been detected in many types of peripheral cells/

tissues, such as immune cells, endothelial cells, tumor cells, etc. (13,

28, 42). CRH and the other CRF peptides are revealed to have a

variety of direct peripheral functions in cardiovascular system,

gastrointestinal system and immune system (13, 42). Besides the

centrally indirect influence via mediating stress, CRH is also

reported by our group and others to play a direct peripheral role

in inflammation and tumors, including colitis and CAC (13, 42, 43,

50, 57, 58).
3.1 Peripheral participation of CRH
in colitis

CRH & UCNs and the receptors are observed to be closely

related to gastrointestinal system (12, 13, 96, 97) and reported to be

implicated in colitis (43, 98, 99).

Firstly, CRH, the selective CRF1 ligand/agonist, is reported to

play a significant role in the gastrointestinal motility by stimulating
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enteric nervous system (100) and evidence supporting that

peripheral CRH & CRF1 directly take part in brain-gut

sensitization is increasing (43). As mentioned above, IBD displays

chronic abdominal pain or discomfort due to altered gut motility

and visceral sensation (1, 100). Moreover, peripheral injection of

CRH or UCN1 inhibits human gastric emptying and motility

through interaction with CRF2, but stimulates colonic motility

through activation of CRF1 (101). CRH induces motility of the

descending colon in both healthy subjects and colitis patients, the

latter with greater motility indexes. Paralally, abdominal symptoms

evoked by CRH in colitis patients last significantly longer than in

healthy controls (101). Moreover, rectal electric stimulation-

induced significantly higher motility indices of the colon in colitis

patients (vs healthy controls) are suppressed after administration of

the selective antagonist of CRH, alphahCRH (ahCRH).

Consistently, ahCRH significantly reduces the ordinate scale of

abdominal pain evoked by the electric stimulation in colitis patients

without changing ACTH and serum cortisol levels (102).

Interestingly, peripheral administration of CRH is observed to

aggravate visceral sensorimotor function as well as ACTH

response in IBD patients (43, 100, 103). However, ahCRH is

found to suppress higher motility among IBD patients, reducing

the abdominal pain without plasma ACTH & cortisol change (43),

suggesting the dominant peripheral effect. Furthermore, ahCRH is

observed to block colorectal distention-induced sensitization of the

visceral perception in rats (43, 102, 104). All these results

demonstrate that besides its central action, CRH/CRF1 enhances

colon motility, contributing to abdominal pain peripherally.

Secondly, peripheral CRH may play a role in colitis via

influencing immune/inflammatory processes (42). Our group find

that expressions of UCN1 and CRH are enhanced in the colon of

wild type (Crhr1
+/+) mice during azoxymethane (AOM) and DSS

treatment (57). CRF1 has a proinflammatory and therefore a

carcinogenetic (see below) effect in the mouse colon. The extent

and severity of inflammation are drastically decreased in Crhr1
-/-

mice with much lower inflammatory cytokines’ expression, grade of

dysplasia and numbers of ulceration in the colon mucosa.

Moreover, accompanying the markedly lower proinflammatory

cytokines, IL-1, IL-6, and TNF-a, the anti-inflammatory factor,

IL-10 is increased in Crhr1
-/- mice. Our results are consistent with

the reports that CRF1 activation promotes inflammation (13, 42, 50,

103). However, in case of innate immunity deficiency, the opposite

effect of CRH/CRF1 is observed (98). Chaniotou group investigate

the role of CRH in an innate immunity–dependent mouse model of

IBD (98). CRH-/- mice are observed to have more colonic

inflammation than CRH+/+ mice in DDS-induced colitis model.

Moreover, as precedingly described, it is observed that, CRH further

enhances the promoted autophagy levels in intestinal macrophages

in IBD patients, which is markedly attenuated by the autophagy

inhibitor, chloroquine, reducing CRH-induced severity and

inflammatory reactions (76). These results may suggest that CRH,

while working centrally mimicking stress, simultaneously

exacerbates DSS-induced IBD via enhancing intestinal

macrophage autophagy. Therefore, it is reasonable to believe that

CRH and related receptors may be a potential therapeutic target for

the treatment of IBD. In addition, mast cells are found to be related
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to CRH effects participating in the process of colitis, increasing the

intestinal mucosal permeability (101).

The role of CRF2 in colitis is also complicated. It is reported that

CRF2 has a counter regulatory action against CRF1, maintaining a

balance between CRF1 and CRF2 during inflammation (103). On

one hand, CRF2 is observed to function as a proinflammatory

element while on the other hand, it displays an anti-inflammatory

feature (105). Activation of CRF2 is reported to promote

inflammation during acute colitis but to inhibit inflammation

during chronic colitis (106). In DSS-induced colitis, mucosal

repair is delayed after administration of a CRF2 antagonist (106).

Moreover, CRF2 is down-regulated in human colitis (107). Taken

together, a balance between CRF1 and CRF2 may decide the process

of inflammation (103). This balance-theory may well interpret that

both CRF1 and CRF2 are found to participate in acute inflammation

while CRF2 is the main type for repair (103). The theory may lead to

better understanding the pathophysiology and provide novel

therapeutic options targeting altered signaling balance of CRF1
and CRF2 in IBD.
3.2 Peripheral CRH’s role in colitis-
associated colon cancer

CRH is present in the colonic mucosa of UC patients and acts as

a proinflammatory factor modulating the intestinal immune system

(29, 47). Furthermore, UCN1, the unselective agonist for CRF1 and

CRF2, is found to be synthesized and secreted in plasma cells,

related to the inflammation in colonic mucosa (108). In addition, in

DSS-induced mouse colitis, CRF1 deficiency is observed to

contribute to the relief of colon inflammation (57). These reports

suggest that direct activation of CRF1 exerts an effect of

exacerbating colitis and hence may promote CAC. Up-to-date,

only a few experimental reports have been presented on the direct

peripheral role of CRH & UCNs in CAC.

In 2014, we first investigate the functions of CRF1 signaling on

the development of CAC by using CRF1 deficient mice in AOM and

DSS-induced CAC model. And the results show that in WT (Crhr1
+/

+) mice, CRF1 and its endogenous ligands (UCN1 and CRH) are

significantly enhanced in the colon during AOM and DSS treatment.

Interestingly, in Crhr1
-/- mice, tumorigenesis is dramatically reduced,

accompanied by lower inflammatory responses, i.e., decreased IL-1b,
IL-6, TNF-a level and macrophage infiltration. Moreover, a reduced

activation of NF-kB and STAT3 phosphorylation, together with

decreased proliferating & enhanced apoptotic cells in the colon are

observed (57). The pro-tumorigenesis effect is further confirmed by

our in vitro experiments (58). CRH enhances colon cancer cell

proliferation, promoting colony formation. Furthermore, tube

formation assay shows that CRH treatment significantly promotes

angiogenesis of HUVECs. Further investigation shows that CRH/

CRF1 significantly upregulates IL-6 and VEGF level through

activating NF-kB. And the VEGF silence abolishes the tube

formation induced by CRH. The CRH-induced IL-6 promotes

STAT3 phosphorylation, whose inhibition by Stattic significantly

inhibits the CRH-induced cell proliferation (58). Our data is

consistent with a newly reported experiment, demonstrating that
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CRF1 deficiency inhibits CRC in AOM/DSS model (56). Taken

together, CRH/CRF1 signaling promotes human colon cancer cell

proliferation via NF-kB/IL-6/STAT3 and tumor angiogenesis via NF-

kB/VEGF signaling pathway. Our results provide evidence to support
a critical role for the CRH/CRF1 signaling in colon cancer progression

and suggest its potential utility as a new therapeutic target for CAC.

Based on the above, it is believable that CRH/CRF1 has a

proinflammatory and therefore a pro-tumorigenic effect in terms of

CAC, which might be a direction for developing new therapeutic

approaches for inflammation and CAC prevention & treatment.

It is observed by Baritaki group that human colon tissues from

CRC patients and CRC cell lines show decreased CRF2 expression

(109). Contrary to CRH/CRF1, UCN2/CRF2 signaling inhibits cell

proliferation, migration, invasion and colony formation.

Furthermore, IL-1b, IL-6 and IL-6R mRNAs are diminished in

CRC-CRF2+ cells. In CRC patients’ colon samples, CRF2 mRNA

expression is inversely correlated with IL-6R (109). These results are

in concert with the report that CRF2 deficiency worsens CRC in

AOM/DSS model (56). However, opposite effect of CRF2 is also

reported, i.e. CRF2 may promote the development of CRC (110).

Also, a blood sample analysis suggests that CRF2 represent a risk

factor for CRC development in Mexican patients (111), which raises

a controversial question as well. Recently, researchers have reported

the methylation status of both CRF1 and CRF2, and point out that

this examination may become a promising screening approach for

CAC (112, 113).

In addition, it is well established that there exists a link between

gut microbiota and colitis & colon cancer (87, 114–116). As

precedingly described, CRH exerts an effect on gut flora mainly as

a central stress mediator via brain-gut axis. However, up-to-date,

rare experimental evidence shows direct peripheral effects of CRH

on gut flora.
4 Summary

Emerging evidence suggests that uncontrolled inflammation is a

major risk factor for the development of cancer. A typical example

for inflammation and inflammation-based tumor is colitis and

CAC, strongly supported by the fact that patients with UC have a

much higher risk for CAC. This review aims to mainly summarize

the reports about CRH’ roles in the development of colitis and CAC,

both central and peripheral, hoping to be helpful in giving a clue to

future drug design of CRH relevance, as having been studied (55).

As summarized in Figure 1, CRH, as the main stress mediator,

may participate in colitis and CAC via CRF1 as a central factor.

Meanwhile, CRH and UCNs have been proved to play an important

role in the development of colitis and CAC peripherally in which

CRF1 may dominantly function as a pro-inflammatory and pro-

tumorigenesis element while CRF2 may do oppositely. However,

there exists no clearcut between CRH’s central and peripheral effects

in colitis and CAC because of cross-talks between HPA axis and the

immune system, and also between central and myenteric neurons.

However, there still lack experimental evidences for a direct

relationship between central CRH and colitis/CAC, while there are
Frontiers in Endocrinology 06
also relatively few investigations on CRH’s peripheral effects on CAC.

Given that CRH has a crucial role in stress and gastrointestinal

system, with further evidence-reveal in the future, CRH may become

a promising therapeutic target for colitis and CAC.
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