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Cardiovascular disease (CVD) is the leading cause of human mortality worldwide. Despite Western medicine having made encouraging results in the clinical management of CVD, the morbidity, mortality, and disability rates of the disease remain high. Modern pharmacology has confirmed that traditional Chinese medicine (TCM), characterized by its multi-component, multi-target, and integrity, plays a positive and important role in the prevention and treatment of various CVDs in China, which has notable advantages in stabilizing disease, improving heart function, and enhancing the quality of life. Importantly, TCM is gradually being accepted by the international community due to its low cost, high safety, versatile bioactivity, and low toxicity. Unfortunately, comprehensive studies on the therapeutic effect of TCM on CVD and its mechanisms are very limited, which may restrict the clinical application of TCM in CVD. Therefore, this review is performed to analyze the pathogenesis of CVD, including inflammatory response, oxidative stress, mitochondrial dysfunction, pyroptosis, ferroptosis, dysbiosis of gut microbiota, etc. Moreover, we summarized the latest progress of TCM (formulas, extracts, and compounds) in curing CVD according to published literature from 2018 to 2023, as well as its mechanisms and clinical evidence. In conclusion, this review is expected to provide useful information and reference for the clinical application of TCM in the prevention and treatment of CVD and further drug development of CVD.
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1 Introduction

Cardiovascular disease (CVD) is the diseases of the circulatory system, including disorders of the heart and blood vessels. As a chronic progressive condition, CVD is characterized by high morbidity, mortality, hospitalization, and disability rates, causing a huge economic and health burden worldwide (1, 2). According to the World Health Organization, CVD was the leading cause of the highest number of deaths in 2019 (3), and about 23 million CVD-related deaths in 2030 (4). Meanwhile, CVD remains the predominant cause of human mortality in China (5) and Western countries (6). Recent studies have confirmed that the occurrence and progression of CVD are the results of the interaction of genetic and environmental factors, and common risk factors include age, obesity, tobacco use, alcohol consumption, dyslipidemia, hypertension, diabetes (7–12), etc. Meanwhile, other studies have found that air pollution and circadian syndrome as contributing factors to CVD (13, 14). In addition, numerous studies have demonstrated that oxidative stress, inflammatory response, programmed cell death (such as apoptosis and autophagy, pyroptosis, and ferroptosis), and intestinal flora disorders were associated with the abnormalities of structural and functional in the cardiovascular system (15–17). Currently, surgery and drugs are commonly used in the clinical management of various CVDs, but surgical procedures are both risky and expensive. Besides, the effectiveness of cardiovascular drugs decreases with prolonged use and is accompanied by adverse side effects, which has become a major problem that needs to be urgently addressed in the Western medical treatment of CVD. Therefore, the pathogenesis of CVD needs to be further explored and effective prevention and treatment strategies need to be developed.

Traditional Chinese medicine (TCM) is an accumulation of the Chinese Nation’s clinical experience for thousands of years, characterized by comprehensive resources and low cost, and has been widely used for treating various diseases in clinical practice (18, 19). TCM was an important source of modern drug development for more than 2,000 years. More interestingly, TCM has become increasingly popular in many developed countries (20), such as Australia and the United States, because of its unique advantages including low adverse effects, stable efficacy, and a wide range of targets. Modern medical studies have demonstrated that TCM (including formulas, extracts, and compounds) possessed significant effects on the treatment of CVD, and TCM treatments are well tolerated by patients with CVD (21). Currently, the “compound Dan-Shen dropping pill”, which consists of three TCMs for the treatment of coronary heart disease and angina pectoris, was the first TCM formula in the world to complete a phase III randomized, double-blind, and international multicenter clinical trial approved by the U.S. Food and Drug Administration (NCT00797953) and this drug was widely used in Australia after being approved by the Australian Therapeutic Goods Administration. Meanwhile, the standard of Panax notoginseng extracts has been incorporated into the German Drug Code for the benefit of patients with CVD. Functionally, TCM can exert cardioprotective effects through multiple targets on oxidative stress, inflammation, autophagy, lipid metabolism, cardiomyocyte/vascular endothelial cell function, and gut microbiota (22–24), which compensates for the lack of a single drug model for the treatment of CVD in clinical. Several studies have confirmed that TCM combined with Western drugs can more effectively alleviate clinical symptoms and disease progression in patients with CVD (25, 26). Importantly, with the development of omics technologies such as transcriptome, proteome, metabolome, and bioinformatics, the detailed mechanisms of TCM in the prevention and treatment of CVD have been systematically and comprehensively expanded to multiple levels such as RNA, protein, and metabolites, and also extend to the single-cell microscopic level from the perspective of time and space (27). This suggests that TCM provides new perspectives and strategies to combat various CVDs in modern society.

Currently, there are few reviews on TCM for the prevention and treatment of various CVDs. In this review, the current pathogenesis of CVD was comprehensively overviewed. Moreover, the current research on TCM (including TCM formulas, extracts, and compounds) protection against CVD was summarized and discussed based on the published literature from 2018-2023 through global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure, as well as its mechanisms and clinical efficacy, which may provide a reference for the clinical application of TCM in the treatment of CVD and a theoretical basis for the development of new drugs to combat CVD.




2 The pathogenesis of CVDs

The development and progression of CVD were associated with genetic mutations, obesity, environmental factors, and poor lifestyle (28, 29). Increasing evidence has demonstrated that the possible pathogenesis of CVD includes inflammation, oxidative stress, mitochondrial dysfunction, cell death (e.g., apoptosis, ferroptosis, and pyroptosis), and gut microbiota imbalance, which would lead to cardiomyocyte injury, inflammatory response, and vascular lesions (15, 30, 31), etc.



2.1 Inflammation

Inflammation plays an important role in the pathogenesis of various CVDs (32), and anti-inflammatory therapies have proven beneficial in several recent clinical trials (33, 34). Increased incidence of cardiovascular events has also been shown in patients with chronic inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory myopathies, and inflammatory bowel disease (35). Evidence suggested that the upregulation of circulating C reactive protein resulted in a greater risk of incident acute myocardial infarction (36) or cerebrovascular events (37). Previous studies have shown that atherosclerosis is a low-grade and aseptic inflammatory disease (38). For example, Mai et al. (39) demonstrated that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome was a key driver of atherosclerosis. Meanwhile, the inflammatory response was considered to be a trigger for the developmental process of atrial fibrillation (40). Over-activation of NLRP3 inflammasome was directly associated with hospitalization rates in patients with cardiac insufficiency and dilated cardiomyopathy, accompanied by cellular scorching of cardiomyocytes (41). In addition, it has also been demonstrated that inhibition of the inflammatory response or NLRP3 gene deletion improved cardiac remodeling and reduced proinflammatory cytokines secretion and fibrotic processes (42, 43), as well as attenuated angiotensin II (Ang II)-induced hypertension (44). Taken together, inflammation was involved in the pathogenesis of several CVDs (Figure 1), which also provides new strategies for the prevention and management of CVD.




Figure 1 | Role of inflammation in the pathogenesis of cardiovascular diseases. ANP, Atrial natriuretic peptide; Bak, Bcl-2 antagonist/killer; COX2, Cyclooxygenase 2; ECM, Extracellular matrix; HG, High glucose; LDL, Low-density lipoprotein; LPS, Lipopolysaccharide; MCP1, Monocyte chemotactic protein 1; NLRP3, Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; ROS, Reactive oxygen species; TGFβ, Transforming growth factor beta; TLRs, Toll-like receptors; TRAF6, Tumor necrosis factor receptor-associated factor 6; VCAM1, Vascular cell adhesion molecule 1; βMHC, Beta-myosin heavy chain.






2.2 Oxidative stress

Oxidative stress is a pathological state of reactive oxygen species (ROS) accumulation caused by excessive production of oxygen free radicals or impaired intracellular antioxidant defense systems (45). Normal physiological state of ROS levels contributes to the maintenance of cardiovascular homeostasis (46), while excessive and/or sustained increases in ROS production play an important role in the pathological statute of CVD (Figure 2), such as atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, arrhythmia, heart failure, and acute myocardial infarction (47). Of note, oxidative stress has emerged as a new target for the prevention and treatment of CVD (48). It has also been found that common CVD risk factors contribute to a sustained increase in ROS production in the vascular wall (49). Functionally, oxidative stress not only promotes lipid peroxidation, protein and enzyme denaturation, DNA damage, and severe functional impairment of vascular endothelial cells and cardiomyocytes, but also participates in the pathogenesis of hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, and other CVDs by regulating inflammation and stimulating vascular smooth muscle cell proliferation (50). In addition, endogenous antioxidant enzymes (e.g., superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase, and peroxidase) and exogenous antioxidants may act by scavenging free radicals and exerting anti-CVD activities. For example, overexpression of glutathione peroxidase 4 (GPX4) inhibited atherosclerosis progression in apolipoprotein E-deficient (ApoE-/-) mice (51). Giam et al. (52) showed that the antioxidant NAC attenuated cardiac injury and prevented cardiac fibrosis which improved cardiac function in mice with heart failure.




Figure 2 | Role of oxidative stress in the pathogenesis of cardiovascular diseases. NO: one of the members of reactive nitrogen, damages cardiomyocytes through direct cytotoxicity or generates ONOO− with O2− to cause cardiomyocyte damage. CVD, Cardiovascular diseases; ER, Endoplasmic reticulum; MAPK, Mitogen-activated protein kinase; MI/RI, Myocardial ischemia/reperfusion injury; NF-κB, Nuclear transcription factor-κB; NLRP3, Nucleotide-binding oligomerization domain-like receptor protein 3.






2.3 Mitochondrial dysfunction

Mitochondria, a key site of cellular metabolism for ATP production, provides enough energy for the contraction and diastole of human cardiomyocytes, but mitochondrial dysfunction accelerates the occurrence and progression of CVD (Figure 3). For example, mitochondrial dysfunction in macrophages contributes to inducing inflammation and inhibiting repair after myocardial infarction, but mitochondrial-targeted ROS scavenging alleviates these phenomena and reduces death after myocardial infarction in mice (53). Currently, mitochondrial dysfunction, mitochondrial DNA and nuclear DNA gene mutation, and the presence of mutant proteins associated with mitochondria are considered to be non-negligible causes of CVD pathogenesis (54). For instance, four mitochondrial DNA mutation genes (e.g., MT-RNR1, MT-TL1, MT-TL2, and MT-CYB) have been reported to be connected with atherosclerosis progression (55). Functionally, mutations in the mitochondrial genome and nuclear genome may disrupt mitochondrial homeostasis, leading to excessive ROS production and reducing oxidative phosphorylation capacity, which are risk factors for CVD (56). For example, specific targeted antioxidant treatments that reduced ROS production and enhanced ROS scavenging have been shown to alleviate impaired mitochondrial-induced oxidative stress (57). Jacinto et al. (58) showed that the overproduction of mitochondrial ROS promoted atherosclerosis progression by triggering DNA fragmentation and cell apoptosis. Moreover, mitophagy plays an important regulatory role in maintaining cellular homeostasis, whereas mitophagy damage predisposes to cause abnormal function of cardiovascular-derived cells (59). Notably, several intervention strategies ameliorate CVD by improving four important characteristics of mitochondria, such as scavenging mitochondrial ROS (60), mitochondrial DNA editing or mitochondrial replacement therapy (61), increased oxidative phosphorylation (62), and enhanced mitophagy (63). Therefore, maintaining normal mitochondrial function has the potential to be used as an effective therapeutic strategy for CVDs.




Figure 3 | Role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases. ECM, Extracellular matrix; HG, High glucose; IR, ischemia/reperfusion; Keap1, Kelch-like ECH-associated protein 1; LDL, Low-density lipoprotein; mPTP, Mitochondrial permeability transition pore; Nrf2, Nuclear factor erythroid 2-related factor 2.






2.4 Pyroptosis

Pyroptosis, a form of programmed cell death, is closely related to the inflammatory response, mediated by the Gasdermin protein, and dependent on caspase activity (64). Pyroptosis is typically characterized by the swelling and rupture of cell membranes, the release of pro-inflammatory factors, and cell contents from the plasma membrane to the extracellular environment (65), which aggravates inflammatory response. Recent studies have shown that pyroptosis was involved in the development and progression of several CVDs (Figure 4), including atherosclerosis, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia-reperfusion injury, myocarditis (66), etc. Mechanistically, NLRP3 inflammasome activated caspase-1 and triggered an inflammatory cascade, which plays an important role in pyroptosis (67). For example, NLRP3 inhibitor MCC950 has the potential to prevent NLRP3-related diseases, such as cardiac hypertrophy (68), hypertension (69), atherosclerosis (70), and myocardial injury (71). Jin et al. (72) showed that caspase-1 inhibitor VX765 ameliorated mitochondrial damage induced by the NLRP3 inflammasome activation and inhibition of vascular inflammation in both low-density lipoprotein receptor-deficient (Ldlr-/-) and ApoE-/- mice. These results suggested that inhibition of pyroptosis may provide a new avenue for the treatment and management of CVDs.




Figure 4 | Role of pyroptosis in the pathogenesis of cardiovascular diseases.






2.5 Ferroptosis

Ferroptosis is a new type of cellular iron-dependent programmed cell death, and the process mainly involves the accumulation of lipid peroxidation products and lethal ROS (73). Increasing evidence has demonstrated that ferroptosis was morphologically, biochemically, and genetically distinct from cell apoptosis, necrosis, and autophagy (74), which was mainly characterized by impaired cell membrane integrity, mitochondrial atrophy, normal nuclei, and a significant decrease in the levels of GPX4, glutamate-cystine antiporter system components (SLC3A2 and SLC7A11), and coenzyme II. Available studies have shown that ferroptosis was closely associated with the development of various CVDs including cardiomyopathy, myocardial ischemia-reperfusion injury, heart failure, myocardial infarction, vascular injury, and atherosclerosis (75). For example, Wang et al. (76) reported that increased levels of lipid peroxidation and reduced SLC7A11 levels were observed in the development of diabetic cardiomyopathy. Bai et al. (77) found that ferrostatin-1 (Fer-1, ferroptosis inhibitor) alleviated atherosclerotic lesions by reducing iron accumulation and lipid peroxidation, and enhancing the expression of GPX4 and SLC7A11 in a high-fat diet (HFD)-fed ApoE-/- mice. Another study showed that the inactivation of the Nrf2/GPX4 pathway could aggravate doxorubicin-induced cardiomyopathy by promoting cardiomyocyte ferroptosis (78). Importantly, three types of iron chelators (e.g., deferiprone, deferoxamine, deferasirox) have been used in clinical practice for the treatment of iron overload cardiomyopathy (79). Although many preclinical studies suggest that pharmacological regulation of ferroptosis and genetic inhibition of iron uptake are promising treatment strategies for CVD (Figure 5), the underlying mechanism and regulatory networks need to be fully investigated during the pathological process of CVD, which will provide new ideas and strategies for the prevention and treatment of CVD.




Figure 5 | Role of ferroptosis in the pathogenesis of cardiovascular diseases. AA, Arachidonic acid; ACSL4, Long-chain fatty acyl-CoA synthase 4; AdA, Adrenal acid; DMT1, Divalent metal transporter 1; FfR1, Transferrin receptor 1; GCL, Glutamate-cysteine ligase; GPX4, Glutathione peroxidase 4; GSH, Glutathione; GSS, Glutathione synthase; HO-1, Heme oxygenase 1; LPCAT3, Lysolecithin acyltransferase 3; LOXs, Lipoxygenases; NCOA4, Nuclear receptor coactivator 4; POR, Cytochrome P450 oxidoreductase; PUFAs, Polyunsaturated fatty acids; SLC7A11, Solute carrier family 7 member 11; xCT, System Xc-.






2.6 Gut microbiota and metabolomics

Gut microbiota refers to the large number of commensal microorganisms living in the human intestinal tract, which mainly consists of Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria at the phylum level, but its balance is easily disturbed by food intake, lifestyle, and environment (80). Functionally, the gut microbiota can form the intestinal epithelial barrier, regulate intestinal immunity, and prevent the invasion of pathogenic bacteria and metabolic abnormalities (81), which are essential for human health. Numerous studies have demonstrated that dysbiosis of intestinal bacteria and its metabolites, such as Trimethylamine oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), and bile acids, were closely associated with the development of CVD (82), and targeting the gut microbiota was expected to be a potential new target for the treatment of CVD (Figure 6). For example, Jie et al. (83) reported that patients with atherosclerotic cardiovascular disease (ACVD) possessed an increased relative abundance of Enterobacteriaceae and Streptococcus spp., which contributed to aggravating ACVD as well as other diseases. In another survey, high levels of Prevotella, Hungatella, and Succinclasticum and low levels of Lachnospiraceae family and Faecalibacterium were observed in patients with heart failure (84). Meanwhile, elevated plasma levels of TMAO were positively associated with stroke (85), hypertension (86), and atherosclerosis (87), as well as increased cardiovascular events (88), suggesting that reducing intake of dietary TMAO precursors was an effective strategy to decrease the risk of CVD. The above studies suggest that gut microbiota serves as a “microbial organ” that affects cardiovascular health and the “gut-heart” axis is a potential avenue in the prevention and treatment of CVD.




Figure 6 | Role of gut microbiota in the pathogenesis of cardiovascular diseases. SCFAs, Short chain fatty acids; LPS, Lipopolysaccharides; TGR5, Takeda G-protein-coupled receptor 5; FXR, farnesoid X receptor; TMAO, trimethylamine-N-oxide; TMA, trimethylamine.






2.7 Others

Except for the pathogenesis mentioned above, researchers believe that CVD is associated with endoplasmic reticulum stress (ERS) (89), autophagy deficiency (90), diabetes (91), metabolic syndrome (92), etc. Moreover, searching for biomarkers used to determine the occurrence and progression of CVDs and revealing their mechanisms are of great clinical significance for the early diagnosis and treatment of CVD. Meanwhile, the exploration of assessment tools for the early identification of people at high risk of CVD is an important guarantee to reduce cardiovascular mortality. However, the drugs developed to address this pathogenesis can only alleviate the symptoms of CVD, but cannot inhibit or reverse CVD progression. Therefore, elucidating the pathogenesis of CVD remains a key clinical problem that needs to be addressed. Of note, understanding the pathogenesis of CVD may provide effective biomarkers and pathways for subsequent therapeutic and new drug development.





3 TCM in the treatment of CVD

With in-depth research on the pathogenesis of CVD, TCM has shown unique therapeutic advantages in CVD by virtue of its multi-component, multi-target, and integrity (93). More and more studies have demonstrated that TCM (including formulas, extracts, and compounds) exhibited a protective effect on cardiovascular (21), and mechanisms of action of TCM in preventing CVD are shown in Figure 7 and Tables 1–3. Meanwhile, the majority of Chinese patients with CVD have been treated with TCM during the diagnosis and treatment process (94). Herein, we summarized the research progress of TCM in the treatment of various CVDs to provide a reference for the research on the complex mechanism of TCM in combating CVD.




Figure 7 | Therapeutic effects of TCM on cardiovascular diseases and its mechanism.




Table 1 | Summary of traditional Chinese medicine formulas in the prevention and treatment of various cardiovascular diseases from 2018-2023.




Table 2 | Summary of traditional Chinese medicine extracts in the prevention and treatment of various cardiovascular diseases from 2018-2023.




Table 3 | Summary of traditional Chinese medicine compounds in the prevention and treatment of various cardiovascular diseases from 2018-2023.





3.1 TCM formulas for CVD

Chinese herbal compounding (fu fang or prescription in Chinese) is the main form of TCM for the prevention and treatment of various diseases, which is the simultaneous application of multiple herbs to regulate the body as a whole for therapeutic purposes in clinical practice. A meta-analysis showed that the efficacy of Bushen Huoxue decoction in treating coronary heart disease was superior to conventional Western medicine (95). Bi and his colleagues (96) confirmed that Qingre Huatan formulae for the phlegm-heat-stasis syndrome pattern of coronary heart disease was safe and can effectively improve vascular endothelial function. In a randomized, multicenter, double-blind, non-inferiority trial, the results showed that treatment with the Songling Xuemaikang capsule had a well-tolerated and improved total hypertension symptom score and total cholesterol in patients with essential hypertension (97). In addition, TCM prescriptions have been shown to improve sleep disorders in patients with CVD (98). Mechanistically, the Qing-Xue-Xiao-Zhi formula can alleviate the development of atherosclerosis by blocking the TLR4/MyD88/NF-κB pathway to promote lipid efflux, reducing atherosclerotic plaques in the aorta and aortic root and serum TMAO levels, and inhibiting macrophage-mediated inflammation (99). Wu et al. (100) observed that the QiShenYiQi dripping pill can inhibit myocardial ischemia-induced ferroptosis in cardiomyocytes by reducing mitochondrial ROS levels and restoring mitochondrial function (e.g., biogenesis and dynamic homeostasis). Chen et al. (101) demonstrated that Qishen granule administration exhibited cardioprotective effects by inactivation of NF-κB/NLRP3/GSDMD pathway in myocardial infarction, as evidenced by improving cardiac function, reducing inflammatory cell infiltration and collagen deposition, as well as inhibiting NLRP3 inflammasome activation and pyroptosis. Qing-Xin-Jie-Yu granule treatment contributed to the alleviation of atherosclerosis development by regulating gut microbiota composition (that is, the relative abundance of Turicibacter and Roseburia was enhanced), increasing bile acids production, and reducing metaflammation induced by HFD (102). Zhou et al. (103) showed by a comprehensive network analysis that Shenfu injection can be used to treat coronavirus disease 2019 (COVID-19) combined with heart failure. Except for the above-mentioned TCM prescriptions, there are still numerous studies reported on the use of some classical TCM formulas for the prevention and treatment of CVD according to ancient works and the modern clinical. Herein, we summarized the pharmacological effects and molecular mechanisms of TCM prescriptions on CVD based on published studies from 2018 to 2023 and listed in Table 1.




3.2 TCM extracts for CVD

Increasing evidence has proved that single TCM extracts also possessed a protective effect against CVD except for TCM preparations mentioned above (Table 2). For example, a network pharmacology study showed that Schisandra extracts have the potential for therapeutic effects on atherosclerosis by regulating immune inflammation and oxidative stress (104). Recently, the key mechanisms of TCM extracts in CVD may be associated with immunomodulation, antioxidant, anti-cell death, anti-inflammatory, and gut microbiota regulation. For example, Quince extract exhibited hypolipidemic, antioxidant, anti-inflammatory, anti-thrombotic, and vascular endothelium protective effects on HFD-induced atherosclerosis (105). Plantago asiatica L. seeds extracts prevented isoproterenol-induced cardiac hypertrophy by restoration of autophagy and inhibition of cardiomyocyte apoptosis (106). The ethyl acetate extracts of Cinnamomi Ramulus protect rats from myocardial ischemia-reperfusion injury by suppression of NLRP3 inflammasome activation and pyroptosis (107). In doxorubicin-induced chronic heart failure, the combination of aqueous extracts of Aconiti Lateralis Radix Praeparata and Zingiberis Rhizoma has a better therapeutic effect than their single aqueous extracts, which may be associated with improving left ventricular function and promoting mitochondrial energy metabolism through activation of the PPARα/PGC-1α/Sirt3 pathway (108). Treatment with bay leaf extracts exhibited an anti-inflammatory effect in the rat model of myocardial infarction (109), reflected by reducing the levels of C-reactive protein and myeloperoxidase. Another study showed that aqueous extracts of Ligustrum robustum attenuated atherosclerosis development by modulating gut microbiota composition and metabolism, as evidenced by increased relative abundance of genus Bifidobacterium, and reduced serum TMAO and bile acid, as well as decreased cholesterol absorption (110). In addition, single TCM extracts used for the treatment of CVD have been shown to regulate mitochondrial homeostasis and maintain normal autophagy function, as well as have anti-ERS and anti-contractile effects. For instance, Vilella et al. (111) reported that green tea extracts ameliorated cardiomyopathy progression by improving mitochondrial function. In streptozotocin-induced diabetic atherosclerosis, Ginkgo biloba leaf extracts reduced plaque lipid deposition and serum inflammatory cytokines secretion via inhibiting ERS and mTOR-mediated autophagy (112). Granado et al. (113) proved that Marjoram extracts prevented inflammatory response, apoptosis, and oxidative stress of cardiomyocytes induced by coronary ischemia-reperfusion, as well as possessed anti-contractile effects in aorta segments. Taken together, the cardioprotective effects of single TCM extracts on various CVDs were confirmed, but its underlying mechanisms and safety need to be further explored before clinical practice.




3.3 Compounds isolated from TCM for CVD

With the development of pharmaceutical chemistry and pharmacology, many scholars have conducted studies on the bioactive components of TCM in recent years. It has been found that a large number of effective compounds extracted from TCM, such as phenolic acids, flavonoids, stilbenes, anthraquinones, saponins, terpenoids, alkaloids, polysaccharides, etc., all of which possessed therapeutic effects on various CVDs (Table 3).



3.3.1 Phenolic acids

Phenolic acids are a subclass of plant phenolics that can be isolated and extracted from many traditional Chinese herbs such as Angelica sinensis, Salvia miltiorrhiza, Cinnamomi ramulus, Lonicera japonica, Radix Paeoniae Rubra, Ligusticum wallichii, etc. Modern pharmacological studies have confirmed that phenolic acids have a variety of biological activities, including antioxidant, anti-inflammation, anti-coagulant, and hypolipidemic (114). Of note, numerous studies have demonstrated that phenolic acids have been shown to have a therapeutic effect on CVD (115, 116). Vanillic acid, a phenolic compound extracted from Angelica sinensis, could alleviate hypoxia/reoxygenation-induced H9c2 cardiomyocyte injury by inhibiting cell apoptosis and oxidative stress (117). Cinnamic acid is an active phenolic acid extracted from Cinnamomi ramulus that has a cardioprotective effect against myocardial ischemia-reperfusion injury by inhibiting NLRP3 inflammasome-mediated inflammation and cardiomyocyte pyroptosis (118). Shen et al. (119) showed that Salvianolic acid B can effectively inhibit ferroptosis and mitochondrial oxidative stress by activation of the Nrf2 pathway, thereby attenuating myocardial infarction. Another study reported that ferulic acid ameliorated atherosclerotic injury by modulating gut microbiota and lipid metabolism (120), as evidenced by reducing the relative abundance of Erysipelotrichaceae and Firmicutes and increasing the relative abundance of Ruminococcaceae, as well as downregulating serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol and atherogenic index in HFD-fed ApoE-/- mice. In addition, we summarized many phenolic acids such as caffeic acid, protocatechuic acid, chlorogenic acid, gallic acid, benzoic acid, and erucic acid for the treatment and prevention of CVD, which are listed in Table 3.




3.3.2 Flavonoids

Flavonoids are secondary metabolites widely found in TCM and have various pharmacological activities that are beneficial to human health (121), such as antioxidant, anti-apoptosis, anti-inflammation, antitumor, etc. Of note, many studies have found that flavonoid compounds can play an effective protective role in the treatment of CVD (122). Functionally, scutellarin, a flavonoid compound extracted from Erigeron breviscapus, possessed protective effects against cardiac hypertrophy (123), diabetic cardiomyopathy (124), atherosclerosis (125), myocardial ischemia-reperfusion injury (126), and myocardial infarction (127) via inhibition of inflammation, oxidative stress, and apoptosis. Baicalein extracted from Scutellaria baicalensis inhibited Ang II/oxidized low-density lipoprotein-induced inflammation via inactivation of the AMPK/NF-κB pathway, thus showing anti-atherosclerotic activity (128). Wogonin, one of the main flavonoid compounds of Scutellaria radix, ameliorated isoproterenol-induced myocardial infarction via suppression of inflammation and oxidative stress (129). Naringenin was the main flavonoid that existed in various citrus fruits, bergamots, and tomatoes. Naringenin treatment inhibited myocardial ischemia-reperfusion-induced inflammation, lipid peroxidation, and ferroptosis by activating the Nrf2/GPX4 pathway (130). Naringenin suppressed blood pressure, cholesterol triglycerides, LDL, serum malondialdehyde (MDA), and nitric oxide, as well as increased serum superoxide dismutase and glutathione via blocking the STAT3 pathway in obesity-associated hypertension (131). Abukhalil et al. (132) reported that galangin, a natural flavonoid found in lesser galangal and honey, exerted a protective effect on diabetic cardiomyopathy by reduction of oxidative stress, inflammation, and hyperglycemia. Last but not least, pinocembrin belongs to this series of flavonoids and exerts an antioxidant effect on heart failure by activating the Nrf2/HO-1 pathway, evidenced by reducing ROS level in heart tissue and serum MDA level and improving cardiac function (133). Taken together, flavonoids possess a range of biological activities that prevent the development and progression of CVD, and their potential mechanisms are summarized in Table 3.




3.3.3 Stilbenes

Stilbenes are compounds with a stilbene parent structure connected by a vinyl group between two benzene rings and have a typical conjugated structure. Stilbenes are widely found in TCM, including Polygonum cuspidatum and Polygonum multiflorum, and have beneficial effects on human health. Resveratrol, a main compound extracted from Polygonum cuspidatum, can prevent myocardial ischemia-reperfusion injury by inhibition of oxidative stress and ferroptosis (134). Maayah et al. (135) found that resveratrol treatment inhibited cardiac NLRP3 inflammasome activation and reduced inflammatory responses, and thus alleviated doxorubicin-induced cardiomyopathy. Another study showed that resveratrol protects against atherosclerosis by reducing TMAO levels and enhancing hepatic bile acid biosynthesis through the remodeling of intestinal flora (136). Polydatin, an active component in Polygonum cuspidatum, can ameliorate acute myocardial infarction-induced cardiac damage by inhibition of oxidative stress and cell apoptosis via activation of the Nrf2/HO-1 pathway (137). Zhang and colleagues (138) confirmed that polydatin can inhibit inflammation and pyroptosis by blocking the NLRP3/caspase-1 pathway and triggering mTOR-mediated autophagy, thereby exerting an anti-atherosclerosis effect. 2,3,4’,5-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) is extracted and purified from Polygonum multiflorum, which can prevent the development and progression of atherosclerosis by reducing lipid accumulation and inflammation in ApoE-/- mice fed with HFD (139). These results suggested that stilbenes exhibited therapeutic effects on CVD via different mechanisms (Table 3).




3.3.4 Anthraquinones

Anthraquinones are compounds with unsaturated cyclic diketone structures and are widely found in some Chinese herbal medicines (140). Accumulating studies have shown that anthraquinones have various biological activities, including antitumor, antioxidant, and anti-inflammation (141), etc. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a natural anthraquinone derivative, can be extracted and purified from natural plants such as Rhei radix et rhizoma, Polygoni Cuspidat, Polygoni multiflori, which protects against various CVDs (142). Previous studies have demonstrated that emodin exhibited a therapeutic effect on atherosclerosis via inhibition of inflammatory response (143), suppression of PPAR-γ-mediated lipid metabolism (144) and endothelial cell apoptosis (145), reducing oxidative stress (146). Other studies found that emodin can prevent cardiac hypertrophy (147), restrict vasodilation by activation of K+-ATP channels (148), and inhibition of myocardial fibrosis (149). Aloe-emodin is an active ingredient in Rheum palmatum and Aloe vera, which prevents the progression of various CVDs. For example, Tang et al. (150) reported that aloe-emodin exerted an anti-atherosclerosis effect by reducing atherosclerotic plaque in the aorta and lipid accumulation and promoting endothelial autophagy. Yu et al. (151) showed that aloe-emodin inhibited the development of cardiac fibrosis and hypertrophy in rats with chronic myocardial infarction by suppressing cardiac apoptosis and oxidative stress via the inactivation of the TGF-β/Smad pathway. Another study found that aloe-emodin exhibited specific therapeutic value in hypertension-related CVD by inhibiting NLRP3 inflammasome activation (152). Moreover, other anthraquinone compounds have protective effects against CVD, which is summarized in Table 3.




3.3.5 Saponins

Saponins are a class of glycosides with triterpenoids or steranes, which are widely found in natural plants and have been reported to have many pharmacological activities, including antitumor, anti-inflammation, anti-oxidative stress, etc. Importantly, previous studies have shown that saponins were shown to be effective in treating CVD (Table 3) (153), such as atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, heart failure, cardiomyopathy, and hypertension. Astragaloside IV (AS-IV) is the main active ingredient purified from Astragalus membranaceus and serves as an effective therapeutic agent for the treatment of CVD (154). For example, AS-IV could markedly reduce myocardial infarction-induced myocardial fibrosis, cardiac hypertrophy, and macrophage pyroptosis by inhibition of the ROS/caspase-1/GSDMD pathway (155). Yin et al. (156) showed that AS-IV protects against myocardial ischemia-reperfusion injury by suppressing cardiomyocyte apoptosis and serum cardiac troponin levels via blocking CaSR/ERK1/2 and the related apoptotic pathways. Another study found that AS-IV treatment suppressed inflammation, plaque area, and serum lipids in HFD-induced atherosclerosis by blocking the MAPK/NF-κB pathway (157). Other studies proved that AS-IV can attenuate the progression of myocardial fibrosis (158), heart failure (159), and cardiac hypertrophy (160) by inhibiting Nrf2-mediated oxidative stress. Ginsenosides (mainly including the ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Re, Rg3, and Rh2 and compound K) serve as the main active constituents of Panax ginseng and exert protection against CVD by suppression of oxidative stress, cholesterol accumulation, inflammation, and insulin resistance (161).




3.3.6 Terpenoids

Terpenoids are a large group of organic compounds present in TCM and can be effectively used for treating various diseases. Importantly, the preventive and therapeutic effects of terpenoids on CVD have received increasing attention (Table 3), which was associated with their remarkable biological activities, such as anti-inflammation, antioxidant, and anti-apoptosis. Tanshinone IIA, a fat-soluble component of Salvia miltiorrhiza, could protect against heart failure by inhibition of cardiomyocyte apoptosis via activating the AMPK/mTOR-mediated autophagy pathway (162). Paeoniflorin, a bioactive component extracted from Paeonia lactiflora, can ameliorate ox-LDL-induced atherosclerosis by inhibiting apoptosis and adhesion molecule expression via autophagy enhancement in human umbilical vein endothelial cells (163). Andrographolide, a bioactive labdane diterpenoid extracted from Andrographis paniculate, exhibited anti-oxidative stress capacity against adverse cardiac remodeling after myocardial infarction by activating the Nrf2/HO-1 pathway (164). Artemisinin, a sesquiterpene lactone compound with peroxisome bridging group structure purified from Artemisia annua, prevented myocardial ischemia-reperfusion injury by inhibition of cardiac autophagy and NLRP3 inflammasome activation (165). Taken together, terpenoids may serve as an effective therapeutic agent for the treatment of various CVDs by different mechanisms.




3.3.7 Alkaloids

Alkaloids are a class of nitrogen-containing basic organic compounds and widely found in TCM. Of note, alkaloids exert protective effects against CVDs by suppression of inflammation, oxidative stress, and cardiomyocyte apoptosis (Table 3). Berberine, a natural isoquinoline alkaloid isolated from Rhizoma coptidis, possessed profound pharmacological activities for the treatment of various CVDs (166), including atherosclerosis, cardiac hypertrophy, heart failure, myocardial infarction, and arrhythmia. Similarly, palmatine was a potential candidate drug for the treatment of cardiac hypertrophy by activating the Nrf2/ARE pathway (167). Matrine, a quinolizidine alkaloid derived from Sophora flavescens, could attenuate diabetic cardiomyopathy by reducing inflammatory cytokines levels and oxidative stress (168). Cyclovirobuxine D, a steroidal alkaloid extracted from Buxus microphylla, exerted a cytoprotective effect against HFD diet- and streptozotocin-induced rat diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses (169). Cordycepin is an active ingredient in Cordyceps sinensis that can prevent myocardial ischemia-reperfusion injury by activating the AMPK/mTOR-mediated autophagy (170). Colchicine, a botanical alkaloid derived from Colchicum autumnale, exerted unique anti-inflammatory effects in the therapy of various CVDs (171), including atherosclerosis, heart failure, atrial fibrillation, and myocardial infarction.




3.3.8 Polysaccharides

Polysaccharides widely exist in natural plants, which are a kind of complex structure of natural polymer compounds (172). Currently, natural polysaccharides are attracting considerable attention worldwide due to their versatile biological activities and few side effects. Of note, numerous studies have shown that bioactive polysaccharides exhibit profound efficiency in controlling the risk factors of CVD (173), such as inflammatory response, oxidative stress, hypertension, and hyperlipidemia. Polysaccharides derived from Gelidium crinale reduced oxidative stress and inflammation in oxidized low-density lipoprotein-induced atherosclerosis (174). Huang et al. (175) found that the administration of polysaccharides from Eriobotrya japonica effectively reduced oxidative damage and inflammation induced by myocardial ischemia-reperfusion injury. Astragalus polysaccharides could ameliorate diabetic cardiomyopathy progression by improving cardiac function and inhibiting cardiomyocyte apoptosis via the inactivation of the ERS pathway (176). Lycium barbarum polysaccharides could reduce the levels of inflammatory cytokines (e.g., IL-6 and TNF-α) and plasma lipid peroxidation in a pressure overload-induced heart failure rat model (177). In addition, polysaccharides extracted from TCM, such as Polygonatum sibiricum, Opuntia dilleniid, Plantago asiatica, Angelica sinensis, and Ganoderma lucidum, also have therapeutic effects on various CVDs (Table 3).




3.3.9 Others

In addition to the above-mentioned compounds isolated from TCM for the prevention of CVD, other active ingredients in TCM have been reported to have therapeutic effects on various CVDs. Schisandrin B, bioactive dibenzocyclooctadiene derivatives found in Schisandra chinensis, could alleviate diabetic cardiomyopathy by reducing cardiac inflammation and damage via blocking MyD88-dependent inflammation (178). Schisandrin B prevented hypoxia/reoxygenation-induced cardiomyocyte injury by inhibiting inflammation and oxidative stress, which was associated with the activation of the AMPK/Nrf2 pathway (179). Morronisid, an iridoid glycoside extracted from Cornus officinalis, promoted angiogenesis and improved cardiac function in rats with acute myocardial infarction (180). Sulforaphane is a natural glucosinolate found in Raphanus sativus, which inhibited cardiac cell ferroptosis by activating the AMPK/Nrf2 pathway (76). Schisandrol A, a bioactive lignan extracted from Schisandra chinensis, could inhibit cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion via increasing 14-3-3θ expression (181). Collectively, natural compounds from TCM exert anti-CVD effects, which may be developed as an effective therapeutic agent for the treatment of CVD in clinical.






4 Clinical study of the TCM for the prevention and treatment of CVD

Accumulating evidence has reported that TCM has a wide range of pharmacological effects in various CVDs and its beneficial efficacy has been proved in vitro cell models or animal experiments. Importantly, several clinical studies are underway to explore the safety and efficacy of TCM decoction and injections for the treatment of various CVDs. For example, several studies provided a reliable evaluation of the efficacy and safety of Xuefu Zhuyu granules (182) and Xuefu Zhuyu granules (183) in the treatment of patients with coronary heart disease. Other randomized controlled trials similarly analyzed the efficacy and safety of Zhuling decoction (184) and Buyang Huanwu decoction (185) in the treatment of heart failure. A multicenter, randomized, double-blind, placebo-controlled clinical trial found that Qing-Xin-Jie-Yu granule reduced inflammation and cardiovascular endpoint in patients with coronary heart disease (186). A phase I clinical trial by Hu et al. (187) showed that Danhong injection promoted endothelial progenitor cell mobilization by increasing the expression of Akt, eNOS, and MMP-9 in patients with coronary heart disease. Lai et al. (97) found that treatment with TCM formula (Songling Xuemaikang capsule) improved blood pressure in patients with mild hypertension and was well tolerated. Another study confirmed that astragalus injection was a safe and effective therapeutic agent in the clinical management of heart failure (188). In addition, several clinical trials have shown that the combination of TCM and standard drugs for CVD treatment was advantageous to simple conventional Western medicine in relieving clinical symptoms (25, 189). Chao et al. (190) reported that TCM formula combined with Western medicine reduced blood lipid levels and inflammatory factors in patients with coronary heart disease. Zhang et al. (191) showed that modified Xiaojianzhong decoction combined with conventional Western medicine alleviated the progression of chronic heart failure by improving heart function and maintaining gastrointestinal hormones. Another study found that treatment with Jianpi Huazhi pill combined with Western medicine (anti-heart failure) led to decreasing the levels of inflammatory cytokines and improving the composition of the gut microbiota (192). Meanwhile, several clinical studies are completed or ongoing to evaluate the safety and efficacy of TCM combined with Western medicine for the treatment of CVD according to Chinese Clinical Trial Registry (Table 4). Many researchers have proved that treatment with TCM based on the standard drug not only prevented CVD progression and improved quality of life but also reduced the incidence of adverse cardiovascular events in patients (193–195). More interestingly, TCM may be an effective alternative method to Western medicine in modern American healthcare, but some barriers prevent its integration into Western health systems, such as the fact that TCM is not accredited by the American Board of Medical Specialties, available TCM therapies may impose an undesired burden for patients, and TCM therapies are individualized. However, no cardiovascular drug or combination of drugs has shown significant efficacy in all patients with CVD, and standard Western medicine can lead to adverse side effects. From an economic point of view, TCM therapies are cheaper than Western medicine and have a better prognosis for patients with CVD. Based on the current situation, TCM may be an attractive alternative for patients with CVD.


Table 4 | The ongoing clinical trials of traditional Chinese medicine combined with Western medicine for cardiovascular diseases therapy from 2018-2023.






5 Conclusion and prospects

As the leading cause of death after malignant tumors, CVD is difficult to treat clinically and imposes a huge economic and health burden on people worldwide. The morbidity and mortality of CVD are continuously increasing, and the treatment is ineffective because of its complex pathogenesis. In recent years, TCM has been particularly prominent in the treatment of 95 certain diseases, including CVD, offering a new perspective in the modern era for the prevention and treatment of diseases such as COVID-19. In this review, we found that TCM (formulas, extracts, and compounds) can combat CVD through multiple mechanisms, including anti-inflammatory, antioxidant, improving mitochondrial dysfunction, anti-cell death (such as autophagy, apoptosis, ferroptosis, pyroptosis), and regulating gut microbiota. Meanwhile, clinical trials have proven the efficacy and safety of TCM in alleviating the symptoms of CVD. However, there are still some challenges that must be overcome in TCM for CVD treatment. (1) With the rapid advancement of science, there is a need to utilize network pharmacology approaches and multi-omics technologies, such as nutrigenomics, metabolomics, proteomics, gut microbial macrogenomics and immunomics, to reveal the physiological functions and mechanism explanations of TCM in combating CVD; (2) The metabolic, toxicity, and pharmacokinetic profiles of TCM fight against patients with CVD in clinical trials need to be further validated; (3) The construction of TCM resources for common quality standards to ensure active ingredient in TCM; (4) Research on active ingredients of TCM is limited by defects includes unstable chemical structure, low bioavailability and easy oxidation, and liposome embedding or nanoparticle formulation can be considered; (5) Development of CVD models with human disease characteristics for exploring the pharmacological activity of TCM, such as primate animal models that can avoid species barriers leading to ineffectiveness; (6) Designing TCM delivery systems to improve its stability, bioavailability, and efficacy in the gastrointestinal tract.

In conclusion, TCM possesses good anti-CVD effects and is an indispensable active drug for the treatment of CVD. Based on the latest evidence, this review summarized the pathogenesis of CVD and systematically analyzed and discussed the mechanisms of TCM in preventing CVD, as well as its clinical trials. This review aims to provide a scientific and effective comprehensive reference for TCM in CVD therapy and to better utilize and develop the treasures of TCM.
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21 Heart failure Shexiang Baoxin pill+CWM Not recruiting | Sichuan Provincial People’s Hospital ChiCTR2300076014
= - . - Shuguang Hospital Affiliated to Shanghai :
22 Heart fails Yiqi H d t] WM Re ti hiCTR2400082425
cart faflure fai Huayu decoction +C ecruiting University of Traditional Chinese Medicine ChiCTR240
23 Heart failure Qiwei Fangji Huangqi granule+CWM Not recruiting Hangzhou Traditional Chinese Medicine Hospital ~ ChiCTR2400080029
" s o Guang'anmen Hospital, China Academy of .
24 Hypert Bush ule+CWM R t ChiCTR1900028572
ypertension ushen Jiangya granule+ ecruiting Chificss Madical Sasiices i
25 Hypertension Shugan Wendan decoction+CWM Not recruiting Guangzhou University of Chinese Medicine ChiCTR2000034557
Shuguang Hospital Affiliated to Shanghai
26 Hypertensi Di Sh formula+CWM C leted ChiCTR2000040386
ypertension ingxuan Shuyu formuiar ompiete University of Chinese Medicine .
27 Hypertension Chaigui decoction+CWM Completed Wuxi Hospital of Traditional Chinese Medicine ChiCTR2300076783
@ _ i - Shanghai Yueyang Integrated Traditional Chinese ’
28 H; Hi WM Re hiCTR2400081
ypertension woxue Qiyang Qutan prescription+C! ecruiting Medicine and Western Medlicine Hosgifal ChiCTR2400081580
The Second Affiliated Hospital of Tianji
29 Myocardial t.} ecf)n £, lz.e. alosp}l]. = N;ag?"? ChiCTR2000029136
Myocar Qishen Yigi drop pill+CWM Not recruiting | University of Traditional Chinese Medicine
infarction
30 Peking University First Hospital ChiCTR2300069035
Myocardial y . . - Beijing University of Chinese Medicine .
31 Sibaréiion Shexiang Tongxin drop pill+CWM Recruiting Dongzhimen Hospital ChiCTR2300075069
Septi Beijing University of Chi Medicine Shenzh
32 P Fuling Sini decoction+CWM Recruiting cling University of Chinese Medicine Shenzhen. | cvscTRa 100045549
cardiomyopathy Hospital (Longgang)
Combined blood
stasis with ) - Longhua Hospital, Shanghai University of )
Ki f le+CWM hiCTR210004
33 i uoxinfang granule+C! Recruiting i e S ChiCTR2100049536
cardiomyopathy
Ce
34 ERneY Shexiang Baoxin pill+CWM Recruiting Gansu Provincial Hospital ChiCTR2400080152

artery disease

CWM, conventional Western medicine.
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Compoun

Phenolic acids

cardiovascular diseases (model)

Biological activity

Atherosclerosis (animal and cellular models) Anti-pyroptosis and anti-inflammation (312)
Myocardial infarction (animal and cellular models) Anti-apoptosis (313)
Salvianolic acid A
Diabetic cardiomyopathy (animal model) Improving mitochondrial function and anti-apoptosis (314)
Hypertension (animal and cellular models) Anti-apoptosis (315)
Atherosclerosis (cellular model) Anti-inflammation, anti-pyroptosis, and anti-ERS (316)
Myocardial ischemia-reperfusion injury (animal and Anti-ferroptosis, anti-apoptosis, antioxidant, and 617, 318)
cellular models) anti-inflammation >
Seltanclicacd B Myocardial infarction (animal model) Anti-ferroptosis (119)
Uremic cardiomyopathy (animal model) Anti-inflammation and anti-fibrosis (319)
Diabetic cardiomyopathy (animal and cellular models) Angiogenesis (320)
Heart failure (animal model) Anti-inflammation, antioxidant, and anti-apoptosis (321)
Myocardial infarction (animal model) Anti-inflammation and anti-oxidative stress (322)
Chlorogenic acid
Hypertension (animal model) Modulation of gut microbiota (323)
Diabetic cardiomyopathy (animal and cellular models) Anti-ERS and anti-apoptosis (324)
Atherosclerosis (animal model) Modulation of gut microbiota (325)
Heart failure (animal and cellular models) Activation of autophagy and anti-fibrosis (326, 327)
Gallic acid Atrial fibrillation (animal model) Inhibiting immunoproteasome (328)
Hypertension (animal model) Antioxidant (329)
Cardiac hypertrophy (animal model) Antioxidant (330)
Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis (331)
Syringic acid Cardiac hypertrophy (animal model) Anti-fibrosis (332)
Diabetic cardiomyopathy (animal model) Antioxidant (333)
Atherosclerosis (animal model) Anti-inflammation (334)
Caffeic acid Hypertension (animal model) Antioxidant (335)
Cardiac remodeling (animal and cellular models) Anti-fibrosis (336)
Atherosclerosis (cellular model) Anti-inflammation (337)
Punicalagin Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (338)
Diabetic cardiomyopathy (animal and cellular models) Improving mitochondrial function (339)
Atherosclerosis (animal model) Modulation of gut microbiota (120)
Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis and antioxidant (340)
Ferulic acid Heart failure (animal model) Antioxidant and anti-apoptosis (341)
Myocardial infarction (cellular model) Activation of autophagy (342)
Diabetic cardiomyopathy (animal model) Modulation of gut microbiota and anti-apoptosis (343)
Atherosclerosis (animal model) Antioxidant (344)
Cinnamic acid Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (118)
Cardiomyopathy (animal and cellular models) Antioxidant, anti-inflammation, and anti-dyslipidemia (345, 346)
Flavonoids
Atherosclerosis (cellular model) Anti-inflammation and antioxidant (347)
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and antioxidant (348)
Formononetin
Myocardial infarction (animal model) Anti-inflammation (349)
Hypertension (animal model) Anti-inflammation (350)
Atherosclerosis (cellular model) Anti-inflammation (128)
Myocardial ischemia-reperfusion injury (cellular model) Antioxidant (351)
Baicalein Hypertension (cellular model) Anti-fibrosis and anti-inflammation (352)
Cardiac hypertrophy (animal model) Antioxidant and activation of autophagy (353)
Diabetic cardiomyopathy (animal model) Antioxidant and anti-inflammation (354)
Atherosclerosis (animal model) Anti-inflammation (355)
M ek N itial
yoedidial Ischeimta-feperfisioh iy try/(Ghirmal and Anti-ferroptosis and anti-inflammation (356, 357)
cellular models)
Baicalin : < e
Cardiac hypertrophy (animal model) Activation of the SIRT3 pathway (358)
Cardiomyopathy (animal model) Anti-inflammation (359)
Hypertension (animal model) Modulation of gut microbiota (360)
Atherosclerosis (animal model) Anti-inflammation (361)
Hesperidin Myocardial ischemia-reperfusion injury (animal model) Inhibition of autophagy (362)
Cardiac hypertrophy (animal model) Anti-inflammation, anti-apoptosis, and antioxidant (363)
Atherosclerosis (cellular model) Anti-inflammation (364)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant (365)
Hyperoside
Myocardial infarction (animal model) Anti-inflammation (366)
Heart failure (animal model) Anti-apoptosis and activation of autophagy (367)
Atherosclerosis (cellular model) Anti-inflammation and antioxidant (368)
M e T itial
yoedrdial ischeimta- feperusion iy Ury/(airpal aod Anti-ferroptosis and anti-inflammation (369)
cellular models)
Heart failure (animal and cellular models) Anti-apoptosis and anti-inflammation (370)
Puerarin . 4 G
Cardiac hypertrophy (animal model) Activation of PPARe/PGC-1 pathway (371)
Hypertension (animal model) Antioxidant (372)
Myocardial infarction (animal model) Anti-apoptosis (373)
Diabetic cardiomyopathy (animal and cellular models) Anti-inflammation (374)
Atherosclerosis (cellular model) Anti-inflammation and activation of autophagy (375)
Myocardial ischemia-reperfusion injury (animal and Anti-apoptosis 76)
cellular models)
"
Quiercetst Diabetic cardiomyopathy (animal model) Anti-inflammation @77
Myocardial infarction (animal model) Anti-fibrosis (378)
Atrial fibrillation (animal and cellular models) Anti-fibrosis (379)
Kaempferol Atherosclerosis (animal model) Antioxidant (380)
Heart failure (animal model) Antioxidant and anti-inflammation (381)
Diabetic cardiomyopathy (animal model) Antioxidant (382)
Atherosclerosis (animal model) Anti-inflammation, activation of autophagy, and anti-ERS (383, 384)
M dial ischemia- fusion inj imal and
yocardial schemtasreperfusiont injuc (anirial any Anti-ferroptosis, antioxidant, and anti-inflammation (130, 385)
cellular models)
Naringeni
anngenin Hypertension (animal model) Antioxidant (31
Cardiac hypertrophy (animal and cellular models) Antioxidant (386)
Diabetic cardiomyopathy (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (387)
Atherosclerosis (cellular model) Anti-inflammation (388)
Tilianin Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-apoptosis, and anti-inflammation (389, 390)
Diabetic cardiomyopathy (animal and cellular models) Antioxidant and anti-inflammation (391)
Atherosclerosis (animal and cellular models) Anti-inflammation (392)
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation (393)
Biochanin A
Diabetic cardiomyopathy (animal model) Antioxidant (394)
Myocardial infarction (animal model) Anti-inflammation (395)
Atherosclerosis (animal model) Anti-inflammation (396)
Myocardial ischemia-reperfusion injury (animal model) Activation of autophagy and anti-inflammation (397)
Hydroxysafflor Yellow A
Diabetic cardiomyopathy (animal model) Antioxidant (398)
Cardiac hypertrophy (animal model) Antioxidant (399)
Atherosclerosis (cellular model) Modulation lipid metabolism (400)
Xanthohumol Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis (401)
Cardiac hypertrophy (animal model) Anti-fibrosis (402)
Atherosclerosis (animal model) Anti-inflammation (403)
M il e ki L il
l’l"’lc”d'a d'slc emia-reperfusion injury (animal and Improving mitochondrial function and antioxidant (404)
Dihydromyricetin cellular:models)
Cardiomyopathy (animal model) Anti-inflammation and antioxidant (405)
Cardiac hypertrophy (animal model) Antioxidant (406)
Atherosclerosis (animal model) Antioxidant and anti-inflammation (407)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (408)
Acacetin Cardiac hypertrophy (animal model) Anti-inflammation, antioxidant, and anti-apoptosis (409)
Diabetic cardiomyopathy (animal and cellular models) Antioxidant (410)
Hypertension (animal model) Improving mitochondrial function (411)
Atherosclerosis (animal and cellular models) Anti-apoptosis (412)
Myocardial ischemia-reperfusion injury (cellular model) Antioxidant and anti-ferroptosis (413)
Myocardial infarction (animal model) Immunomodulatory (414)
Tcariin Atrial fibrillation (animal model) Improving mitochondrial function (415)
Hypertension (animal model) Antioxidant (416)
Cardiac hypertrophy (cellular model) Activation of autophagy (417)
Diabetic cardiomyopathy (animal model) Improving mitochondrial function and anti-fibrosis (418)
Atherosclerosis (animal model) Anti-apoptosis (125)
M; dial ischemia- fusion inj imal and
yocardal lrchenitacreperfision injury (Snimal. an Anti-inflammation and anti-apoptosis (126)
cellular models)
tellari
Scutellarin Cardiac hypertrophy (cellular model) Anti-inflammation (123)
Diabetic cardiomyopathy (animal model) Anti-apoptosis, anti-inflammation, and antioxidant (124, 419)
Myocardial infarction (animal model) Antioxidant, anti-apoptosis, and anti-inflammation (127)
Atherosclerosis (cellular model) Anti-inflammation and activation of autophagy (420)
Morin
Myocardial ischemia-reperfusion injury (animal model) Antioxidant (421)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-inflammation (422)
Heart failure (animal model) Antioxidant (423)
Myocardial infarction (animal model) Anti-apoptosis and anti-inflammation (424)
igall in-
Eptgallocatechin Hypertension (animal model) Antioxidant (425)
3-gallate
Cardiac hypertrophy (cellular model) Improving mitochondrial function and anti-fibrosis (426, 427)
Diabetic cardiomyopathy (animal model) Anti-fibrosis (428)
Atrial fibrillation (animal model) Anti-fibrosis (429)
Stilbenes
Atherosclerosis (cellular model) Anti-inflammation (430)
Anti-fe tosis, i i itochondrial function,
Myocardial ischemia-reperfusion injury (cellular model) DUL-IErroptosis, improving mitochondrial function. (134, 431)
and antioxidant
Heart failure (patients with heart failure) Anti-inflammation (432)
Myocardial infarction (animal model) Antioxidant, anti-inflammation, and anti-ferroptosis (433, 434)
Resveratrol
Hypertension (animal model) Anuo).ndan} anti-inflammation, and modulation o (435, 436)
gut microbiota
Cardiac hypertrophy (animal model) Antioxidant and activation of autophagy (437)
Diabetic cardiomyopathy (animal model) Antioxidant (438)
Atrial fibrillation (animal model) Anti-apoptosis and anti-fibrosis (439)
Atherosclerosis (animal model) Anti-inflammation, antioxidant, and activation of autophagy (138, 440)
Polydatin Myocardial infarction (cellular model) Antioxidant (137)
Cardiomyopathy (animal model) Improving mitochondrial function and antioxidant (441)
Atherosclerosis (animal model) Anti-inflammation (442)
Raloxifene
Heart failure (animal model) Anti-inflammation and antioxidant (443)
Anthraquinones
Myocardial ischemia-reperfusion injury (cellular model) Anti-inflammation and anti-pyroptosis (444)
Emodin Heart failure (animal model) Anti-apoptosis (445)
Cardiac hypertrophy (animal model) Anti-fibrosis (446)
Atherosclerosis (animal model) Activation of autophagy (150)
Aloe-emodin Myocardial infarction (animal model) Anti-apoptosis and anti-fibrosis (151)
Hypertension (animal and cellular models) Anti-inflammation (152)
Kanglexin Atherosclerosis (animal and cellular models) Hypolipidemic (447)
Anthraquinones
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (448)
Saponins
Atherosclerosis (cellular model) Anti-inflammation, antioxidant, and anti-apoptosis (157, 449)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (450)
Heart failure (animal model) Angiogenesis (451)
Astragaloside IV
Myocardial infarction (animal and cellular models) Anti-inflammation, angiogenesis, and anti-pyroptosis (155, 452)
Hypertension (animal model) Anti-inflammatory and antioxidant (453)
Diabetic cardiomyopathy (animal model) Anti-ferroptosis, antioxidant, and activation of autophagy (454, 455)
Atherosclerosis (cellular model) Antioxidant and anti-inflammation (456)
M ial ischemia- i imal
yocardisl ischemia;cepecfusion injury,(antimal snd Antioxidant and improving mitochondrial function (457)
cellular models)
Ginsenoside Rb1
Heart failure (animal model) Improving mitochondrial function (458)
Diabetic cardiomyopathy (animal model) Anl.lcvaldan', arfu-apoptosns, anti-fibrosis, and (59)
anti-inflammation
Atherosclerosis (animal and cellular models) Anti-inflammation (460)
Ginsenoside Rb2
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and antioxidant (461)
Atherosclerosis (cellular model) Anti-inflammation, anti-apoptosis, and antioxidant (462)
Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis (463)
Notoginsenoside R1
Cardiomyopathy (animal and cellular models) Anti-apoptosis, antioxidant, and anti-fibrosis (464)
Cardiac hypertrophy (animal model) Anti-inflammation (465)
Terpenoids
Atherosclerosis (animal model) Anti-inflammation and anti-pyroptosis (466)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (467)
Tanshinone ITA Myocardial infarction (animal model) Antioxidant (468)
Diabetic cardiomyopathy (cellular model) Anti-ERS and anti-oxidative stress (469)
Cardiac fibrosis (animal model) Anti-fibrosis and antioxidant (470)
Atherosclerosis (cellular model) Anti-apoptosis and activation of autophagy (163)
Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (471)
Paeoniflorin
Heart failure (animal model) Anti-fibrosis (472)
Hypertension (animal model) Anti-inflammation and antioxidant (473)
Atherosclerosis (cellular model) Anti-inflammation, antioxidant, and anti-ERS (474)
M disl jechieriiia: fusion inj -
yocardial fschedita-sepesfsion njdcy (antimal an Antioxidant and anti-inflammation (475)
cellular models)
Catalpol
Hypertension (cellular model) Anti-inflammation (476)
Diabetic cardiomyopathy (animal model) Anti-apoptosis (477)
Atherosclerosis (animal model) Anti-inflammation (478)
ol Myocardial ischemia-reperfusion injury (animal and RS 79)
cellular models)
Myocardial infarction (animal model) Anti-inflammation (480)
Terpenoids
Hypertension (animal model) Antioxidant (481)
Diabetic cardiomyopathy (animal model) Activation of autophagy and anti-apoptosis (482)
Modulation of gut microbiota, anti-infl ation,
Atherosclerosis (animal model) o TGO, BREAEEA el (483, 484)
and antioxidant
Myocardial ischemia-reperfusion injury (cellular model) Anti-inflammation and anti-apoptosis (485, 486)
Ginkgolide B
inkgolice Myocardial infarction (animal model) Anti-inflammation (487)
Cardiac hypertrophy (cellular model) Activation of autophagy (488)
Diabetic cardiomyopathy (animal model) Antioxidant and anti-fibrosis (489)
Atherosclerosis (animal model) Inhibition of cholesterol and antioxidant (490)
I i itochondrial function, anti-apoptosis, and
Lycopene Myocardial ischemia-reperfusion injury (cellular model) afrl“l(l:f;‘;l:g EOCHORCRE RSO0, BIK-AROR 08t 20 (491, 492)
Cardiac hypertrophy (animal and cellular models) Antioxidant and improving mitochondrial function (493)
Atherosclerosis (animal model) Anti-inflammation and antioxidant (494, 495)
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation (165)
Artemisinin
Hypertension (animal model) Antioxidant (496)
Diabetic cardiomyopathy (animal model) Anti-inflammation and anti-fibrosis (497)
Atherosclerosis (animal model) Anti-inflammation and antioxidant (498)
Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (499)
Oridonin
Myocardial infarction (animal model) Anti-inflammation and anti-fibrosis (500)
Cardiac hypertrophy (animal and cellular models) Activation of autophagy (501)
Alkaloids
Atherosclerosis (animal model) Modulation of gut microbiota (502)
Myacardial ischemiasreperfusion injury: (animal and Anti-inflammation, antioxidant, and anti-apoptosis (503, 504)
cellular models)
Heart failure (animal model) Improving mitochondrial function (505)
Befbering Myocardial infarction (animal model) Anti-inflammation (506)
Hypertension (animal model) Modulation of gut microbiota (507)
Cardiac hypertrophy (animal and cellular models) Activation of autophagy (508)
Diabetic cardiomyopathy (cellular model) Anti-inflammation (509)
Atherosclerosis (cellular model) Anti-inflammation and anti-pyroptosis (510)
Heart failure (animal model) Anti-inflammation (511)
Colchicine
Cardiomyopathy (animal and cellular models) Anti-inflammation (512)
Myocardial infarction (animal model) Anti-inflammation (513)
Atherosclerosis (animal model) Anti-inflammation and antioxidant (514)
Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis, anti-inflammation, antioxidant (515)
Sinomenine
Heart failure (animal model) Anti-fibrosis and anti-inflammation (516)
Cardiac hypertrophy (animal and cellular models) Antioxidant and anti-inflammation (517)
Atherosclerosis (animal model) Anti-apoptosis and activation of MMP12/Akt pathway (518)
Nuciferine
Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis and activation of PPAR-y (519)
Alkaloids
Myocardial infarction (animal model) Anti-inflammation (520)
Polysaccharides
Dendrobi
Ao Atherosclerosis (zebrafish model) Antioxidant and anti-inflammation (521)
huoshanense
Laminaria japonica Atherosclerosis (animal model) Modulation of gut microbiota (522)
Cordyceps militaris Atherosclerosis (animal model) Improving hyperlipidemia (523)
Undaria pinnatifida Atherosclerosis (animal model) Anti-inflammation (524)
Cij ludi
tpangopaudina Atherosclerosis (animal model) Modulation of gut microbiota (525)
chinensis
Poria cocos Atherosclerosis (animal model) Anti-inflammation (526)
Atherosclerosis (animal model) Modulation of gut microbiota (527)
Lycium barbarum Myocardial ischemia-reperfusion injury (animal model) Improving mitochondrial function and antioxidant (528)
Cardiac hypertrophy (animal model) Anti-inflammation (529)
Schisandra chinensis Cardiac hypertrophy (animal model) Antioxidant (530)
h P
Cliuanminshen Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis (531)
violaceum
Polygonatum sibiricum Heart failure (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (532)
Astragalr
stragalus Heart failure (animal model) Anti-inflammation (533)
membranaceus

1 upregulated, | downregulated.
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Atherosclerosis

Composition (In Chinese)

Huanggi, Chishao, Chuanxiong, Danggui,

Evaluation model

Effects and
action mechanism

Levels of TC, TG, LDL-cland HDL-ct

Buyang huanwu decoction Dilong, Taoren, and Honghua in a ratio  HFD-induced ApoE” mice Levels of TNF-o, IL-1B, IL-6, iNOS| (196)
of 120:6:4:5:3:3:3 NE-xB pathway|
Carotid lesion plaques stabilityt
- . Huanglian, Huanggin, Huangbo, and HFD-induced ApoE”" mice Levels of IL-1p, IL-6, TNF-o]
Hi -Lian-Jie-Du decocti 197,
mangsLlan-jle:Dudecoction Zhizi in a weight ratio of 3:2:2:3 ox-LDL-induced RAW264.7 cells = Foam cell formation}and (15)
M2 polarizationt
Body weight and levels of TC, TG, LDL-
cl
. ) Huanggi, Yimucao, Danshen, Xiebai, N —— Atherosclerotic plaques|and 0-SMA
Guanxinkang decoction Banxia, and Gualou in a weight ratio : levelt (198)
ox-LDL-induced RAW264.7 cells
of 10:10:4:4:4:5 Levels of IL-1f, IL-6, TNF-a, LOX-1,
MCP-1}
MAPKSs/NF-KB pathway|
Body weight and levels of TC, TG, and
LDL-c|
Huanggqi, Danshen, Chuanxiong, Levels of HDL-ctand IL-1B, IL-6
Qing-Xin-Jie-Yu granule Guanghuoxiang, and Huanglian in a ratio = HFD-induced ApoE”" mice The abundance of Turicibacter and (102)
of 3:3:2:2:1 Roseburiat
The abundance of Alistripes,
Rikenella, Blautia|
Huanggi, Danshen, Chuanxiong, TC, TG, LDL-c levels, and ferroptosis|
Qing-Xin-Jie-Yu granule Guanghuoxiang, and Huanglian in a ratio ~ HED-induced ApoE”" mice Levels of IL-6, IL-1B, TNF-a, Fe*", ROS| | (199)
of 3:3:2:2:1 Expression of GPX4/xCT in aorta tissuest
Blood glucose and levels of TNF-0. and
o Gishidos X -
Yigihuoxue decoction Chuanxiong, Chishao, and Xiyangshen In | y1pry o 4cod ApoE™ mice IL-6) (200)
a ratio of 40:20:1 -
Aortic arch plaque area
F ‘Wuzhuyu, Shengjiang, Renshen, and ; . Aortic lesion areas|
‘Wu-Zhu-Yu decocti HFD-induced ApoE 201
u-ahu-tu decoction Dazao in a ratio of 1:2:1:1 induced Apok ™ mice Levels of TC, TG, LDL-c}and HDL-c1 e
Sha'oyao, Chu‘anxxon‘g, Taoren, Honghua, HED-induced ApoE”" mice Lipid deposition, plaque formation, lipid
; = Onion, Wuchizao, Ginger, and z uptake|
Tonggiaohuoxue decoction . R . ox-LDL-induced THP-1 cells (202)
‘Yunmuxiang in a ratio 5 Levels of ICAM-1, VCAM-1, and
ox-LDL-induced HUVECs
of 16:16:48:48:12:8:48:20 MCP-1}
Rendong, X hen, D: i, and lipid ulati d Autoph:
Si-Miao-Yong-An decoction cadongAATIEn, Canggtlan HED-induced ApoE”" mice ipid accumulation]and Autophagy? (203)
Gancao in a ratio of 3:3:2:1 NE-xB pathway
. . Plaque area and Levels of inflammatory
T: , Honghua, Chi 5 D: 3 . WA .
Tao Hong decoction a:g"j;'em:"gi:’ini :’]‘;“z:g s a"ggu' HED-induced ApoE” mice cytokines|. (204)
X ’ PI3K/Akt/p38 pathway |
Huanggi, Baizhi, Chishao, Chuanxiong, o-SMA protein and cell proliferation|
Bunao-Fuyuan decoction Honghua, and Taoren in a ratio ox-LDL-induced VMSCs Cell invasion and migration| (205)
of 120:6:5:3:3:3 RHOA/ROCK pathway|
N . Huanglian, Huangqi, Huangbo, and Zhizi . - Levels of TC, TG, LDL-c}and HDL-ct
Huanglian Jiedu decoction in & ratio of 9:6:6:9 HFD-induced ApoE™" mice Expression of CRP, IL-6, TNF-o.| (206)
Dihuang, Shanzhuyu, Chinese Yam, ; s s HUVEC apoptosis|
HFD-induced ApoE
Liuwei Dihuang formula Zexie, Diaozhilan, and Fuling in a ratio induced Apo®  mice ‘The ratio of SAM/SAH and (207)
Hey-induced HUVECs ¢
of 32:16:16:12:12:12 plaque formation|
Lipi iti levels of TG, TC,
Dihuang, Shanzhuyu, Chinese Yam, ) P ipid depositionianid levelsoF TGITC,
Liuwei Dihuang soft capsule Zexie, Diaozhilan, and Fuling in a ratio HFD-induced Apol” mice LDLck (208)
J P ¢ : s PDGF-BB-induced VSMCs Expression of ERa, ERB, SRC31
of 32:16:16:12:12:12 . ) it
CyclinD expression and cell migration|
. y . - . hyperplasia/neointima Levels of IL-1B, TNF-0, MCP-1]
Danggui Buxue decoction Danggui and Huanggi in a ratio of 1:5 mice model PI3K/Akt pathway) (209)
Bod: ight and levels of TC, TG, LDL-
Huanggin, Chishao, Chuanxiong, ) o A
Qi H Ao Maod. i HonghivayTa N i HFD-induced ApoE”" mice cl @10)
ihgretitome decoction a0Congaing, Tong ud, NANgXIANg AN pg. induced RAW264.7 cells Plaque arealand M2 polarizationt
Danshen in a ratio of 3:3:2:6:2:2:6
NE-kB pathway]
Shudihuang, Shanzhuyu, Shanyao, Zexie, o _—
VSM life
Liuwei Dihuang formula Mudanpi, and Fuling in a ratio Ang T-induced VSMCs SMC proliferation and migration} @11
Expression of ¢-SMA and OPN|
of 8:4:4:3:3:3
; . . N Atherosclerotic plaque areas
ChaibuShugan-San formula )C(:‘:‘_:h: %ﬁ:f‘a:::‘g::l‘;zgn‘gj’;}ﬁ: HED-induced ApoE”" mice Levels of TC, TG, LDL-¢, TNF-ou IL-1B, )
SR & et : LPS-induced HUVECs )
Expression of BDNF and TrkB1
Levels of TG, TC, LDL-c, TNF-0, IL-6,
Huanggi, Danshen, Gualou, Huanglian, nfvleps 10 <
Sangi, Xuanshen, Zhebeimu, Huzhang, o
Guanmaitong granule S::x?zlhi, o T HED-induced ApoE” mice Plaque lipid deposition) @13)
Plaque collagen content|
of 6:3:3:1.5:3:4.5:3:2:1:0.5
TLR4/MyD88/NF-kB pathway|
Myocardial ischemia-reperfusion injury
LVEF and LVFStand CK and CK-MB
Dihuang, Jixueteng, Maidong, levels)
. i Zhiheshouwu, Ejiao, Gancao, Wuweizi, . s MDA content and inflammatory cell
T¢ Ya 1 I/R-induced dial 214
ofgns: Tangnpt Dirigéhien; Grigniiiay D, i Guizkiiny | 100 noes mypeardial injity, infiltration) @)
a ratio of 10:10:6:6:6:6:6:6:4:4:2 Cardiomyocyte apoptosis)and
PI3K/Akt pathway?
LVDd and LVD:
Dihuang, Jixueteng, Maidong, A TNDS
Zhiheshouw, Ejiao, Gancao, Wuweizi, Infammatory céll mumber
T i Yangxin pill i 2 i : TR ial inj Activities of CK, LDH, MDA N 21
‘ongmai Yangxin pi Dangshen, Cuguijia, Dazao, and Guizhi in /R-induced myocardial injury a::i:,‘;:;,‘:s of CI land NO (215)
tio of 10:10:6:6:6:6:6:6:4:4:2
aratoo CAMP/PKA and NO/cGMP pathwayst
Myocardial infarct size, LVDd, NLRP3
. - S e Huanggi, Danshen, Sanqj, and Jiangxiang . - expression|
henYiqi d 1l I/R-induced dial 216,
QishenYiqi dripping pi in a ratio of 20:65:1:33 /Reinduced myocardial injury LVEF and LVFSfand PI3K/Akt- @6
mTOR pathwayf
Huanggi, Danshen, Sangi, Chuanxiong, Myocardial infarct size]
Yigi Huoue formula Danggui, Viyiren, Baizhu, Fuling, Bania,  /R-induced myocardial injury Levels of CK and LDHJ o
Juhong, Dilong, and Shuizhi in a ratio H/R-induced H9¢2 cell injury MDA content|and SOD levelt
of 30:15:10:10:10:15:15:15:15:10:10:3 H9c2 cell proliferationf
Infarcted area, CK-MB and cTnT levels|
h , Ch iong, and H lian i T/R-i dial inj .
Huoxue Jiedu formula fa::};afol-(lj-luanmong G I-/I /Rl?::‘i: dn;y;)z;roex]a] ‘:‘Ju il Beclin-1 and LC3-I1}and Bcl-2, p621 (218)
i ey PI3K/AKT/mTOR pathway!
SOD leveltand MDA content)
G . 3 3 . 3 1/R-induced myocardial injury H9¢2 cell apoptosis and myocardial
Dried ginger-aconite decoction ‘Wutou and Ginger in a ratio of 1:1 H/Reinduced HOC2 cell injury infarct size| (219)
PI3K/AKT/GSK-3pB pathwayt
Myocardial infarct size and cell
. o apoptosis |
) Danshen, Gegen, and Chuanxiong in a UR-induced myocardial tficy ¢TnT, CK, LDH levels, and MDA
Tongmai formula . H/R-induced neonatal rat (220)
ratio of 1:1:1 il . content].
ventricular myocyte injury GSH and SOD activitiestand
ROS content|
Renshen, Yuzhu, Sangi, Xiebai, Danggui,
Maidong, Wuweizi, Danshen, Kushen, : G Myocardial infarct size and LVDd}
Gancao, Huangqi, Yinyanghuo, Jinsilian, U/R-induced myocardial injury LVEF and LVFSt
Xin-Ji-Er-Kang formula g 891, Yinyanghuo, * H/R-induced cardiomyocyte-like (221)

and Bingpian in a ratio of
11.71:7.03:3.09:7.80:7.80:7.80:3.93:
7.80:7.80:7.80:11.69:7.80:7.8:0.15

cell injury

Apoptosis of cardiomyocytes|
JAK2/STAT3 pathway?

Jinyinhua, Xuanshen, Danggui, and

Myocardial infarct sizeland LVEF, LVFST

Si-Miao-Yong-An decoction Caiitan e atio 6F 55333 I/R-induced myocardial injury Levels of CK, LDH, TNF-o, IL-6, IL-1B} (222)
TLR4/NF-xB pathway
Heart failure
VD LVEF V]
Huanggi, Danshen, Jinyinhua, Xuanshen, | TAC-induced heart failure model | = 04 214 LVDsland LVEF and LVFSY
. . . . . Collagen deposition|
Qishen granule Fuzi, and Gancao in a ratio TGF-B-stimulated (223)
. TGF-B/SMADs and PI3K/GSK-
of 30:15:10:10:9:6 cardiac fibroblasts
3P pathways|
LVEF and LVFStand LVDd and LVDs|
o . Rendong, Xuanshen, Danggui, and 1SO-induced heart failure model | Expression of fibronectin, collagen I, o-
Si-Miao-Yong-An decocti . 224
R LaRg AR deonion Gancao in ratio of 33:2:1 150-induced H9c2 cell injury SMA| )
PDE5A-Akt and TLR4-NOX4 pathways)
LVEF and LVFStand LVDd and LVDs|
Fuling, Guizhi, Baizhu, and i H ight, ANP, BNP, o-MHC,
Lingguizhugan decoction m‘ﬁ’:i j‘;‘;‘ aizhu, and Gancao ;08 p ¢ i1 uced heart falure model C;::Cw;:i;sisl GoMEG (25)
Akt-GSK3B/mTOR/P70S6K pathway
LVEF1and levels of NT-proBNP, ¢TnT,
Chegiancao, Huangqi, Hongshen, Ezhu, LAD-induced heart failure model CK-MBL
XinLi formula s | bt s et o Content of ALD, AGTRI, TGE-B1, HYP| | (226)
and Shanzhuyu in a ratio of S0:40: 10 ng Hrinduce <2 cell injury Expression of NLRP3, caspase-1, IL-1B,
1L-18)
LVDd and LVDsland LVFS and LVEFt
Levels of CK-MB, BNP, and NT-
Wautou, Shaoyao, Baishu, Fuling, and DOX-induced heart proBNPL
Zhenwu decoction 'tou, Shagyac, Baishy, Fuling, an DA-induced hed Fibrosis area, collagen I|and SOD (@27)
Ginger in a ratio of 3:3:2:3:3 failure model —
activity?
Expression of IL-1B, TNE-o,, IL-6]
NF-kB pathwayland PI3K/Akt pathway
LVEF and LVFStand LVDs and LVDd|
. . . Fuling, Guizhi, Baizhu, and Gancao in a . . MDA production and NT-proBNP levels|
Li Zh decocti LAD-induced heart fail del 228,
inggut Zhugan decoction ratio of 4:3:3:2 fnduced heart fatlure MOSE | 60D activity and SIRT1/AMPK/ @28
PGClo: pathway?
Renshen, Huanggi, Rougui, Yinyanghuo, LVEF and LVFStand LVDs and LVDd|}
T — Luhui, Shuweicao, Fuling, Baishu, Adriamycin-induced heart Myocardial fibrosis| @)
RGN0 ococen Longyacao, Yimucao, and Gancao in a failure model NT-proBNP level |and ATP levelt
ratio of 4:4:2:4:3:3:4:3:6:3:2 Expression of Bax and caspase-3]
Fuzi, Ginger, Danshen, Baizhu, Taoren, " LVEF and LVFSt
Jijiu Huiyang decoction Honghua, and Zhigancao in a ratio Z_?X""d“;eld heart LVDs and LVDd| (230)
of 5:3:99:6:6:5 Hure mode PPARO: pathway|
N . LAD-induced heart failure model = LVEF and LVFStand LVDs and LVDd |
e Huanggqi, Renshen, Danshen, Fuling, and . o
Xinfuli granule 5 F 3 Hypoxia/ischemia-induced H9c2 Levels of ADP, AMP, LA, LDH, FFA | (231)
Maidong in a ratio of 9:6:3:3:2 o
cell injury RHOA/ROCK pathway|
) Huanggi, Danshen, RAendongA, Xuanshen, AT e Neat SliEs wisdal LVEF and LVFStand LVDs and LVDd|
Qishen granule ‘Wautou, and Gancao in a ratio LPS-induced RAW264.7 cells Levels of CK-MB and LDH| (232)
of 30:15:10:10:9:6 ’ TLR4/MyD88/NF-kB pathway]
Huanggqi, Danshen, Zelan, Gancao, Heart weight and cardiac fibrosis)
Maidong, Fuling, Danggui, Zhike, LVEF and LVFSfand LVDs and LVDd}
BAOXIN granule Dihuang, Jiegeng, Dahuang, and TAC-induced heart failure model | Expression of ANP, BNP, B-MHC, IL-1B, = (233)
Mahuang in a ratio IL-6)
of 20:13:10:10:10:10:7:7:7:4:4:4 Expression of TGF- and collagen I/1I1}
LVEF and pro-BNP levelf
1l )l fracti
Guanxining injection Danshen and Chuanxiong in a ratio of 1:1 | TAC-induced heart failure model g:p;i:‘o“:"o?';‘f c7a:1"1),nL (234)
GPX4tand FTH1|
Renshen, Maidong, and Wuweizi in a LYEVatd DVFStand LVDstand LVDd)
YiQiFuMai powder it of {_31 5 5 LAD-induced heart failure model = Cardiac fibrosis and p38 MAPK/ERK,, (235)
ratio of 1:3:1. . pathwayl
SBP, DBP, LVDs, LVDd |
Guanxinning injection Danshen and Chuanxiong TAC-induced heart failure model | LVEF and LVESfand p38/c-Fos/ (236)
Mmpl pathway
H i, Chi iong, Fuzi, Fuling,
vangah, Chuamdong Poab BUling: | i et beart e Cell viability and glucose metabolism{
. 5 : Cheqianzi, Dangshen, Guizhi, Nvzhenzi,
Qiangxin recipe e e o i model Levels of BNP and c¢Tnll (237)
Tinglizi, Taoren, Taizishen, and Zhuling  "007 L FVEEE
in a ratio of 10:5:5:5:5:5:3:5:10:5:5:5 o S TR
Xinshuit ol Huanggqi, Danshen, Guizhi, Zexie, and DOX-induced heart LVEF and LVFStand LVDs and LVDd | 3%
nshuitong capsule Yumixu in a ratio of 6:4:4:3:3 failure model Levels of BNP, BUN, AST, ALT]
Renshen, Danshen, Xuanshen, LVEF and LVFStand LVDs and LVDd|
‘WuShen decoction Beishashen, and Kushen in a ratio LAD-induced heart failure model = Cardiac fibrosis and infarct size| (239)
of 1:3:2:2:1 TGF-B1/Smad2/3 pathway|
Hypertension
. . Spontaneously hypertensive rats SBP, DBP, MAP|and LVEF and LVFSt
. Tianma, Gouteng, Huangqin, and _ . .
Qingda granule Lianzixin in a ratio of 12:10:6:5 Ang II-stimulated 0.-SMA, collagen 111, cardia fibrosis| (240)
T cardiac fibroblasts TGF-B1/Smad,/; pathway]
Danzhi Xiaoyao der ;h:h“’ 'BaZl;l}‘m'D, 2:“Gggm’ Fu'h:g’ ]:f‘“h“’ Spontaneously hypertensive rat: SBE, DBR, MARY (241)
anzhi Xiaoyao pow udanpi, Zhizi, and Gancao ina ratio pontaneously hypertensive rats AnirletysTie behaviot]
of 2:2:2:2:2:1:1:1
I ) ) ) Blood pressure and collagen content],
hi, Baishao, and HFD- d
Guizhi decoction Sizti; Baishiao; end Gancao inatatio iaehcs Expression of IL-6, IL-1B, (242)
of 3:2:2 hypertension model
MMP2, MMP9|
. Tianma, Gouteng, Huangqin, and Ang II-hypertension model SBP, DBP, MAP, Cell viability|
if 24,
Qingds granide Lianzixin in a ratio of 12:10:5:6 Ang I-stimulated VSMCs MAPK and PI3K/Akt pathways| e
Gouteng, Danshen, Gegen, Duzhong, SBP and DBP|
Gedan Jiangya decoction Xiakucao, and Niuxi in a ratio Spontaneously hypertensive rats Expression of collagen /111, 0:-SMA, IL- (244)
of 2:5:6:3:3:4 1B, IL-6) NF-kB pathway |
Niuxi, Ludou, Longgu, Mulike, Guike,
Baishao, Xuanshen, Tiandong, SBP, DBP, MAP|
Zhengganxifeng decoction Chuanxiong, Maiya, Yinchenhao, and Spontaneously hypertensive rats  Firmicutes to Bacteroidetes ratio] (245)
Gancao in a ratio SCFA productiont
of 30:30:15:15:15:15:15:15:6:6:6:4.5
Guizhencao, Weimao, Huanglian, i
HFD-induced SBP, DBP, MAP|
i Zi Shen Tang fc 1 Nvzhen, Shanzhuyu, Xi hen i 24
Qing Gan Zi Shiet Tang formuld | Nvzhien, Stianshiyn, dad Xianshén' 3 hypertension model Levels of TG, LDL-c|and HDL-c{ @9
ratio of 10:5:1:4:4:5
SBP, DBP, MAP|and LVSP, + dp/dt
Xuanshen, Niuxi, Huanglian, Mudan, Spontaneously hypertensive rats 1 lan P
Zi Shen Huo Luo formula Yimucao, and Rougui in a ratio Aldosterone-induced H9¢2 cells o , y : v (247)
of 20:15:12:12:20:3 and cardiac fibroblasts Cardiss ibrosisland-cell proliferationt
T EGFR/ERK pathway|
Myocardial infarction
H i, D: i, Chisao, Chuanxiong, . . . . .
. s et ‘saf) |:\anXlOn.g Ligature-induced myocardial AngiogenesisT
Buyang Huanwu decoction Taoren, Honghua, and Dilong in aratio * % "0 PISK/AKUGSK3P pathway] (248)
of 120:10:10:10:10:10:4.5 patiway
Shudihuang, Chuanxiong, Chishao, .Ligatufe-induced myocardial Myocard.ial ﬁl?rosisl
. . " . ; infarction model Cell proliferation and collagen
Taohong siwu decoction Danggui, Honghua, and Taoren in a ratio . . (249)
of 3003354 TGF-B1-induced expression)
""" cardiac fibroblasts TGFBR1/Smad2/3 pathway|
) Danggui, Dihuang, Taoren, Honghua, Ligature-induced myocardial Mitochondria damage |
Xuefu Zhy d 250
Hely. 2 Cecogtion Chisao, Zhigiao, Gancao, Chaihu, infarction model Number of autophagosomes and (20
Chuanxiong, Jiegeng, and Niuxi in a ratio lysosomes |
of 9:9: :6:3:4.5:4.59 Expression of LC3-B and P62|
LVEF and LVFStand levels of LDH, CK-
Huangqi, Danggui, Renshen, Chuanxiong, | Ligature-i ial
Yiihticeie dstoiion anl.:l;i:l : anggui, Renshen, Chuanxiong, t:?::t: ;n:]z;ej myocardia MBJ @s1)
L JNK/MAPK pathway{
LVEF and LVFSt
Huanggin, Shaoyao, Chuanxiong, ——— dial MCP-1, IL-17A, TNF-0. and IL-1B levels]
Qingre Huoxue decoction Maodongqing, Honghua, Jiangsiang, and | 50 e € UCeq Myocardi LC3B, Beclin-1, ATG5, ATG71and p62 (252)
b . infarction model
Danshen in a ratio of 3:3:2:6:2:2:6 level |
PI3K/Akt pathway]
Dahuang, Baishao, Chaihu, Zhizi, s 9 sitisinduced LVEF and LVFSt
Qingyi decoction Yanhusuo, Muxiang, and Huanggin, ina | o o1 ooe PARCIEAHSTAUCED 1y oig of I1-1B, IL-6, TNF-0. (253)
; myocardial infarction model .
ratio of 3:3:3:3:2:2:2 STIM1/Orail-SOCE pathway}
LVEF and LVFStand LVDs and LVDd|
2 Danshen, Chuanxiong, Baihe, and Dazao  Ligature-induced myocardial Myocardial fibrosis and levels of IL-1f,
Shi f 254
UAREKIRAng in a ratio of 20:12:30:30 infarction model TNF-0.) @9
TLR4/NF-xB pathway|
Ligature-induced myocardial LVEF and LVFStand LVDs and LVDd|
Huanggi, Danshen, Rendong, Xuanshen, ix:érc(ior: sridel ¥ § Levels of LDH, CK-MB, NLRP3, IL-1B,
Qishen granule Wutou, and Gancao in a ratio 1L-18) (101)
OGD/R, 18O, Ang II and LPS- .
of 30:15:10:10:9:6 ) . Cell apoptosis, ROS level, NF-
ATP-induced H9¢2 cell injury
KB pathway|
Others
Levels of CK-MB, ¢Tnl, IL-2, TNF-a.|
The abundance of Bacteroides and
inyinhua, Liangiao, Xuanshen, Rougui, Rikenell RC9 gut
Jia-Wei-Si-Miao-Yong- Jinyin ‘fa AGI0s  ASRER,: Mgt Acute coronary syndrome model ihenellaceac L g".’"“”
. Danggui, Danshen, Gancao, and Huzhang The abundance of Clostridium sensu (255)
An decoction : 3 (acute coronary syndrome) ; :
in a ratio of 15:15:15:9:15:15:15:9 stricto 1, Prevotella, unclassified o
Bacteroidales, and Ruminococcus
gauvreauii group|.
Ur:md:a'l'_"ld‘_’c_ed cadiac LVEFfand fibrosis area, MDA level |
. . . endothelial injury N
. Fuzi, Shaoyao, Fuling, Baizhu, and 2 i Expression of IL-18 and IL-6
Zhen-Wu decoct; Npx-induced cardi 1: 256,
en-iu decoction Shengjiang in a ratio of 3:3:3:2:3 L l_lce_ _Ca‘ tovascutar Cell death and ROS level| 259)
endothelial injury Nrf2/keapl pathway?
(uremic cardiomyopathy) P patiway
Obesity-induced hypertensi
i, Gouten. Huangain. Hehua i e e fSIOT | SBP, DBP, MAPand LVEF, LVFS
Ginga granile ianma, Gouteng, Huanggin, Hehua in a | and cardiac dysfunction Levels of TG, TCJand HDL-c, 57)
ratio of 12:10:6:5 (hypertension and ARt
cardiac dysfunction) P Y
LVEFfand fibrosi d colla
. ) Jinyinhua, Xuanshen, Danggui, and TAC-induced heart failure model Tand fibrosis area and collagen
Si-Miao-Yong-An decoction G . fio of 3:3:2:1 (heart failure) content) (258)
ancao in a raf 1322 2
TGEB1/TAK1/p38/Smad pathway]
Lingzhi, Linshe, Xiongzhang, Niudanfen, : 2 . :
ingzhi, Linshe, Xiongzhang, Niudanfen, | 1o, 41y cod cardiac fibrosis Expression of 0--SMA and collagen I/IIT|
e Zhenzhufen, Renshen, Ganchan, - -
Huoxin pill i ) model Cell viability and migration (259)
Chuanwutou, Bingpian, and Honghua in (myocardial fibrosis) TGF-B1/Smad pathway|
a ratio of 20:1.2:2.4:122.4:18:1 8:9:1.2:2 4 i
Levels of FFA, TG, MDA Jand CAT
HFD/streptozotocin-induced acet‘;iiiy(; an
Yunpi-Huoxue-Sanjie formula Batehu, Zhigieo; Tianhuafen Mull, and | disheticicardiomyopathy, LVDs and LVDdfand LVEF and LVFS] | (260)
Tubiechong in a ratio of 5:2:3:10:2 High glucose-induced H9¢2 cells 3 :
(diabetic cardiomyopathy) Expression of Atg7, Beclinl, LC3 11/
yopaty Lc3 1t
Sasigi, Danshen, Huanigqi, asd Xuatishen S(rq?(ommcm-mduced diabetic LVEF and LVFStand collagen I/III and
Fufang Xueshuantong formula e e i EIERER cardiomyopathy TGE-B1} (261)
o (diabetic cardiomyopathy) Wnt/B-Catenin pathway]
HFD/streptozotocin-induced LVEF and LVFSt
Danahi Jingheng capsule Taizishen, Dihuang, Mudanpi, Xieze, diabetic cardiomyopathy Cell apoptosis and levels of IL-1pand IL- )

Tusizi, and Shuizhi in a ratio of 6:5:4:4:3:3

High glucose-induced HO¢2 cells
(diabetic cardiomyopathy)

6l
TLR4/MyD88/NF-kB pathway|

ABCAL, ATP-binding cassette transporter Al; ACSL4, Acyl-CoA synthetase long-chain family member 4; ApoE”", Apolipoprotein-E deficient; BA, Bile acid; CK-MB, Creatine kinase MB;
COX2, Cyclooxygenase-2; ¢TnT, Cardiac troponin T; DBP, Diastolic blood pressure; FTHI, Ferritin heavy chain 1; GPX4, Glutathione peroxidase 4; GSH, Glutathione; HDL-c, High-density
lipoprotein-cholesterol; HFD, High-fat diet; H/R, Hypoxia/reoxygenation; HUVECs, Human umbilical vein endothelial cells; ICAM-1, Intercellular adhesion molecule-1; ISO, Isoproterenol; /R,
Ischemia/reperfusion; iNOS, Inducible nitric oxide synthase; LAD, left anterior descending ligation; LDH, Lactate dehydrogenase; LDLR”", LDL receptor deficient; LDL-c, Low-density
lipoprotein cholesterol; LOX-1, Lectin-like oxidized low-density lipoprotein receptor-1; LVDd, Left ventricular diastolic diameter; LVDs, Left ventricular systolic diameter; LVDP, Left ventricular
diastolic pressure; LVEF, Left ventricular ejection fraction; LVFES, Left ventricular shortening fraction; LVSP, Left ventricular systolic pressure; LV Vol, Left ventricle volume; MAP, Mean arterial
pressure; MCP-1, Monocyte chemoattractant protein-1; MDA, Malondialdehyde; OGD/R, Oxygen-glucose deprivation/reoxygenation; PDGF, Platelet-derived growth factor; PDE5A,
Phosphodiesterase 5A; PKG I, cGMP-dependent protein kinase 1; PPARY, Peroxisome proliferator-activated receptor gamma; SAM, S-Adenosyl methionine; SAH, S-Adenosyl
homocysteine; SBP, Systolic blood pressure; SRAL1, scavenger receptor Al; TAC, Transverse abdominal aortic constriction; TC, Total cholesterol; TG, Triglyceride; VCAM-1, Vascular cell
adhesion molecule-1; VSMCs, Vascular smooth muscle cell.

1 upregulated, | downregulated.
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