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Purpose: Diabetes and its complications cause a heavy burden of disease

worldwide. In recent years, Mendelian randomization (MR) has been widely

used to discover the pathogenesis and epidemiology of diseases, as well as to

discover new therapeutic targets. Therefore, based on systematic “druggable”

genomics, we aim to identify new therapeutic targets for diabetes and analyze its

pathophysiological mechanisms to promote its new therapeutic strategies.

Material and method: We used double sample MR to integrate the identified

druggable genomics to evaluate the causal effect of quantitative trait loci (eQTLs)

expressed by druggable genes in blood on type 1 and 2 diabetes (T1DM and

T2DM). Repeat the study using different data sources on diabetes and its

complications to verify the identified genes. Not only that, we also use

Bayesian co-localization analysis to evaluate the posterior probabilities of

different causal variations, shared causal variations, and co-localization

probabilities to examine the possibility of genetic confounding. Finally, using

diabetes markers with available genome-wide association studies data, we

evaluated the causal relationship between established diabetes markers to

explore possible mechanisms.

Result: Overall, a total of 4,477 unique druggable genes have been gathered.

After filtering using methods such as Bonferroni significance (P<1.90e-05), the

MR Steiger directionality test, Bayesian co-localization analysis, and validation

with different datasets, Finally, 7 potential druggable genes that may affect the

results of T1DM and 7 potential druggable genes that may affect the results of

T2DM were identified. Reverse MR suggests that C4B may play a bidirectional

role in the pathogenesis of T1DM, and none of the other 13 target genes have a

reverse causal relationship. And the 7 target genes in T2DM may each affect the

biomarkers of T2DM to mediate the pathogenesis of T2DM.

Conclusion: This study provides genetic evidence supporting the potential

therapeutic benefits of targeting seven druggable genes, namely MAP3K13,

KCNJ11, REG4, KIF11, CCNE2, PEAK1, and NRBP1, for T2DM treatment.
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Similarly, targeting seven druggable genes, namely ERBB3, C4B, CD69, PTPN22,

IL27, ATP2A1, and LT-b, has The potential therapeutic benefits of T1DM

treatment. This will provide new ideas for the treatment of diabetes and also

help to determine the priority of drug development for diabetes.
KEYWORDS

diabetes, drug targets, genetics research, Mendelian randomization, genetic
effect analysis
Background

Diabetes is a chronic metabolic disorder that is characterized by

an increase in blood sugar levels caused by absolute or relative

insulin deficiency (1). It is estimated that one in every 10 people in

the world has diabetes, and this number will continue to increase in

the coming decades. The International Diabetes Federation

estimates that the number of diabetes patients is expected to

increase from 425 million adults in 2017 to 629 million in 2045.

This will affect approximately 9.9% of the global population,

resulting in an increasingly unsustainable global health burden (2,

3). Moreover, diabetes complications also lead to a heavy burden of

disease worldwide. Acute complications of diabetes (such as

diabetes ketoacidosis [DKA], hypertonic hyperglycemic coma

[HHS]) and vascular complications of diabetes macrovascular and

microvascular systems (such as cardiovascular disease [CVD],

diabetes nephropathy [DKD], diabetes retinopathy [DR],

neuropathy, and diabetes foot) are the main causes of quality of

life impairment and death in diabetes patients, which has brought a

serious burden to global public health (4, 5).

However, the current treatment of diabetes often relies on two

main ways: changing lifestyles (such as diet, exercise, and weight loss)

and lifelong use of hypoglycemic drugs. Since the 1950s, eight types of

hypoglycemic drugs have been approved and widely used by the global

Food and Drug Administration. This includes insulin preparations,

traditional oral hypoglycemic drugs (metformin, thiazolidinediones

(TZDs), sulfonylureas (SUs), glinides, and a-glucosidase inhibitors),

modern therapies based on intestinal proinsulin (such as dipeptidyl

peptidase-4 inhibitors (DPP4is) and glucagon-like peptide-1 receptor

agonists (GLP-1RA), and sodium glucose cotransporter-2 inhibitors

(SGLT2is) (6, 7). However, in the case of traditional hypoglycemic

drugs, their adverse events (hypoglycemia, weight gain, gastrointestinal

disorders, psychological insulin resistance, and edema) can negatively

affect the acceptability of treatment, thereby reducing patient

satisfaction and adherence to the therapy (8). Compared with

traditional oral drugs, incretin-based therapies (DPP4is and GLP-

1RA) and SGLT2is are new drugs for the treatment of diabetes. They

play an important role in delaying the complications of diabetes and

controlling weight (9). SGLT2is (engagliflozin and dapagliflozin) has a

strong role in reducing the risk of hospitalization for heart failure,

slowing down the progression of diabetes nephropathy, and protecting
02
the kidney. However, due to the mechanism of action of SGLT2is

(promoting urination and sodium excretion by inhibiting glucose

reabsorption in proximal renal tubules), it cannot be used in patients

with renal insufficiency. Meanwhile, SGLT2is can lead to accelerated

loss of bone mineral density, an increased risk of fractures, and an

increased risk of urinary and reproductive system infections (10, 11).

DPP4is (Sigliptin) and GLP-1RA (Lilalutide) are incretin-based

therapies that are helpful to control and reduce the weight of

diabetes patients in the treatment of diabetes, but their side effects

include severe nausea, vomiting, dizziness, and gastrointestinal

discomfort, which make some patients intolerable (12). In summary,

both traditional drugs that focus on insulin secretion and insulin

sensitization, as well as modern therapies based on incretin-based

therapies, can have unnecessary side effects on patients, leading to non-

compliance and treatment failure (13). Moreover, these treatment

methods cannot reverse this process. Therefore, evaluating the

common genomic basis between diabetes and diabetes complications

is very important for better understanding its potential

pathophysiology and possibly controlling disease progression. In the

past few decades, “druggable” genes or their encoded proteins have

been targeted by drugs or may be used as proteins targeting small

molecules or monoclonal antibodies. The “druggable” genes that

simultaneously encode protein or gene expression can serve as drug

targets and provide strong clues for disease treatment (14, 15).

Mendelian randomization (MR) analysis provides a valuable

alternative to randomized clinical trials by utilizing genetic variations

associated with specific exposures. By adopting this method, the causal

relationship of the disease can be evaluated and potential therapeutic

targets can be identified, which can be validated in subsequent clinical

trials (16). Therefore, through MR analysis, there should be many

disease-specific drug targets that have not yet been developed among

the thousands of other loci identified in GWAS and similar high-

quality genetic associations (expression quantitative trait loci, eQTL)

studies. In this study (Figure 1), we conducted systematic “druggable”

genome-wide MR to identify therapeutic targets for diabetes. Secondly,

we conducted a reverse MR analysis to assess the existence of a reverse

causal relationship. Thirdly, we conducted a Steiger directionality test

to eliminate SNPs in the opposite direction so as to ensure the

directionality of the association between the “druggable” gene and

diabetes.Fourthly, we conducted co location analysis to verify the

robustness of the expression tool variable (IV), and repeated
frontiersin.org

https://doi.org/10.3389/fendo.2024.1366290
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2024.1366290
validation studies were conducted using different diabetes data sources

to verify the stability of the identified druggable genes. Finally, we

evaluated the causal relationship between the identified druggable

genes and the established biomarkers of diabetes to explore the

possible mechanisms of these genes and the pathogenesis of diabetes.
Method

Research design

The design of this study referred to the Mendelian Randomized

Enhanced Epidemiological Observation Study Report (STROBE-

MR) (17), and all participants in this study were subjects of

European ancestry to reduce population stratification bias. In
Frontiers in Endocrinology 03
order to obtain the necessary data, publicly accessible datasets

from eQTLGen, derived from genome-wide association studies

(GWAS) and expression quantitative trait loci (eQTL) studies,

were used (https://eqtlgen.org/). In addition, all the data used in

this work came from studies with subject consent and ethical

recognition; therefore, our study does not require ethical approval

from the institutional review committee.
Data source

Identification of druggable genes
Druggable genes were obtained from the Drug-Gene

Interaction Database (DGIdb V.4.2.0, https://www.dgidb.org/)

and a recent review on the ‘druggability’ of genes (14). The
FIGURE 1

The research design and workflow of this study.
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DGIdb provides information on drug-gene interactions and

druggable genes from publications, databases, and other web-

based sources. Obtained a total of approximately 4,477 “patent

drug genes” (Supplementary Table 1).

eQTL data source
Organizational-specific eQTL data from eQTLGen (https://

eqtlgen.org/). The eQTLGen data includes both cis and trans

eQTLs (16,987 cis eQTLs and 6,298 trans eQTLs) from 31,684

blood samples, with the majority being healthy individuals of

European ancestry (18).

Data source of diabetes
The data set for type 2 diabetes (T2DM) comes from a meta-

analysis that combines GWAS data sets of three European pedigrees

(62,892 cases of T2DM and 59,6424 controls) to determine the

genetic locus of T2DM (19). The genotype data of 9,358 type 1

diabetes cases and 15,705 control subjects from 12 European

cohorts were deeply interpolated in the type 1 diabetes (T1DM)

dataset, and then the genome-wide association test and meta-

analysis were conducted (20). All validation sets of type 1 and

type 2 diabetes and its 12 complications, namely, acute

complications (diabetes ketoacidosis), diabetes coma, chronic

microvascular complications (diabetes retinopathy, diabetes

nephropathy, and diabetes neuropathy), and chronic

macrovascular complications (diabetes peripheral circulation

complications), are derived from the FinnGen R9 study (https://

www.finngen.fi/en/). We have listed all the data sources and

detailed information in Table 1.

Selection of IV
Select druggable genome eQTLs as exposure data. In order to

generate IV, meet the assumption of MR, and obtain reliable IV, we

conducted a series of strict standards on the systematic druggable

genome eQTLs for screening IV: (1) Select SNPs with genome-wide

significance (p<5×10–8) and an acceptable mutation probability

(secondary allele frequency>1%); (2) Execute clump (r^2<0.001,

kb=10,000kb) to eliminate linkage imbalance between genetic

instruments; (3) The F-statistic is used to estimate the strength of

each genetic instrument and select all strong instrumental variables

(F > 10) (21). The formula is R^ 2×(N − 2)/(1 − R^ 2), where R^ 2 is

the cumulative explained variance of selected SNPs in exposure that

used (2×EAF×(1 − EAF)×beta^ 2)/[(2×EAF×(1 − EAF) ×beta^ 2) +

(2×EAF×(1 − EAF)×N×SE(beta) ^ 2)], where N is the sample size of

research, EAF is the effect allele frequency, beta is the estimated

genetic effect, and SE(beta) is the standard error of the beta. Under

strict screening conditions, a total of 2,619 “druggable” genes (8,904

significant SNPs) were included in the preliminary analysis.

MR analysis
In this study, we used the “druggable” gene eQTLs as exposure

data and used type 1 diabetes and type 2 diabetes as outcomes data

for dual-sample MR analysis. If there is only one SNP for a given

gene, eQTL, use the Wald ratio. When two or more genetic

instruments (SNPs) are available, inverse variance weighting (Re
Frontiers in Endocrinology 04
IVW) is the main analytical method. This method is used to

combine the causal effects of individual SNPs, allowing for

heterogeneity between SNPs and returning unbiased estimates of

causal relationships when all IVs are valid and pleiotropy levels are

balanced. For preliminary analysis, we used Bonferroni correction

to adjust for multiple tests, with a threshold P-value of 0.05/2619

(P<1.90e-05) to determine the priority of the results for

further analysis.

MR-Steiger directionality test
For the preliminary validation results, we first conducted anMR

Steiger directionality test, which effectively removed SNPs with

opposite causal directions. The MR-Steiger filtering hypothesis
TABLE 1 The main data sources used in this study.

Study Phenotype Cases Controls PMID

eQTLGen
Alliance

Genetic loci for gene
(eQTL) expression
in plasma

31,684 – 34475573

NA type 2 diabetes 62,892 596,424 30054458

NA type 1 diabetes 9,358 15,705 32005708

FinnGen
R9

type 2 diabetes 38,657 310,131 NA

FinnGen
R9

type 1 diabetes 8,967 308,373 NA

FinnGen
R9

Type 2 diabetes
with coma

4,709 308,280 NA

FinnGen
R9

Type 2 diabetes
with ketoacidosis

657 308,280 NA

FinnGen
R9

Type 2 diabetes with
neurological
complications

1,894 308,280 NA

FinnGen
R9

Type 2 diabetes with
ophthalmic complications

4,172 308,280 NA

FinnGen
R9

Type 2 diabetes with
peripheral
circulatory complications

2,179 308,280 NA

FinnGen
R9

Type 2 diabetes with
renal complications

2,684 308,280 NA

FinnGen
R9

Type 1 diabetes
with coma

2,050 308,280 NA

FinnGen
R9

Type 1 diabetes
with ketoacidosis

2,102 308,280 NA

FinnGen
R9

Type 1 diabetes with
neurological
complications

1,077 308,280 NA

FinnGen
R9

Type 1 diabetes with
ophthalmic complications

5,202 308,280 NA

FinnGen
R9

Type 1 diabetes with
peripheral
circulatory complications

669 308,280 NA

FinnGen
R9

Type 1 diabetes with
renal complications

1,579 308,280 NA
fron
NA, not available.
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suggests that effective genetic variations should explain more

exposure differences than results. If the genetic tool does not meet

this criterion, the genetic variation is determined to have

bidirectional effects. After removing SNPs with bidirectional

effects, we perform a double-sample MR analysis again.

Reverse MR analysis
For the preliminary significant results obtained, we selected

significant genetic instruments (SNPs) from the original exposure

data of T2DM and T1DM according to the same screening

criteria for “druggable” gene eQTLs and used “druggable” gene

eQTL as the outcome data for bidirectional MR analysis to detect

potential reverse causal relationships. The results have statistical

significance at P<0.05.

Bayesian co-localization analysis
Bayesian co-localization analysis uses the “coloc” software

package to evaluate the probability of two features sharing the

same causal variable. This analysis helps to examine the possibility

of genetic confounding by evaluating the posterior probabilities of

different causal variations, shared causal variations, and co-

localization probabilities. This analysis provides several outputs of

interest. Co-localization generates a posterior probability

corresponding to one of the following five assumptions: PPH0, no

association with either trait; PPH1, association with the expression

of the gene but not the diabetes risk; PPH2, association with the

diabetes risk but not the expression of the gene; PPH3, association

with the diabetes risk and expression of the gene, with distinct

causal variants; and PPH4, association with the diabetes risk and

expression of the gene, with a shared causal variant. We restricted

our analysis to genes reaching PPH3+PPH4 of ≥0.8 owing to

limited power in the co-localization analysis. We think that there

is evidence of a common localization of this gene.

External verification
Due to differences in genetic effects between different datasets.

We use the same-variant and significant-variant strategies in

different datasets to replicate the primary findings and further

determine the stability of our results. T2DM and its

complications, as well as T1DM and its complications, are all

from the FinnGen R9 study. For external validation, we still use

the Bonferroni correction to adjust for multiple tests. The threshold

P-value for T2DM and its complications is 0.05/13 (P<0.0038),

while the threshold P-value for T1DM and its complications is 0.05/

10 (P<0.005). We believe the results are significant.
Biomarkers related to diabetes
To determine whether the potential “druggable” gene targets

identified by our MR analysis are involved in the hypothetical

pathological mechanism of diabetes (mainly T2DM). We conducted

another set of dual-sample MR. Among them, we used the

identified potential “druggable” gene eQTL as exposure data and

T2DM-related biomarkers as outcome data. To further explore the

influence of “druggable” gene expression on diabetes biomarkers.
Frontiers in Endocrinology 05
Statistical analysis
All MR analyses were conducted using the R (version 4.2.2)

TwoSampleMR, MRPRESSO, Mendelian Randomization, and

Coloc software packages. All DNA positions were constructed

based on the human reference genome using hg19 (GRCh37).
Result

23 potential drug targets for diabetes
prevention were identified in the dual
sample MR phase

At Bonferroni significance (P<1.90e-05), preliminary MR

analysis revealed a total of 23 “druggable” genes associated with

T2DM and T1DM (Figure 2). Our preliminary results confirm that

13 potential drug targets have significant genetic effects on T2DM

(Table 2). Specifically, the overexpression of Dopamine Receptor

D4 (DRD4) gene, Mitogen-Activated protein kinase 13 (MAP3K13)

gene, Mannosidase beta (MANBA) gene, Baculoviral IAP repeat

containing 2 (BIRC2) gene, Nuclear receptor Binding protein 1

(NRBP1) gene, Kinesin family member 11 (KIF11) gene, Cyclin E2

(CCNE2) gene and Hyaluronidase 3 (HYAL3) gene is negatively

correlated with the risk of developing T2DM (OR values all<1). In

contrast, the overexpression of the MAX dimerization protein MLX

(MLX) gene, regenerative family member 4 (REG4) gene,

pseudopodium-rich atypical kinase 1 (PEAK1) gene, potassium

inward rectifying channel subfamily J member 11 (KCNJ11) gene,

and major histocompatibility complex class II DRb5 (HLA-DRB5)

gene is positively correlated with the risk of T2DM (OR values

all>1). Moreover, our preliminary results also confirm that 10

potential drug targets have significant genetic effects on T1DM

(Table 3). Specifically, the Erb-b2 receptor tyrosine kinase 3

(ERBB3) gene, Tyrosine kinase 2 (TYK2) gene, ATPase

sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1

(ATP2A1) gene, Interleukin-27 (IL-27) geneand Lymphotoxin b
(LT- b) gene overexpression is negatively correlated with the risk of

developing T1DM (OR values all<1). In contrast, the

overexpression of the Endoplasmic reticulum protein 29 (ERP29)

gene, CD69 molecule (CD69), protein tyrosine phosphatase non-

receptor type 22 (PTPN22) gene, Cytochrome B-245 beta chain

(CYBb) gene, and complement C4B gene is positively correlated

with the risk of T1DM (OR values all > 1).
Sensitivity analysis of 23 potential drug
targets in diabetes

In the preliminary analysis of MR, we first identified 23

“druggable” gene targets as potential therapeutic targets for

T1DM and T2DM. Including 13 T2DM targets and 10 T1DM

targets. To verify the stability of the results, we conducted a series of

sensitivity analyses on 23 “druggable” genes (Tables 4, 5). Firstly, we

conducted Steiger directionality tests on 23 potential “druggable”

gene targets to further ensure directionality. For SNPs with opposite
frontiersin.org
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TABLE 2 Significantly correlated MR results of Bonferroni-corrected “druggable” genes with T2DM.

Tissue Gene-id Gene SNP Method OR (95% CI) P-value PVE F-
statistics

plasma ENSG00000069696 DRD4 rs1439287 Wald ratio 0.598
(0.480,0.743)

3.83e-06 0.113% 35.48

plasma ENSG00000073803 MAP3K13 rs7431357 Wald ratio 0.814
(0.752,0.880)

2.19E-07 1.022% 274.76

plasma ENSG00000108788 MLX rs60929812 Wald ratio 1.235
(1.143,1.333)

7.78e-08 0.886% 280.21

plasma ENSG00000109323 MANBA rs223364 Wald ratio 0.878
(0.836,0.923)

2.10e-07 2.653% 757.86

plasma ENSG00000110330 BIRC2 rs2013208 Wald ratio 0.636
(0.520,0.776)

9.06e-06 0.114% 36.00

plasma ENSG00000115216 NRBP1 rs2303370 Wald ratio 0.881
(0.843,0.921)

2.21E-08 2.809% 912.23

plasma ENSG00000134193 REG4 rs6428842 Wald ratio 1.605
(1.367,1.886)

8.29e-09 0.886% 214.14

plasma ENSG00000138160 KIF11 rs10882098 Wald ratio 0.421
(0.367,0.484)

2.29E-34 0.284% 87.89

plasma ENSG00000173517 PEAK1 rs7119 Wald ratio 1.190
(1.113,1.273)

3.86E-07 1.429% 373.98

plasma ENSG00000175305 CCNE2 rs2515226 Wald ratio 0.728
(0.634,0.837)

7.64E-06 0.277% 87.90

plasma ENSG00000186792 HYAL3 rs73077175 Wald ratio 0.918
(0.887,0.950)

1.06e-06 6.656% 1690.88

plasma ENSG00000187486 KCNJ11 rs2074310 Wald ratio 1.502
(1.362,1.657)

3.98E-16 1.154% 166.44

plasma ENSG00000198502 HLA-
DRB5

rs3093990 Wald ratio 1.101
(1.069,1.134)

2.02e-10 7.399% 1980.33
F
rontiers in
 Endocrinology
 06
FIGURE 2

Forest map of 23 potential drug targets for diabetes prevention identified in the dual sample MR phase.
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directions, we excluded them to consolidate the stability of the

results. Secondly, we conducted a pleiotropy test and found that

the P-values for pleiotropy testing were all greater than 0.05 among

the 23 “druggable” genes (Supplementary Table 2). Thirdly,
Frontiers in Endocrinology 07
Bayesian co-localization strongly suggests that in T2DM, CCNE2,

HLA-DRB5, KCNJ11, KIF11, MAMBA, MAP3K13, MLX, NRBP1,

PEAK1, and REG4 shared the same variant with T2DM (PPH3

+PPH4 ≥0.8). Similarly, in T1DM, Bayesian co-localization strongly
TABLE 3 Significantly correlated MR results of Bonferroni-corrected “druggable” genes with T1DM.

Tissue Gene-id Gene SNP Method OR
(95% CI)

P-value PVE F-
statistics

plasma ENSG00000065361 ERBB3 rs11171739 Wald ratio 0.379
(0.314,0.458)

5.94E-24 1.353% 424.90

plasma ENSG00000089248 ERP29 rs11066119 Wald ratio 1.891
(1.430,2.501)

7.97E-06 0.889% 236.80

plasma ENSG00000105397 TYK2 rs1354034
rs12608948
rs149110519
rs34725611

IVW 0.658
(0.560,0.772)

3.27e-07 2.873% 30.08
36.65
56.00
771.59

plasma ENSG00000110848 CD69 rs117372141
rs1861090

IVW 1.964
(1.568,2.460)

4.31e-09 0.996% 29.78
278.00

plasma ENSG00000134242 PTPN22 rs2884603 Wald ratio 1.944
(1.656,2.282)

4.49E-16 1.834% 588.75

plasma ENSG00000165168 CYBb rs12478601
rs1375493
rs149007767
rs10980797
rs424971

IVW 1.906
(1.426,2.547)

1.30E-05 2.022% 38.24
30.24
34.27
36.63
42.13

plasma ENSG00000196296 ATP2A1 rs4788101 Wald ratio 0.435
(0.306,0.620)

4.16E-06 0.383% 121.04

plasma ENSG00000197272 IL27 rs2925629 Wald ratio 0.428
(0.308,0.596)

4.86e-07 0.791% 151.77

plasma ENSG00000224389 C4B rs9264533
rs3132450

IVW 2.859
(2.496,3.275)

7.90e-52 29.44% 328.90
1499.91

plasma ENSG00000227507 LT-b rs9267485 Wald ratio 0.024
(0.013,0.042)

5.36E-36 1.195% 69.22
TABLE 4 Summary of a series of sensitivity analyses on 13 potential drug targets for T2DM.

Tissue Gene-id Gene Steiger
filtering

Bidirectional
MR
(OR (95% CI)

Bidirectional MR
(MR-IVW)

PPH3.abf PPH4.abf PPH3
+PPH4

plasma ENSG00000069696 DRD4 TURE
(0.028)

0.949
(0.907,0.992)

0.021 1.16E-03 5.24E-03 6.40E-03

plasma ENSG00000073803 MAP3K13 TURE
(2.29E-28)

1.005
(0.952,1.061)

0.838 2.55E-02 9.74E-01 9.995E-01

plasma ENSG00000108788 MLX TURE
(4.74E-26)

0.999
(0.932,1.070)

0.979 4.91E-01 5.09E-01 1.00

plasma ENSG00000109323 MANBA TURE
(1.59E-88)

0.938
(0.833,1.056)

0.294 4.81E-01 5.18E-01 9.99E-01

plasma ENSG00000110330 BIRC2 TURE
(0.019)

1.038
(0.993,1.085)

0.096 3.12E-03 8.08E-02 0.0839E-02

plasma ENSG00000115216 NRBP1 TURE
(1.27E-100)

1.015
(0.833,1.122)

0.659 1.00E+00 2.01E-08 1.00

plasma ENSG00000134193 REG4 TURE
(1.38E-30)

0.949
(0.907,1.072)

0.594 1.00E+00 6.24E-07 1.00

(Continued)
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suggests that ATP2A1, C4B, CD69, ERBB3, IL27, ERP29, PTPN22,

TYK2, and LT-b shared the same variant with T1DM (PPH3

+PPH4 ≥0.8). It is worth noting that the CYBb gene serves as a

trans-eQTL gene; therefore, Bayesian co-localization analysis was

not performed on the CYBb gene. Fourth, in order to avoid the

reverse causal relationship between the 23 “druggable” gene targets

and diabetes (T1DM and T2DM), we conducted dual sample

reverse MR analysis using T1DM and T2DM as exposure data
Frontiers in Endocrinology 08
and 23 eQTLs of “druggable” genes as outcome data, with the IVW

method as the main analysis method. We found that the DRD4 (p =

0.021) gene has a bidirectional causal relationship in T2DM, with P

values of all other genes > 0.05. In T1DM, we found that the C4B

gene (p = 0.000179) had a bidirectional causal relationship, with P

values of all other genes > 0.05. This suggests that the DRD4 gene

and C4B gene play a bidirectional role in the pathogenesis of T2DM

and T1DM, respectively.
TABLE 5 Summary of a series of sensitivity analyses on 11 potential drug targets for T2DM.

Tissue Gene-id Gene Steiger
filtering

Bidirectional
MR
(OR (95% CI)

Bidirectional MR
(MR-IVW)

PPH3.abf PPH4.abf PPH3
+PPH4

plasma ENSG00000065361 ERBB3 TURE
(5.38E-10)

0.969
(0.882,1.065)

0.524 2.19E-02 9.78E-01 9.99E-01

plasma ENSG00000089248 ERP29 TURE
(6.67E-14)

0.996
(0.981,1.012)

0.692 1.00E+00 1.01E-11 1.00

plasma ENSG00000105397 TYK2 TURE
(0.090–1.29E-49)

0.982
(0.929,1.039)

0.549 3.10E-02 9.68E-01 9.99E-01

plasma ENSG00000110848 CD69 TURE
(0.020–3.67E-12)

1.024
(0.951,1.103)

0.517 1.43E-01 8.57E-01 1.00

plasma ENSG00000134242 PTPN22 TURE
(1.76E-23)

1.040
(0.971,1.114)

0.253 1.00E+00 1.68E-58 1.00

plasma ENSG00000165168 CYBb TURE
(1.07E-03–
1.10E-06)

1.000
(0.979,1.020)

0.995 – – –

plasma ENSG00000196296 ATP2A1 TURE
(1.12E-04)

0.997
(0.975,1.019)

0.813 8.28E-02 9.13E-01 9.95E-01

plasma ENSG00000197272 IL27 TURE
(3.62E-04–
4.65E-08)

1.003
(0.964,1.043)

0.864 5.22E-01 4.78E-01 1.00

plasma ENSG00000224389 C4B TURE
(6.55E-36–
3.53E-137)

1.090
(1.042,1.141)

1.79E-04 1.00E+00 5.39E-31 1.00

plasma ENSG00000227507 LT-b TURE
(0.038)

1.014
(0.977,1.053)

0.449 1.00E+00 2.55E-12 1.00
TABLE 4 Continued

Tissue Gene-id Gene Steiger
filtering

Bidirectional
MR
(OR (95% CI)

Bidirectional MR
(MR-IVW)

PPH3.abf PPH4.abf PPH3
+PPH4

plasma ENSG00000138160 KIF11 TURE
(0.50)

0.979
(0.908,1.056)

0.593 1.17E-01 8.83E-01 1.00

plasma ENSG00000173517 PEAK1 TURE
(1.37E-41)

0.991
(0.924,1.063)

0.817 1.00E+00 7.63E-07 1.00

plasma ENSG00000175305 CCNE2 TURE
(4.36E-07)

0.994
(0.925,1.069)

0.884 5.47E-01 4.51E-01 9.98E-01

plasma ENSG00000186792 HYAL3 TURE
(7.24E-226)

1.009
(0.956,1.065)

0.740 2.41E-03 1.13E-02 1.37E-02

plasma ENSG00000187486 KCNJ11 TURE
(4.38E-16)

1.061
(0.969,1.162)

0.199 1.04E-01 8.96E-01 1.00

plasma ENSG00000198502 HLA-
DRB5

TURE
(8.39E-251)

0.818
(0.569,1.178)

0.281 1.00E+00 8.32E-06 1.00
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External validation of potential drug targets
for diabetes

After a series of quality control steps such as sensitivity, co-

localization, and reverse MR analysis, we deem that 21 gene targets

have the most reliable MR evidence for T1DM and T2DM risk. C4B

gene has a bidirectional causal relationship in T1DM risk. However,

due to differences in genetic effects between different datasets.

However, due to differences in genetic effects between different

datasets, Therefore, we use the same-variant and significant-variant

strategies in different datasets to replicate the primary findings and

further determine the stability of our results (Table 6;

Supplementary Table 3). We selected T1DM, T2DM, and their

six related complications from the FinnGen R9 study as the external

validation set. In external validation, we found that seven target

genes (P<0.0038) were replicated in T2DM, namely MAP3K13,

NRBP1, REG4, KIF11, PEAK1, CCNE2, and KCNJ11 (Figure 3).

Among them, REG4 has a strong correlation with T2DM and can

be replicated in all six complications of T2DM; KIF11 is replicated

in four complications of T2DM; and KCNJ11 is replicated in three

complications of T2DM (Supplementary Table 4). Same, Not only

that, we also found a strong correlation between C4B, LT-b, and
T1DM. C4B and LT-b were replicated in six complications of

T1DM; ERBB3 and PTPN22 were replicated in five complications

of T1DM; and IL27 was replicated in five complications of T1DM

(Supplementary Table 5).
Association between potential drug targets
and biomarkers of diabetes

The primary pathophysiological features of T2MD are impaired

insulin secretion and insulin resistance, with insulin resistance being
Frontiers in Endocrinology 09
the principal cause of T2MD (22). Certain biomarkers, lifestyle,

environmental, dietary, and socio-psychological factors contribute to

the risk of insulin resistance and are also non-genetic risk factors for

T2DM (23). Previous studies have determined that certain clinical

characteristics (age, body mass index (BMI), waist-to-hip ratio, and

hypertension) are associated with the risk of T2DM and a series of

metabolic characteristics related to diabetes (24). There is a causal

relationship between BMI and a 26% increase in T2DM risk, and a

causal relationship between BMI adjusted waist to hip ratio and a 38%

increase in T2DM risk (25). The coexistence of T2DM and

hypertension significantly increases the risk of cardiovascular disease,

end-stage renal disease, and death (26). Secondly, in a large-scale, 10-

year prospective study of T2DM patients (the METSIM study), it was

observed that vitamin D, branched-chain amino acids, low-density

cholesterol, triglycerides, proinsulin levels, fatty acids, glycerol,

mannose, glycoprotein acetyl (GlycA), and acetyl acetate are

associated with an increased risk of T2DM and also serve as T2DM

biomarkers (27, 28). Mannose is a hexose required for glycoprotein

synthesis, which is significantly elevated in insulin-resistant subjects

(29). Acetoacetate (ketone body) is an important marker of T2DM

ketoacidosis (30). GlycA is associated with chronic inflammation of the

pancreas and serves as a marker for predicting impaired insulin

secretion (31). Insulin regulates the concentration of glycerol,

triglycerides, and fatty acids in the serum by inhibiting fat

breakdown. Therefore, the concentration of lipids in plasma also

serves as a marker for predicting T2DM (32). Vitamin D may

regulate insulin resistance and the pancreas b Cellular function plays

a role in the pathogenesis of T2DM (33). The ratio of apolipoprotein to

low-density cholesterol (LDL) is a predictor of worsening blood glucose

and the incidence rate of T2DM (34).

In order to explore the potential role of identified drug targets in

the pathogenesis of T2DM, we used the previously identified 7

potential “druggable” targets eQTL for T2DM as exposure data and
TABLE 6 The main results of external validation after Bonferroni correction.

Tissue Gene-id Gene Outcome Method OR (95% CI) P-value

plasma ENSG00000073803 MAP3K13 T2DM Wald ratio 0.852 (0.784,0.926) 1.71e-04

plasma ENSG00000115216 NRBP1 T2DM Wald ratio 0.897 (0.858,0.939) 3.22e-06

plasma ENSG00000134193 REG4 T2DM Wald ratio 2.614 (2.219,3.078) 1.09e-30

plasma ENSG00000138160 KIF11 T2DM Wald ratio 0.517 (0.449,0.596) 4.33e-20

plasma ENSG00000173517 PEAK1 T2DM Wald ratio 1.241 (1.157,1.330) 1.22e-09

plasma ENSG00000175305 CCNE2 T2DM Wald ratio 0.692 (0.600,0.798) 4.05e-07

plasma ENSG00000187486 KCNJ11 T2DM Wald ratio 1.394 (1.261,1.542) 9.78e-11

plasma ENSG00000065361 ERBB3 T1DM Wald ratio 0.544 (0.481,0.616) 5.52e-22

plasma ENSG00000110848 CD69 T1DM IVW 1.267 (1.091,1.472) 1.94e-03

plasma ENSG00000134242 PTPN22 T1DM Wald ratio 1.879 (1.694,2.084) 6.70e-33

plasma ENSG00000196296 ATP2A1 T1DM Wald ratio 0.712 (0.565,0.898) 4.10e-03

plasma ENSG00000197272 IL27 T1DM Wald ratio 0.635 (0.516,0.782) 1.94e-05

plasma ENSG00000224389 C4B T1DM IVW 2.450 (2.053,2.924) 3.18e-23

plasma ENSG00000227507 LT-b T1DM Wald ratio 0.015 (0.011,0.021) 2.57e-129
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10 T2DM biomarkers (vitamin D, branched-chain amino acids,

low-density cholesterol, triglycerides, proinsulin levels, fatty acids,

glycerol, mannose, glycoprotein acetyl, and acetoacetate) and 3

clinical features (BMI, hypertension, and waist-to-hip ratio) as

outcome data to further evaluate the genetic effects of potential

“druggable” targets and T2DM biomarkers (Supplementary

Table 6). We found that under P-values <0.05 (P<0.05), the level

of vitamin D is only related to the KCNJ11 gene. The level of

branched-chain amino acids is related to the NRBP1, KIF11, and

CCNE2 genes. The level of LDL is related to the REG4, KIF11, and

KCNJ11 genes. The level of triglycerides is related to the NRBP1,

REG4, KIF11, and CCNE2 genes. The levels of proinsulin, mannose,

and glycerol are only related to the NRBP1 gene. The level of total

fatty acid is related to the NRBP1, MAP3K13, REG4, and KIF11

genes. The level of glycoprotein acetyl is related to the NRBP1,

MAP3K13, REG4, KIF11, and PEAK1 genes. The level of

acetoacetate is related to the REG4 and PEAK1 genes. The risk of

obesity (BMI) is related to the NRBP1, KIF11, and KCNJ11 genes.

The risk of hypertension is related to the NRBP1, REG4, CCNE2,

and KCNJ11 genes. The waist-to-hip ratio is related to the

MAP3K13, NRBP1, and KIF11 genes. (Supplementary Table 7).
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Discussion

To our knowledge, this work is the first to combine eQTL data

from “druggable” genomics. Through the use of double-sample MR,

Bayesian co-localization, and external validation of different data

sets, we explored the potential pathophysiological mechanisms of

T1DM and T2DM and specifically sought to identify new drug

targets for diabetes treatment. In this study, we finally found 14

potential drug targets to prevent diabetes, including 7 “druggable”

genes that may affect the expression of T1DM results and 7

“druggable” genes that may affect the expression of T2DM results.

Mitogen-activated protein kinase kinase 13 (MAP3K13), also

known as leucine zipper kinase (LZK), has a high degree of

homology with leucine zipper kinase (DLK). The common feature

of both is the presence of a double leucine zipper (LZ) domain after

the kinase domain, which can activate JNK and, to some extent,

activate p38 MAPK to exert biological activity (35). The human

DLK kinase domain consists of 127–375 amino acid residues,

including four characteristic domains: the catalytic domain, the

double leucine zipper domain, the glycine serine proline rich

domain, and the glycine proline rich domain (36). In many
FIGURE 3

Forest diagram of 14 potential drug targets confirmed through external validation of FinnGen R9T1DM and T2DM.
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previous studies, it has been confirmed that DLK is related to the

occurrence of type 2 diabetes, and DLK is widely present in

pancreatic islets. In the experiment of E. Oetjen et al., it was

found that the overexpression of DLK in pancreatic b cells

decreased the transcriptional activity of CBP/CERB, leading to

decreased insulin secretion and the occurrence of diabetes (37). In

the study by M.J. Stahnke et al., it was also found that

overexpression of DLK not only inhibits the transcriptional

activity of the human insulin gene promoter but also leads to a

decrease in the function and quality of pancreatic islet b cells. Not

only that, they also found that overexpression of DLK can induce

the degradation of the insulin gene transcription factor v-Maf

musculoaponeurotic fibrosarcoma oncogene family, protein A

(MafA) (38). Mafa is an alkaline leucine zipper family

transcription factor that can activate the expression of insulin in

b-cells with PDX1 and NEUROD1. Therefore, MafA is essential for

maintaining both adult b cells and b cellular function (39).

Moreover, inhibiting DLK kinase may protect b cells from the

influence of b cytotoxic pre-diabetes signals and prevent the

development of diabetes (40). Therefore, MAP3K13/DLK is

expected to become a new target for the treatment of T2DM.

Potassium inwardly rectifying channel subfamily J member 11

(KCNJ11) is a target most closely related to T2DM in our study and

also an achievement based on the precise treatment of monogenic

insulin deficiency and insulin resistance diabetes in the new century

(41). The potassium inward rectifying 6.2 subunit (Kir6.2) of the

ATP-sensitive potassium (K (ATP)) channel encoded by the

KCNJ11 gene is a therapeutic target for sulfonylurea drugs and

plays an important role in regulating glucose homeostasis. At

present, sulfonylurea drugs targeting KCNJ11 (glibenclamide,

gliclazide) are widely used as first-line treatment drugs for T2DM

in clinical treatment (42).

Regenerating family member 4 (REG4) is a member of the

calcium-dependent (C-type) lectin superfamily, mainly expressed in

gastrointestinal tissues, including the colon, small intestine,

stomach, and pancreas (43). Previous studies have found that

REG4 plays an important role in pancreatic cell and duct

regeneration. In Hu et al.’s experiment, it was found that the

expression levels of Reg4 mRNA and protein were significantly

increased during acute pancreatitis (AP). In addition, Reg4

upregulates the expression of Bcl-2 or Bcl-xL by activating the

EGFR/Akt pathway, which can prevent arginine-induced acinar cell

necrosis both in vivo and in vitro (44). This was also confirmed in

another study (45). Moreover, in the animal experiment

constructed by Wang et al. using rats, it was found that Reg4 may

mediate intestinal fatty acid extraction and absorption through

AMPK. The expression of Reg4 can reduce intestinal fat

absorption to protect mice from high-fat diet-induced hepatic

steatosis, increased fat accumulation, and insulin resistance (46).

It is worth noting that although Reg4 plays a certain role in

pancreatic regeneration, it also plays an important role in the

occurrence, development, and invasion of pancreatic cancer as a

serum marker of cancer (47).

Kinesin family member 11 (KIF11) belongs to the kinesin-5

family and is a protein-coding gene that plays an important role in

cell mitosis, cell cycle, and differentiation. Previous studies
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have found that KIF11 is closely associated with familial

exudative vitreoretinopathy, lymphedema, intellectual disability,

chorioretinopathy, and an increased risk of T2DM (48, 49). Four

single nucleotide polymorphisms (SNPs) of the KIF11 gene

identified in the GWAS catalogue are associated with diabetes,

including RS2153827, RS6583826, and RS7087591, which are all

associated with the risk of T2DM, while RS7096101 is associated

with insulin level. Moreover, KIF11 did not show significant racial

differences in the risk of T2DM. KIF11 was found as a genetic

variation associated with T2DM risk in large GWAS data from

multiple ethnic cohorts, including Asian (Chinese, Japanese),

European, and Southeast Asian populations (50–52). KIF11 has

also been confirmed to be related to type 2 diabetes retinopathy,

which is consistent with our external verification results (53). In

summary, KIF11 is also expected to become a potential target for

the treatment of T2DM.

Cyclin E2 (CCNE2) belongs to the highly conserved cyclin

family and is a protein-coding gene that functions as a regulator of

cell cycle-dependent protein kinase (CDK). The cyclin box domain

in CCNE2 is an essential structural motif for the formation of cyclin

CDK complexes. CCNE2 binds to CDK2 in a functional kinase

complex with catalytic activity and plays a role in the G1/S

transition of the cell cycle, reaching its peak expression in the G1-

S phase. Plays an important role in cell proliferation and

regeneration (54, 55). Therefore, the function of CCNE2 affects

the cell cycle kinase CDK2 and the progression of the cell cycle.

However, disruption of CDK2 and the cell cycle can lead to

dysfunction of pancreatic b cells and a decrease in b cell mass,

accelerating the progression of T2DM. In Yoon Kim et al.’s

experiment, it was found that the absence of CDK2 can impair

the function of adult b cells, affect the quality of pancreatic b cells,

and lead to insulin secretion defects (56). This phenomenon was

also confirmed in Jiang et al.’s experiment (57). In addition, CDK2

agonists may help to restore b cell function and restart b cell

proliferation to combat b cell failure in diabetes patients. Therefore,

CCNE2 is expected to become a potential therapeutic target for

T2DM patients.

PEAK1 and NRBP1 are the two genes that we found to have the

least correlation with reported T2DM. PEAK1 encodes a non-

receptor tyrosine kinase, which is a member of the novel kinase

family three (NFK3) family. This gene is associated with the actin

cytoskeleton and adhesive plaques and plays a role in regulating cell

migration, proliferation, and cancer metastasis (58). At present, the

research on PEAK1 is more focused on its role in tumor metastasis

and invasion, so the research on PEAK1 and diabetes, especially

T2DM, needs further discussion. There are few reports about

NRBP1 and diabetes. At present, studies believe that the

expression of the NRBP1 gene is related to apo CIII sialylation

and hypertriglyceridemia. However, apo CIII is involved in

triglyceride-rich lipoprotein metabolism and is associated with b
cell damage, insulin resistance, and cardiovascular disease (59).

T1DM is an autoimmune disease caused by complex

interactions between multiple susceptible genes, environmental

factors, and the immune system. Its characteristic is T-cell-

mediated self-destruction of pancreatic b cells, leading to an

absolute lack of insulin secretion (60). At present, the treatment
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of T1DM often relies on exogenous insulin. However, in our study,

we found seven genes closely related to the pathophysiology of

T1DM. They are ERBB3, C4B, CD69, PTPN22, IL27, ATP2A1, and

LT -b respectively. ERBB3, CD69, PTPN22, and IL27 have a highly

significant correlation with T1DM. These four genes are four of

more than 50 loci significantly related to human non-HLA T1DM

identified by the Genetic Alliance for T1DM (61). ERBB3 is located

on chromosome 12q13, also known as Her3 (human epidermal

growth factor receptor 3), and is a member of the epidermal growth

factor receptor (EGFR) family of receptor tyrosine kinases (62). A

study has found that the sites rs11171739 and rs2292239 associated

with ERBB3 affect the occurrence and development of T1DM (63).

Firstly, ERBB3 is considered a novel regulator of pancreatic b cell

apoptosis, and downregulation of ERBB3 can reduce basal cell and

cytokine-induced cell apoptosis. Secondly, ERBB3 can activate

various downstream signaling pathways, such as phosphoinositol

3-kinase (PI3K), nuclear factor kB (NF-kB), and extracellular

signal-regulated kinase (ERK), among which the PI3K pathway is

an important survival pathway for pancreatic b cells (64, 65). There

are also studies indicating that ERBB3 can regulate b-cellulose
(BTC) to promote b cell regeneration (66). IL27 is a

heterodimeric cytokine that plays a role in innate immunity,

regulating helper T cell development, inhibiting T cell

proliferation, and stimulating cytotoxic T cell activity. It has

multiple effects on innate immune cells (67). IL27 can target CD4

helper T cells and promote the differentiation of type 1 effector cells

(TH1) and type 2 effector cells (TH2). Previous studies have found

that SNP rs4788084, located within 2kb upstream of IL27, serves as

a T1D-related risk allele (61, 68). IL-27 plays a protective role in the

development of T1DM and has anti-inflammatory properties by

regulating T cell polarization and cytokine levels. Overexpression of

IL-27 can reduce pancreatic blood glucose levels, immune cell

infiltration, and the expression of the anti-inflammatory cytokine

IL-1b mRNA, thereby alleviating inflammation of the pancreas

(69). Secondly, IL-27 directly affects the differentiation and effector

function of CD4 and CD8 T cells in the pancreas, enhancing the

expression of T-bet and IFN-g in the pancreas (70). IL-27 can also

directly change the balance between islet regulatory T cells (Tregs)

and helper T cells 1 (Th1), thereby regulating the diabetic activity of

CD8 T cells (71).

The CD69 gene encodes a member of the type II

transmembrane receptor calcium-dependent lectin superfamily

and is expressed on various white blood cells, including newly

activated lymphocytes, certain subtypes of memory T cells,

regulatory T cells (Tregs), and natural killer (NK) T cells (72).

CD69 is a marker of early lymphocyte activation, highly

upregulated in T1DM lymphocytes. CD69 exerts its immune

regulatory function by controlling the balance between Th/Treg

cell differentiation and enhancing Treg inhibitory activity, thereby

regulating immune tolerance and lymphocyte infiltration in

pancreatic islet cells (73). The protein encoded by the protein

tyrosine phosphatase non-receptor 22 (PTPN22) gene is a

lymphoid-specific intracellular phosphatase that participates in

regulating the function of the CBL protein in the T cell receptor

signaling pathway by binding to the molecular adaptor protein CBL.

Previous studies have shown that the allele variant PTPN22 R620W
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of the PTPN22 gene is the strongest non-HLA genetic risk factor for

the development of T1DM. However, the pathogenesis of PTPN22

in T1DM is complex, and current research generally suggests that

the expression of PTPN22 may play a role in b cell apoptosis and

affect b cell function (74).

C4B is located in the major histocompatibility complex (MHC)

class III region on chromosome 6, encoding the basic form of

complement factor 4, and is part of the classical activation pathway

along with the C4A gene. The C4B-related pathways include

complement cascade response and regulation of insulin-like

growth factor (IGF) transport and insulin-like growth factor

binding protein (IGFBP) uptake. The immune deficiency caused

by complement deficiency in the classical pathway plays an

important role (75). This also indicates that the occurrence of

T1DM is closely related to the complement pathway. The

complement components C3 and C4 are highly expressed in the

pancreas (including islets), and the copy number of the C4B gene or

higher C4B protein concentration can affect the ability of

endogenous insulin or C-peptide (76). In addition, studies have

found that during insular encephalitis, the complement cascade

reaction is activated, and complement factors deposit into the

pancreas, thereby damaging the pancreas and pancreatic islet

cells. Moreover, the increase in serum complement C4B level is

also related to diabetes nephropathy (77). ATPase sarcoplasmic/

endoplasmic reticulum Ca2+transporter 1 (ATP2A1) is a protein-

coding gene that encodes a SERCA Ca2+ ATPase enzyme, which

plays an important role in maintaining low concentrations of Ca2

+ions in the cytoplasm (78). However, intracellular Ca2+ is an

important coordinating agent in various aspects of cellular

physiology, and changes in cellular Ca2+ dynamics help regulate

normal and pathological signal transduction that controls cell

growth and survival. The disturbance of Ca2+ concentration is

closely related to ER stress and mitochondrial dysfunction, which

are the two major defects leading to T1DM and T2DM (79). The

changes in SERCA function, endoplasmic reticulum stress (ER),

and Ca2+ cycle are the basis of the mechanism of pancreatic b cell

apoptosis. A study has found that SERCA2 deficiency can lead to an

increase in basal cytoplasmic Ca2+ levels, directly leading to a

decrease in insulin secretion, a decrease in b cell mass, and an

increase in b cell ER stress and death (80, 81). Lymphotoxin-b (LT-

b) is a protein-coding gene that functions as a biological cousin of

tumor necrosis factor a (TNFa) by binding to the lymphotoxin p

receptor (LTbR) and participating in the normal development of

lymphoid tissue. LT-b participates in the pathogenesis of T1D by

promoting the formation of the tertiary lymphoid organ (TLO)

around the pancreas and also enhances the autoimmune response

by regulating the synergistic effect of multiple cytokines and

inflammatory mediators, inducing insulinitis and peripancreatic

inflammation, leading to b cell destruction (82).

Our research provides several significant advantages. Firstly, we

used multiple sample datasets to validate our results, and the larger

the sample size, the higher the ability to detect eQTL. Secondly, we

used multiple methods such as multivariate MR analysis, MR

Steiger filtering, reverse MR, co-localization analysis, and

pleiotropy testing to validate our results, further ensuring the

reliability of our results. As is well known, the success rate of
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drugs from phase 1 trials to approval is very low, requiring

significant investment of manpower, material resources, and

financial resources. Although MR analysis cannot replace in vitro

and in vivo preclinical evaluations of drug targets, combined

genomics methods can serve as an auxiliary tool for drug

development, with the potential to better prioritize drug targets

entering clinical trials. Therefore, this may have a significant impact

on drug development costs. However, we have to admit that our

research also has some limitations. First, the use of genetic variation

to study and determine the effect of potential therapeutic drugs for

diabetes is limited because the pathogenesis of diabetes is complex

and involves a multi-gene, multi-factor, and multi-target

pathogenic pathway. Therefore, drug MR analysis helps to

determine the direction of causal relationships rather than

quantifying the degree of correlation. Secondly, the number of

IVs in eQTL MR is limited, with most not exceeding three SNPs,

which limits the credibility of MR results. Thirdly, although we

conducted detailed heterogeneity and pleiotropy tests, we cannot

completely rule out the influence of horizontal pleiotropy. Fourthly,

as our research findings mainly relate to individuals of European

ancestry, these findings may not necessarily apply to other racial

groups. Finally, despite the large sample size of our study, the

several genetic tools used for the results are affected to varying

degrees by low statistical power and incomplete phenotype

definitions, which may render most of the explored association

studies ineffective. Therefore, our results still need to be validated in

larger queues. Even validated in clinical trials.
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