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Introduction:Ovarian cancer (OV) is a highly lethal gynecological malignancywith

a poor prognosis. Lactatemetabolism is crucial for tumor cell survival, proliferation,

and immune evasion. Our study aims to investigate the role of lactatemetabolism-

related genes (LMRGs) in OV and their potential as biomarkers for prognosis,

immune microenvironment, and immunotherapy response.

Methods: Ovarian samples were collected from the TCGA cohort. And 12

lactate-related pathways were identified from the MsigDB database.

Differentially expressed genes within these pathways were designated as

LMRGs, which undergo unsupervised clustering to identify distinct clusters

based on LMRGs. Subsequently, we assessed survival outcomes, immune cell

infiltration levels, Hallmaker pathway activation patterns, and chemotaxis among

different subtypes. After conducting additional unsupervised clustering based on

differentially expressed genes (DEGs), significant differences in the expression of

LMRGs between the two clusters were observed. The differentially expressed

genes were subjected to subsequent functional enrichment analysis.

Furthermore, we construct a model incorporating LMRGs. Subsequently, the

lactate score for each tumor sample was calculated based on this model,

facilitating the classification of samples into high and low groups according to

their respective lactate scores. Distinct groups examined disparities in survival

prognosis, copy number variation (CNV), single nucleotide variation (SNV), and

immune infiltration. The lactate score served as a quantitative measure of OV's

lactate metabolism pattern and an independent prognostic factor.
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Results: This study investigated the potential role of LMRGs in tumor

microenvironment diversity and prognosis in OV, suggesting that LMRGs play a

crucial role in OV progression and the tumor microenvironment, thus serving as

novel indicators for prognosis, immune microenvironment status, and response

to immunotherapy.
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Introduction

Ovarian cancer (OV), the most fatal gynecological malignancy

and the fifth leading cause of cancer-related mortality among women

globally (1), predominantly presents at advanced stages with

metastasis beyond the ovary, resulting in a dismal prognosis (2).

Despite advancements in surgical techniques and chemotherapy

options (3), the 5-year survival rate for ovarian cancer patients

remains disappointingly low, hovering around 50% (4).

Consequently, there is an urgent imperative to identify novel

biomarkers and therapeutic targets specific to OV.

The occurrence and progression of tumors are intricately

intertwined with the metabolic reprogramming exhibited by tumor

cells, which autonomously regulate the fluxes of their diverse

metabolic pathways to meet augmented bioenergetic and

biosynthetic demands while mitigating oxidative stress crucial for

cancer cell proliferation and survival (5, 6). Lactate is a metabolic by-

product generated during glycolysis, the anaerobic conversion of

glucose into energy (7). Tumor cells frequently exhibit enhanced

glycolytic activity and lactate production, even in the presence of

oxygen, which is commonly referred to as the Warburg effect (8).

Additionally, The role of lactate as a metabolic feedback regulator and

unique signaling molecule has been extensively investigated, shedding

light on its involvement in various physiological and pathological

processes, including the regulation of energy metabolism, immune

response, memory formation, wound healing, and tumor development

(7, 9). Moreover, lactate can modulate the tumor microenvironment

(TME) by inducing angiogenesis, remodeling the extracellular matrix,

and suppressing immune responses (10). Moreover, lactate can hinder

the activity and functionality of immune cells such as natural killer

cells, cytotoxic T cells, and dendritic cells through pH reduction and

interference with signaling pathways (11). Furthermore, lactate can

impact the expression and function of immune checkpoints like

programmed cell death protein 1 (PD-1), which plays a crucial role

in regulating immune response efficacy and immunotherapy

effectiveness (12).

The TME encompasses not only tumor cells, signaling molecules,

and extracellular matrix but also immune cells, fibroblasts, and bone

marrow-derived inflammatory cells closely associated with tumor

cells (13). Lactate is a crucial metabolite within the TME (9). As a
02
result of the Warburg effect, tumor cells secrete a substantial amount

of lactate into the extracellular microenvironment. Lactate and H+

released by tumor cells in the TME contribute to an acidic TME

formation, modulate the metabolism of innate and adaptive immune

cells, and hinder the activation and proliferation of CD8+ T cells,

natural killer (NK) cells, as well as dendritic cells. Lactate can also

affect the expression and function of immune checkpoints, such as

PD-1, which are involved in the regulation of immune response and

the efficacy of immunotherapy (12).

Given the pivotal role of lactate metabolism in ovarian cancer

and its potential as a therapeutic target, our study aimed to

investigate the expression and prognostic significance of lactate

metabolism-related genes (LMRGs) in ovarian cancer. Additionally,

we analyzed the correlation between LMRGs and immune

microenvironment characteristics, as well as their impact on the

effectiveness of immunotherapy. Our study provides novel insights

into molecular and clinical characteristics of ovarian cancer

subtypes based on lactate metabolism while suggesting potential

biomarkers and therapeutic strategies.
Materials and methods

Acquisition of data and preprocessing

The TCGA OV RNAseq dataset, along with the phenotype and

survival data of patients, was utilized in this study (14) (https://

portal.gdc.cancer.gov/). Additionally, the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE140082) GSE140082 queue provided OV

RNAseq gene expression and patient survival information.

Furthermore, the gencode annotation was obtained from the

European Bioinformatics Institute (EBI) website (https://www.ebi.

ac.uk/). 63 immune checkpoint genes were sourced from the

literature (15). 58 chemokines and 12 lactate metabolism-related

pathways were acquired from the Molecular Signatures Database

(MsigDB) database (http://www.gsea-msigdb.org/gsea/msigdb).

Table 1 summarizes detailed clinical data of OV patients in the

TCGA database, while Table 2 presents comprehensive clinical

information on OV patients in the GSE140082 database.
frontiersin.org

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
http://www.gsea-msigdb.org/gsea/msigdb
https://doi.org/10.3389/fendo.2024.1372413
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2024.1372413
Identification of the LMRGs in OV

The MsigDB database (16) provided 12 lactate metabolism-

related pathways, and the GSVA (17) and GSEABase packages

(c5.all.v7.4.symbols.gmt) were used to calculate the ontology

enrichment scores of each sample in the TCGA-OV database on
Frontiers in Endocrinology 03
these 12 pathways. T-test was employed to determine the

enrichment differences between tumor and normal samples,

resulting in the identification of 325 genes with significant

differences. Among them, a total of 276 protein-coding genes

were defined as LMRGs.
Unsupervised clustering of LMRGs

Based on the LMRGs, an unsupervised clustering method was

employed to categorize OV patients in TCGA into geneCluster A

and geneCluster B. The “ConsensusClusterPlus” package in R was

utilized for performing a consensus clustering algorithm to

determine the number of clusters and their stability (18). The

optimal number of clusters was selected based on the consensus

matrix, cumulative distribution function (CDF), and relative change

in the area under the CDF curve.
Consensus clustering of DEGs

To gain a deeper understanding of the distinct pathways of the

clusters, we performed an analysis using the “limma” package in R

to compare the expression levels of differentially expressed genes

(DEGs) within 2 lactate clusters (19). The significance threshold

was set at | logFC | > 0.8 and p < 0.05. Subsequently, a Consensus

Clustering method (clusterAlg= “hc”, distance= “spearman”) based

on DEGs was employed to classify TCGA OV patients into various

lactate gene clusters.
Functional enrichment analysis

The WebGestalt database (http://www.webgestalt.org/) was

utilized for Gene Ontology (GO) annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (20)pathway

enrichment analysis (21). The clusterProfiler (22) and org.Hs.eg.db

packages were employed to conduct GO and KEGG pathway

enrichment analysis on these differential genes.
Construction of lactatescore and
evaluation of effectiveness

Univariate Cox regression analysis was conducted to identify

differentially expressed genes between the two lactate clusters. This

analysis revealed 9 genes significantly associated with prognosis

(p<0.01). Subsequently, principal component analysis (PCA) was

performed using the expression levels of these nine genes. The sum

of the first two principal components for each sample

(lactate_score=∑(PC1i+PC2i)) was utilized as the lactate score.

The survminer package was utilized for the classification of

patients into high and low-risk groups based on lactate score.

Both survminer and survival packages were employed to generate

survival curves depicting High lactate score and Low lactate score in

TCGA-OV and GSE140082 datasets, respectively. Additionally, the
TABLE 1 Clinical characteristics of OV patients in TCGA database.

Characteristics Number

lymphatic_invasion

YES 180

NO 109

N/A 442

age
≥60 344

<60 387

stage

Stage i 30

Stage ii 44

Stage iii 550

Stage iv 102

N/A 5

neoplasm_histologic_grade

G1 10

G2 101

G3 601

G4 1

GB 2

GX 10

N/A 6

TCGA.Subtype

OVCA.Differentiated 178

OVCA.Immunoreactive 128

OVCA.Mesenchymal 126

OVCA.Proliferative 165

N/A 134
N/A, Not Applicable.
TABLE 2 Clinical characteristics of OV patients in GSE140082 database.

Characteristics Number

age
≥60 181

<60 199

figo_stage

I 20

II 31

III 266

IV 63

newgrade

high.grade 281

low.grade 74

N/A 25
N/A, Not Applicable.
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timeROC package was utilized to plot the ROC curve of the TCGA-

OV dataset over 1-3 years.
Comprehensive analysis

The RCircos package was utilized to plot the chromosomal

locations of LMRGs. PCA analysis on normal and tumor samples in

the TCGA-OV dataset, based on LMRGs, was performed using the

pca3d package. The Cytoscape package was employed to visualize

the association relationships among LMRGs, while autocorrelation

assessment of LMRGs was conducted using the Hmisc package.

Hallmark pathway enrichment scores for each sample in the

TCGA-OV dataset were calculated using the GSVA and

GSEABase packages (h.all.v7.4.symbols.gmt), along with gene

signature-based (23) enrichment scores for each sample.

Enrichment differences between lactate clusters were computed

and compared using the ggplot2 and ggpubr packages.
Gene mutation analysis

The mutations of genes regarding copy number variation

(CNV) and single-nucleotide variation (SNV) in OV patients

were explored by the online database Gene Set Cancer Analysis
Frontiers in Endocrinology 04
(GISTIC)(https://cloud.genepattern.org/gp/pages/index.jsf?

lsid=urn:lsid:broad.mit.edu:cancer.software.genepattern.

module.analysis:00125:6.15.28).
Measurement of immunocyte infiltration

The CIBERSORT algorithm (24) was used to measure the

infiltration score of 22 common immunocytes. The relationships

between risk score and immunocyte infiltration were measured by

the Spearman coefficients using the “Hmisc” R package. The R

ggplot 和ggpubr package was used to measure the infiltration score

of 21 common immunocytes.
Statical analysis

The R software (version 3.6.3) was utilized for data analysis. To

assess the impact of identified LMRGs on patients’ prognosis,

Kaplan-Meier plotter analysis was employed. Univariate and

multivariate Cox regression analyses were conducted to evaluate

the influence of various factors on patients’ prognosis. Statistical

significance levels were defined as follows: ns denoting not

significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001,

with ns indicating no statistical significance.
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FIGURE 1

Identification of LMRGs. (A) Ontology enrichment score heat map of 12 lactate metabolism-related pathways in the TCGA-OV. (B) 10 lactate
metabolism-related pathways exhibiting statistically significant differences (p<0.05). (C) Locations of the LMRGs on 23 chromosomes. (D) Boxplot of
the expressions of the top 20 LMRGs in the TCGA-OV cohort. (E) Principal components analysis (PCA) of the normal samples and the tumor samples
based on LMRGs. (F) Mutation frequency of the top 20 of 276 differentially expressed LMRGs in 432 patients with OV. (G) Copy number variations
(CNVs) of the top 20 of 276 differentially expressed LMRGs. ****P < 0.0001.
frontiersin.org

https://cloud.genepattern.org/gp/pages/index.jsf?lsid=urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00125:6.15.28
https://cloud.genepattern.org/gp/pages/index.jsf?lsid=urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00125:6.15.28
https://cloud.genepattern.org/gp/pages/index.jsf?lsid=urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analysis:00125:6.15.28
https://doi.org/10.3389/fendo.2024.1372413
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2024.1372413
Results

Identification of LMRGs

The MsigDB database was used to explore the lactate-related

pathways, and a total of 12 lactate-related pathways were identified

as follows: GOBP LACTATE METABOLIC PROCESS, GOBP

LACTATE TRANSMEMBRANE TRANSPORT, GOMF

LACTATE DEHYDROGENASE ACTIVITY, GOMF LACTATE

TRANSMEMBRANE TRANS PORT ER ACT IV I TY

HP ABSOLUTE BRAIN LACTATE LEVEL BY MRS, HP

ABSOLUTE LACTATE DEHYDROGENASE LEVEL, HP

CREATE CSF LACTATE, HP INCREASED LACTATE

DEHYDROGENASE LEVEL, HP INCREASED SERUM

LACTATE, HP LACTIC ACIDOSIS, HP LACTICACIDURIA,

HP SEVERE LACTIC ACIDOSIS (Figure 1A). Their enrichment

differences in tumor and normal samples from the OV-TCGA

cohort were demonstrated in Figure 1B. Among them, the pathway
Frontiers in Endocrinology 05
of HP_SEVERE_LACTIC_ACDOSIS obtained the most significant

differences between tumor and normal samples.

A total of 325 genes involved in these lactate-related pathways

were collected, out of which 276 were protein-coding genes. Their

locations on the 24 human chromosomes are displayed in

Figure 1C. The top 20 genes with significant differences are

displayed in Figure 1D. Principal components analysis (PCA)

revealed that the normal samples could be separated from the

tumor samples based on these genes (Figure 1E). We then further

measured their gene mutation characteristics in OV-TCGA samples

(Figure 1F). Among them, TP53 was the most frequently mutated

gene, with a mutation frequency of approximately 88%. Their CNV

mutation characteristics were also measured (Figure 1G). The

relationships between the regulation of genes related to lactate

metabolism and their effects on patient prognosis are displayed in

Figure 2A. The correlations between the top 20 genes related to

lactate metabolism were displayed in Figure 2B, and their effects on

immune cell infiltration were also measured (Figure 2C).
B C

A

FIGURE 2

Biological characterizations of LMRGs. (A) Correlation and prognostic value of LMRGs in OV. The line connecting the LMRGs represents their
correlation, with the line thickness indicating the strength of the correlation between LMRGs. Blue and red represent negative and positive
correlations, respectively. (B) The autocorrelation of LMRGs is shown in a figure with the top 20 genes represented in both rows and columns. Red
indicates a positive correlation, blue indicates a negative correlation. (C) The correlation between LMRGs and immune infiltrating cells, with red
indicating positive correlation and blue indicating negative correlation. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, no significance.
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Unsupervised clustering and subtype
analysis based on LMRGs

Based on the identified LMRGs, we divided all OV-TCGA

patients into two subtypes using unsupervised clustering

(Figures 3A–C). The heatmap showed the expression of clusters

A and B (Figure 3D), which indicated their vast differences in gene

expression profile. Furthermore, Kaplain-Meier survival curve

analysis revealed that patients of cluster A significantly obtained

unfavorable prognosis compared to those of cluster B (P =

0.011, Figure 3E).

We then performed a GSVA score of 50 cancer hallmarks to

reveal the difference between the two clusters. As shown in

Figure 4A, there were obvious differences in certain cancer

hallmarks between these two groups. For example, the immune-

related pathways (e.g., interferon-alpha response, IL2 stat5

signaling, complement, inflammatory response) were active in

cluster A, while the metabolism (e.g., glycolysis, bile acid

metabolism, fatty acid metabolism) and cell-cycle related (e.g.,

G2M checkpoint, E2F targets) pathways were active in cluster B.

Comparison of these two subtypes in 13 classic signaling pathways

also revealed their vast differences in function (Figure 4B). A

comparison of these two subtypes in immune infiltration revealed

that the infiltering abundance of plasma cells, CD8+ T cells, Tregs,
Frontiers in Endocrinology 06
activated NK cells, and DC cells in cluster B were significantly

higher than that in cluster A (Figure 4C). Correspondingly, the

expression of certain chemokines was also differentially expressed

in these two subtypes (Figure 4D).
Identification of geneClusters in OV

We then identified 94 DEGs (Differentially expressed genes)

between clusters A and B and constructed two geneClusters

(geneCluster A and geneCluster B) for OV based on unsupervised

clustering (Figure 5A). Further analysis identified 80 DEGs between

geneCluster A and geneCluster B. Functional enrichment these 80

DEGs were mainly involved in the pathways of metabolism

(oxidative phosphorylation, ATP synthesis coupled electron

transport, ATP metabolic process, NADH dehydrogenase

complex) regarding (Figures 5B–E). Kaplain-Meier survival curve

analysis revealed that patients of geneCluster A significantly

obtained better prognosis compared to that of geneCluster B (P =

0.0011, Figure 5F). Infiltrating abundance analysis of immune cells

revealed that there were vast differences between geneCluster A and

geneCluster B (Figure 5G). For example, CD8+T cells, and activated

NK cells were more abundant in geneCluster A. While M2

macrophages were more abundant in geneCluste B. Based on the
B C

D

E

A

FIGURE 3

Unsupervised clustering based on LMRGs. (A) Cumulative distribution function (CDF) of consensus clustering at k = 2–4. (B) relative changes in area
under the CDF curve. (C) Unsupervised clustering of the 204 differentially expressed LMRGs and optimal consensus matrices for k =2.
(D) Differences in expression levels of LMRGs between lactate clusters A and B. (E) Kaplan-Meier analysis estimating the overall survival between
lactate clusters A and B.
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aforementioned findings, we propose that lactate plays a pivotal role

in the characterization of immune infiltration.
Lactate score was an independent
prognostic risk factor in OV

Based on the identified 94 DEGs between clusters A and B, nine

pivotal genes: PSMA2, LRP1, TXNDC17, TMEM258, BLOC1S1,

HINT2, SOGA1, COA6, and DPM3, which have a significant

impact on patient prognosis, were carefully selected to calculate the

patient lactate score. As shown in Figure 6A, patients with high

lactate scores significantly obtained unfavorable prognosis in the OV-
Frontiers in Endocrinology 07
TCGA cohort (P = 5e-04) compared to those with low lactate score,

which were further validated in the GSE140082 cohort (P = 0.019,

Figure 6C). ROC curve displayed the lactate score had good

diagnostic efficiency in predicant patients with 1/2/3-year survivals

(Figure 6B). Multivariate COX regression analysis revealed that low

lactate score was an independent prognostic factor for OV patients

(HR = 0.67, 95%CI = 0.51-0.88, P = 0.004, Figure 6D). Further

analysis of gene mutations revealed that patients in the high and low

lactate score groups exhibited similar patterns of mutations. The

TP53, TTN, and MUC16 genes were found to be the most frequently

mutated genes in these groups (Figures 7A, B). Their CNV patterns

were also measured (Figures 7C, D).
B C

D

A

FIGURE 4

Subtype analysis based on LMRGs. (A) GSVA and GSEA analysis focused on the differential enrichment of Hallmaker pathways between lactate
clusters A and B. (B) Boxplot of the differential enrichment of 13 classic gene signatures between lactate clusters A and B. (C) Boxplot of the relative
expression of 21 infiltrating immune cells between lactate clusters A and B. (D) Boxplot of the relative expression of 57 chemokines between lactate
clusters A and B. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. ns, no significance.
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Discussion

OV is a prevalent gynecological malignancy worldwide. From a

cellular perspective, OV can be classified into epithelial and non-

epithelial tumors, with epithelial ovarian cancer accounting for

approximately 90% of cases (25, 26). The epithelial subtype further

encompasses four distinct histological variants: serous,

endometrioid, mucinous, and clear cell types (27, 28). Currently,

available therapeutic approaches for OV are limited to radical

surgery and chemotherapy regimens that primarily prolong

disease-free intervals without significantly impacting overall

patient survival rates (29, 30). Therefore, there is an urgent need

to establish effective stratification mechanisms along with reliable

prognostic indicators to facilitate informed selection among various

treatment modalities.
Frontiers in Endocrinology 08
In the tumor microenvironment, cancer cells undergo

metabolic adaptations to sustain tumorigenicity and withstand the

cytotoxic effects of chemotherapy and immune cell-mediated

attacks (31, 32). Alterations in metabolic pathways not only

facilitate the survival and proliferation of ovarian cancer cells but

also confer abilities for metastasis, chemoresistance acquisition,

maintenance of cancer stemness traits, and evasion from

immunological surveillance against tumors (33, 34). Since the

discovery of lactate in 1780, it has often been mistakenly

perceived as a metabolic waste product under hypoxic conditions,

leading to numerous detrimental effects and its association with

hypoxia (35). Currently, our understanding of lactate has expanded

beyond its role as a byproduct of glycolysis to encompass that

Lactate is now acknowledged as a pivotal carbon source for cellular

metabolism and a crucial signaling molecule in physiological,
B
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FIGURE 5

Identification of geneClusters in OV. (A) Heatmap illustrating the differences in clinicopathologic features and expression levels of lactate-Phenotype
genes between the lactate.Gene.cluster A and B. (B) The differential enrichment of GO BP between the lactate.Gene.cluster A and B. (C) The
differential enrichment of GO CC between the lactate.Gene.cluster A and B. (D) The differential enrichment of MF between the lactate.Gene.cluster
A and B. (E) The differential enrichment of KEGG pathways between the lactate.Gene.cluster A and B. (F) Kaplan-Meier analysis estimating the overall
survival between lactate.Gene.cluster A and B. (G) Boxplot of the relative expression of 21 infiltrating immune cells between the lactate.Gene.cluster
A and B. *P < 0.05; **P < 0.01; ***P < 0.001. ns, no significance.
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chronically inflamed, and neoplastic tissues (36). Studies have

substantiated that lactate functions as a signaling molecule,

playing an indispensable role in coordinating signal transmission

among diverse cells, organs, and tissues (37). Lactate is an essential

substrate for various physiological cellular functions and exerts

regulatory influence on different aspects of energy metabolism and

signal transduction (7, 38). Therefore, LMRGs are potential

biomarkers and therapeutic targets for various types of cancer

(39–44). In hepatocellular carcinoma (HCC), a novel prognostic

signature composed of 6 key lactate metabolism-related genes

(FKTN, PDSS1, PET117, PUS1, RARS1, and RNASEH1) was

developed to predict the survival and tumor microenvironment of

HCC patients (44). In endometrial cancer (EC), a risk signature

based on 18 lactate metabolism-related genes was constructed to

predict the clinical outcome and molecular characteristics of EC
Frontiers in Endocrinology 09
patients (40). The role of lactate metabolism-related genes in kidney

renal clear cell carcinoma (KIRC) is explored by analyzing the

expression patterns of 17 lactate metabolism-related genes in KIRC

patient datasets (43). Three lactate metabolism-related genes (FBP1,

HADH, and TYMP) were selected from the panel of 17 genes as

they showed significant associations with prognosis in KIRC

patients (43). These three genes were used to construct a lactate-

related prognostic signature that could predict overall survival,

tumor microenvironment status, and immune response in KIRC

patients (43). In this study, we observed significant activation of

metabolism-related pathways (e.g., glycolysis, bile acid metabolism,

fatty acid metabolism) in cluster B, which exhibited a more

favorable prognosis. Functional enrichment analysis of

differentially expressed genes between gene clusters A and B

revealed their predominant involvement in metabolic pathways
B

C D

A

FIGURE 6

Construction of lactatescore. (A) Kaplan-Meier analysis in high versus low lactatescore patients. (B) ROC curves to predict sensitivity and specificity
of the lactate score in predicting 1-, 2-, and 3-month survival. (C) Kaplan-Meier analysis of both groups in the GSE140082. (D) lactatescore, TCGA
molecular classification, age, stage, and grade were analyzed by multivariate Cox regression analysis.
B

C D

A

FIGURE 7

Genomic states of difference between high- and low-lactatescore. (A, B) Mutated genes in the TCGA-OV samples of low and high lactatescore
subgroups, respectively (C, D) Amplify and delete in copy numbers in groups with low and high lactatescore subgroups.
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(oxidative phosphorylation, ATP synthesis coupled electron

transport, ATP metabolic process, NADH dehydrogenase

complex). Kaplan-Meier survival curve analysis demonstrated a

significant difference in the prognoses of gene clusters A and B.

These findings suggest that metabolism-related pathways play a

crucial role in tumor development.

The molecular subgroups of high-grade serous ovarian

carcinoma (HGSOC) have been distinguished by research,

differentiating between low- and high-OXPHOS phenotypes.

High-OXPHOS HGSOCs rely on oxidative phosphorylation as

their primary metabolic pathway, while low-OXPHOS HGSOCs

exhibit a preference for glycolysis. Additionally, the high-OXPHOS

cells demonstrate increased chemosensitivity and a more favorable

prognosis (45). In fast-growing cancer cells, there is often a shift

from less efficient ATP production through aerobic glycolysis to

OXPHOS (46). However, the single-cell multi-omics sequencing

analysis of HGSOC revealed a simultaneous enhancement in the

activities of both the oxidative phosphorylation pathway and

glycolysis pathway during tumor development. Interestingly,

mitochondrial oxygen consumption was not completely shut

down in tumor cells but rather maintained as a backup system

for OXPHOS activity (5). Further analysis indicated that an increase

in chromosome 8 copy number during HGSOC development

resulted in elevated MYC gene dosage, thereby enhancing the

activities of both oxidative phosphorylation and glycolysis

pathways (47).

Tumor cells modulate lipid absorption and stimulate

lipogenesis to augment intracellular lipid abundance (48), thereby

meeting the heightened energy demands for cell proliferation (49).

The high prevalence of omental metastasis in ovarian cancer

suggests that a lipid-rich environment may facilitate ovarian

growth. Further investigations have revealed the upregulation of

fatty acid-binding protein 4 (FABP4) in ovarian cancer with

momentum metastasis, and its depletion significantly impedes the

dissemination of ovarian cancer (49) thus confirming the crucial

role of lipid uptake in the progression and advancement of this

disease (50).

The intricate TME exerts a profound impact on both the

progression of tumors and their response to therapeutic

interventions. Currently, numerous studies are dedicated to

elucidating the regulatory effects of metabolites and metabolic

processes on immune function (51). Among these, lactate

emerges as the most significantly elevated metabolic substance in

tumors (52). The generation of lactate is generally perceived as a

mechanism employed by tumor cells to evade immune surveillance

(53, 54). In this study, a comparison of immune infiltration between

clusters A and B demonstrated that cluster B exhibited significantly

higher levels of plasma cells, CD8+ T cells, regulatory T cells

(Tregs), activated natural killer (NK) cells, and dendritic cells

(DCs) compared to cluster A. For instance, tumor cells stimulate

lactic acid production through LDHA, which disrupts the secretion

of IFN-g and other cytokines in tumor-infiltrating T cells and NK

cells, thereby promoting tumor growth (55). Alternatively, it

modulates RNA methyltransferase METTL3-mediated myeloid

cell infiltration into tumors via protein lactation. N6-

methyladenosine (m6A) modification of TIMs enhances their
Frontiers in Endocrinology 10
immunosuppressive function (54). However, within the TME, the

impact of lactate on both tumors and immune cells can be

confounded by acidic protons generated during glycolysis. To

eliminate interference from protons dissociated from its acidic

counterpart - lactic acid - sodium lactate was investigated for its

effect on immunity. This study suggests that the influence of lactic

acid on immunity is two-fold; lactate can enhance CD8+ T cell

dryness (functionality), thus augmenting anti-tumor immune

response (56).

Additionally, there were notable variations observed in the

abundance of immune cell infiltration between geneCluster A and

geneCluster B. It is worth mentioning that seven different cell types

exhibited statistically significant variances (p<0.05). For instance,

geneCluster A demonstrated a higher prevalence of CD8+T cells

and activated NK cells, which were associated with a more favorable

prognosis. Conversely, geneCluster B showed an increased presence

of M2 macrophages. Additionally, a study elucidated the interplay

between pituitary adenoma (PA) cells and the immune tumor

microenvironment (TME), highlighting their role in promoting

PA invasion through M2 polarization. Furthermore, lactate levels

demonstrated a positive correlation with PA invasion (57).

In recent years, immunotherapy has effectively changed the

treatment landscape of OV (58). Immune checkpoint inhibitors

(ICIs) have shown clinical benefit for patients with OV. However,

OV patient’s response to immunotherapy is limited (59). Thus, the

evaluation of sensitive/resistant target treatment subpopulations

based on stratification by tumor biomarkers may improve the

predictiveness of response to immunotherapy. By analyzing the

immunotherapy datasets, we proved that patients with high lactate

score were resistant to ICI treatment in GSE126044 cohorts.

In summary, we initially defined genes that were differentially

expressed in lactate-related pathways as LMRGs and subsequently

stratified OV patients into two distinct clusters, exhibiting

significant disparities in terms of survival prognosis, and immune

infiltration, among other factors. Furthermore, we additionally

developed the lactate score as an independent prognostic

indicator for predicting the outcome of OV patients. These

findings highlight the important clinical significance of LMRGs

and provide a new idea for guiding the personalized treatment

strategy of OV patients.
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