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Background:Oxidative stress has been implicated in the pathogenesis of uterine

leiomyoma (ULM) with an increasing incidence. This study aimed to identify

potential oxidative stress-related biomarkers in ULM using transcriptome data

integrated with Mendelian randomization (MR) analysis.

Methods: Data from GSE64763 and GSE31699 in the Gene Expression Omnibus

(GEO) were included in the analysis. Oxidative stress-related genes (OSRGs) were

identified, and the intersection of differentially expressed genes (DEGs), Weighted

Gene Co-expression Network Analysis (WGCNA) genes, and OSRGs was used to

derive differentially expressed oxidative stress-related genes (DE-OSRGs).

Biomarkers were subsequently identified via MR analysis, followed by Gene Set

Enrichment Analysis (GSEA) and immune infiltration analysis. Nomograms,

regulatory networks, and gene-drug interaction networks were constructed

based on the identified biomarkers.

Results: A total of 883 DEGs were identified between ULM and control samples,

from which 42 DE-OSRGs were screened. MR analysis revealed four biomarkers:

ANXA1, CD36, MICB, and PRDX6. Predictive nomograms were generated based

on these biomarkers. ANXA1, CD36, and MICB were significantly enriched in

chemokine signaling and other pathways. Notably, ANXA1 showed strong

associations with follicular helper T cells, resting mast cells, and M0

macrophages. CD36 was positively correlated with resting mast cells, while

MICB was negatively correlated with macrophages. Additionally, ANXA1

displayed strong binding energy with amcinonide, and MICB with ribavirin.
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Conclusion: This study identified oxidative stress-related biomarkers (ANXA1,

CD36, MICB, and PRDX6) in ULM through transcriptomic and MR analysis,

providing valuable insights for ULM therapeutic research.
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1 Introduction

Uterine leiomyoma (ULM), also referred to as uterine fibroids or

myomas, represents the most prevalent benign tumor in the female

reproductive system (1). Epidemiological evidence indicates that the

incidence of ULM increases with age, with a particularly high

prevalence among women of reproductive age. In women over 35

years, the incidence rate ranges from approximately 20% to 40% (2).

Several factors, including environmental and psychological influences,

contribute to ULM development. Notably, the elevation of estrogen

receptor concentrations is widely accepted as a primary driver of ULM

formation (3). Furthermore, familial clustering observed in numerous

ULM cases suggests a substantial genetic component in its

pathogenesis (4). Despite these insights, the precise molecular

mechanisms underlying ULM remain incompletely understood,

necessitating further investigation into potential pathogenic

pathways and biomarkers to improve patient quality of life.

Oxidative stress refers to the disruption of the equilibrium

between reactive oxygen species (ROS) production and the body’s

endogenous antioxidant defenses (5). While basal levels of ROS are

crucial for maintaining cellular homeostasis, excessive ROS can

inflict structural and genetic damage, including protein and lipid

peroxidation, which can impair cellular function and trigger

apoptosis, contributing to disease progression (6). The uterus,

within the female reproductive system, is particularly vulnerable

to oxidative stress and subsequent DNA damage, which may be

pivotal in ULM development (7, 8). Whole genome sequencing has

elucidated the genetic foundation of ULM, revealing that over 70%

of leiomyoma (LM) cases harbor mutations in the mediator

complex subunit 12 (MED12), with mutation rates positively

correlating with tumor quantity. ROS is implicated in both

promoting MED12 mutations and facilitating tumor growth (9).

Research suggests that uterine muscle contractions and vascular

changes during the menstrual cyc le induce hypoxic

microenvironments within the uterine muscle, which

subsequently trigger gene expression promoting leiomyoma

proliferation under low oxygen conditions (10). Leiomyoma cells

exhibit lower expression of antioxidant enzymes, such as superoxide

dismutase (SOD) and catalase (CAT), compared to normal uterine

muscle cells, particularly in hypoxic environments. ULM is

characterized by elevated oxidative stress and insufficient

antioxidant defense capacity (11). Therefore, investigating the role
02
of oxidative stress in ULM pathogenesis is essential for advancing

diagnostic and therapeutic strategies. Biomarkers of oxidative stress

may emerge as valuable diagnostic tools for identifying patients

with ULM. While medical intervention is often necessary for ULM

treatment, antioxidants have shown potential in both prevention

and therapeutic management, though further research is required.

In summary, oxidative stress represents a critical and emerging

aspect of ULM pathology, playing a central role in its progression.

Further experimental and clinical research is needed to elucidate the

cellular and molecular mechanisms linking oxidative stress to ULM.

Mendelian randomization (MR) represents a sophisticated

approach in epidemiology and related fields for establishing causal

relationships, utilizing genetic variation to evaluate the causal

influence of potential risk factors on health outcomes. By

leveraging the random assortment of alleles, MR effectively

mitigates confounding factors that often obscure the exposure-

outcome relationship in observational studies, enabling a more

reliable and unbiased assessment of exposure effects on various

outcomes compared to traditional methodologies (12, 13). MR

analysis is contingent upon three fundamental assumptions:

relevance (the genetic variant must be strongly associated with the

exposure), independence (the genetic variant should be independent

of confounders that affect the exposure-outcome relationship), and

exclusion restriction (the genetic variant influences the outcome

solely through its effect on the exposure, with no alternative direct

causal pathways). Ensuring these assumptions are met is critical for

the validity of causal inferences derived from MR studies (14). In

parallel, the advent of microarray technology has revolutionized

biological research by enabling high-throughput transcriptome

analysis, transitioning investigations from single-gene studies to

genome-wide expression profiling. Over the past two decades,

microarray data have contributed substantially to advancing diverse

areas of biological research, offering significant advantages for

expression profiling and large-scale data analysis (15).

This study employed publicly available datasets, including

GSE64763 and GSE31699, which are associated with ULM,

alongside 436 oxidative stress-related genes. We chose GSE64763

because the dataset contains rich gene expression data covering

multiple disease states and normal control samples, which is critical

for identifying disease-associated genes and pathways. In addition,

Dai Huang et al. (16) and Yumin Ke et al. (17) also used the

GSE64763 dataset to conduct ULM-related research. The GSE31699
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dataset, on the other hand, focuses on molecular marker studies of

ULM, providing in-depth gene expression analysis, which is

important for studying disease progression and treatment

response mechanisms. Research by Lei Cai et al. (18) is based on

this dataset. Genome-wide association study (GWAS) data for ULM

and relevant candidate genes were sourced from the IEU

OpenGWAS database. A comprehensive analytical framework

was utilized, comprising differential expression analysis, weighted

gene co-expression network analysis (WGCNA), MR, receiver

operating characteristic (ROC) curves, and other statistical

methodologies to identify oxidative stress-related biomarkers in

ULM. Gene set enrichment analysis (GSEA) was performed to

elucidate functional pathways associated with these biomarkers,

while immune infiltration analysis was conducted to examine their

role in the immune microenvironment. Additionally, potential

therapeutic agents targeting the expression of these biomarkers

were predicted (Supplementary Figure S1). Investigating the

mechanisms underlying oxidative stress-related biomarkers in

ULM is pivotal for advancing diagnostic and therapeutic

strategies, as well as for guiding future research in this domain.
2 Materials and methods

2.1 Data source

The datasets GSE64763 and GSE31699 were extracted from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo/). GSE64763, used as the training set,

contains transcriptomic microarray sequencing data from 25

uterine leiomyoma (ULM) samples and 29 control samples, based

on the GPL571 sequencing platform (19). GSE31699, serving as the

validation set, consists of 16 ULM and 16 control samples on the

GPL6947 platform (20). A total of 436 oxidative stress-related genes

(OSRGs) (21) were sourced from the Molecular Signatures

Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb)

(22), using the ‘msigdbr’ (v7.5.1) R package.
2.2 Weighted gene co-expression
network analysis

To identify the module most strongly correlated with ULM, the

R package ‘wgcna’ (v1.71) (23) was employed to perform WGCNA

analysis on the GSE64763 samples. Initially, all samples were

clustered to detect outliers, which were subsequently removed.

Soft thresholding and scale-free network coefficients were selected

to ensure the construction of a scale-free network. The module with

the highest correlation to ULM was then identified.
2.3 Differential expression analysis and
functional enrichment analysis

The differentially expressed genes (DEGs) between ULM and

normal samples were identified using the ‘limma’ (v3.50.1) R
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package (24), applying the cut-off criteria of adj.p.value < 0.05

and |log2(FoldChange)| > 0.5. The DEGs were visualized using a

volcano plot with the ‘ggplot2’ package (v3.4.1) (25), and a heatmap

was generated with the ‘ComplexHeatmap’ package (v2.14.0) (26).

Next, upregulated DEGs were intersected with genes from the ULM

module positively correlated with ULM, while downregulated DEGs

were intersected with negatively correlated ULM module genes.

And these two sets of intersecting genes were combined to obtain

the ULM-associated genes, which were intersected with 436 OSRGs

to yield the differentially expressed OSRGs (DE-OSRGs).

Subsequently, gene ontology (GO) and kyoto encyclopedia of

genes and genomes (KEGG) enrichment analyses based on GO

and KEGG databases (https://www.geneontology.org, https://

www.genome.jp/kegg/) were performed using the ‘clusterProfiler’

(v4.2.2) R package (27) to explore the biological functions and

pathways associated with these candidate genes.
2.4 Mendelian randomization analysis

MR analysis was conducted to investigate the causal relationship

between the exposure factors (DE-OSRGs) and the outcome (ULM).

Using the extract_instruments function of the R package

‘TwoSampleMR’ (v0.5.6) (28), we read the data related to the

exposure factors and screened the instrumental variables (SNPs)

according to the following criteria: p = 5*10^-8 to ensure that the

instrumental variables were significantly correlated with the exposure

factors; Enable clump = TRUE to exclude the effect of linkage

disequilibrium (LD); set r2 = 0.001 and kb = 200. Next, the

extract_outcome_data function was used to read the outcome data

and filter out instrumental variables that were associated with

exposure factors but not with the outcome by setting proxies =

TRUE and rsq = 0.8. In addition, we calculated the F-statistics of the

instrumental variables, and when F < 10, it indicated that the

instrumental variables were weak instrumental variables and

needed to be excluded. The above correlation analysis and the

removal of weak instrumental variables ensured that these

instrumental variables satisfied the correlation assumptions.

Subsequently, five univariate MR methods were employed: MR

Egger, Weighted Median, Inverse Variance Weighted (IVW) (29),

Simple Mode, and Weighted Mode (30). The IVW method is based

on Mendelian laws of inheritance, which ensure the random

distribution of locus alleles in the population. This property makes

genetic variants (e.g., SNPs) ideal instrumental variables for probing

causal associations between exposures and diseases. IVW is effective

in reducing confounding factors and reverse causality bias in

traditional observational studies, and has evolved over the years

into a mature and reliable method for causal inference. Therefore,

IVW has become our primary method for identifying biomarkers

causally associated with ULM. A p-value less than 0.05 was

considered evidence of a causal association. A scatter plot was used

to assess the relationship between exposure factors and outcomes,

while a forest plot identified the predictive exposure factors for each

single nucleotide polymorphism (SNP) in relation to the outcome.

Finally, a funnel plot was utilized to evaluate whether the MR analysis

adhered to Mendel’s second law of randomization.
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2.5 Sensitivity analysis

To assess the robustness of the MR results, a sensitivity

analysis was performed. Firstly, the heterogeneity analysis was

carried out by using the mr_heterogeneity function in the R

package ‘TwoSampleMR’ (v0.5.6) (28), and if the Q p-value

was lower than 0.05, it indicated the existence of heterogeneity.

Next, the horizontal polytropy test was performed by the

mr_pleiotropy_test function, and if the p-value was greater than

0.05, it indicated that there were no confounders. Finally, the

mr_leaveoneout function was used to perform a leave-one-out

(LOO) analysis (step-by-step culling of each SNP and calculation

of the meta effect of the remaining SNPs) and the inverse variance

weighted method was used to assess the changes in the results,

which were visualized by forest plots. The exclusivity assumption

was satisfied by sensitivity analyses that ensured the genetic

variation influenced outcomes only through exposure factors,

excluding the role of other potential pathways. At the same

time, the independence assumption was satisfied by excluding

instrumental variables associated with confounders. In addition,

the proportion of variance explained may also affect the validity of

the MR analysis. In general, a higher proportion of variance

explained implies stronger instrumental variables, which

improves the confidence of the results. If SNPs explain only a

small amount of variance, this may lead to bias and invalid

causal inferences.
2.6 Receiver operating characteristic curve

To evaluate the diagnostic potential of the identified biomarkers

for ULM, an ROC analysis was performed for each individual gene

using the R package ‘pROC’ (v1.18.0) (31). The diagnostic accuracy

increased as the area under the curve (AUC) approached 1, while an

AUC of 0.5 indicated no diagnostic value.
2.7 Establishment of alignment diagram

Based on biomarker expression, an alignment diagram was

constructed using the ‘rms’ R package (32). The predictive

accuracy of this diagram was assessed using a calibration curve,

decision curve analysis (DCA), and clinical impact curve (CIC).
2.8 Functional similarity and correlation
analysis of biomarkers

To investigate the functional similarities among biomarkers,

functional annotations were carried out with the ‘GOSemSim’ R

package (v2.24.0) (33), focusing on three aspects: biological

processes (BP), cellular components (CC), and molecular

functions (MF). The average similarity scores of genes at different

levels were calculated, and biomarkers were ranked based on these
Frontiers in Endocrinology 04
average similarity values. Additionally, Spearman correlation

analysis of biomarkers was conducted using the ‘corrplot’ R

package (v0.92) (34).
2.9 Gene set enrichment analysis

First, the correlation coefficients between each biomarker and

other genes were calculated, after which genes were ranked

according to these coefficients, yielding a list of genes relevant to

each biomarker. The C2: KEGG gene sets in the MSigDB database

served as the reference gene sets for GSEA enrichment analysis.
2.10 Immunoinfiltration analysis

To examine the relationship between biomarkers and immune

cells, the abundance of 22 types of immune-infiltrating cells in the

training set samples was estimated. Wilcoxon tests were then

applied to calculate differences in immune cell infiltration

between the ULM and control groups, identifying differential

immune-infiltrating cells. Spearman correlation analysis was

conducted to evaluate the relationships between differential

immune-infiltrating cells, and between the biomarkers and the

differential immune-infiltrating cells.
2.11 Regulatory network

The Network Analyst platform (https://www.networkanalyst.ca/)

was utilized to predict transcription factors (TFs) regulating the

identified biomarkers. A TF-mRNA regulatory network was

constructed using Cytoscape. Additionally, to explore the

regulatory mechanisms of biomarkers in ULM, corresponding

miRNAs were predicted using the TarBase (http://www.microrna.

gr/tarbase) and miRTarBase (https://mirtarbase.cuhk.edu.cn)

databases. The miRNA-mRNA relationship pairs obtained from

both databases were integrated, and miRNet was then used to

predict lncRNAs corresponding to the miRNAs. Ultimately, a

lncRNA-miRNA-mRNA regulatory network was established.
2.12 Disease and drug analysis

To assess the role of biomarkers in other uterine diseases, their

relationships were analyzed through the CTD database (https://

ctdbase.org). The DGidb database (https://dgidb.org) was then

employed to predict small-molecule drugs associated with the

biomarkers, and a gene-drug interaction network was

constructed. Protein structures of biomarkers were retrieved from

the PDB database (https://www1.rcsb.org/), while 3D structures of

the therapeutic compounds were sourced from the NCBI PubChem

Compound database (https://www.ncbi.nlm.nih.gov/pccompound/).

Molecular docking was performed using CB-Dock to identify the best
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binding conformations between protein targets and drugs. Pymol was

used for the visualization of these interactions. Binding energies

below -5 kcal/mol were considered indicative of strong binding

affinity between the compound and its target.
2.13 Expression and validation
of biomarkers

The expression levels of the biomarkers were assessed in both

ULM and control samples. To further verify the accuracy of these

results, the biomarkers were validated in the independent

validation set.
2.14 Real-time quantitative polymerase
chain reaction

A total of five paired normal and ULM samples were collected

from The Affiliated Taian City Central Hospital of Qingdao

University. All participants provided informed consent, and the

study received approval from the hospital’s ethics committee.

Total RNA was extracted from the 10 samples using TRIzol

reagent (Invitrogen, China), following the manufacturer’s protocol.

RNA concentrations were measured using the NanoPhotometer

N50. cDNA was synthesized through reverse transcription using the

SureScript First-strand cDNA synthesis kit (Servicebio, China). RT-

qPCR was performed on the CFX Connect Thermal Cycler (Bio-

Rad, USA), and relative mRNA expression levels were quantified

using the 2-DDCT method. The sequences of all primers are available

in Supplementary Table 1.
2.15 Statistical analysis

The data underwent processing and analysis utilizing R software

(v4.2) (35). The Wilcoxon test was used for comparison between

groups, and statistical significance was assessed based on a p-value

below 0.05.
3 Results

3.1 Identification of key module genes
associated with ULM

In the GSE64763 dataset, all samples were clustered without

notable outliers (Supplementary Figure 2). With R2 set to 0.85, the

soft threshold b was determined to be 7 (Figure 1A), enabling the

construction of a scale-free network. Thirteen co-expression

modules were identified through WGCNA (Figure 1B). Among

these, the MEgreen module (cor = 0.68, 1305 genes) exhibited a

strong positive correlation with ULM, while the MEbrown (cor =

-0.8, 1724 genes) and MEpurple (cor = -0.67, 261 genes) modules

showed strong negative correlations with ULM, marking them as

key ULM-related modules (Figure 1C).
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3.2 Differential gene expression analysis
and functional enrichment analysis of
DE-OSRGs

In the GSE64763 dataset, 883 DEGs were identified between

ULM and control samples, consisting of 372 upregulated and 511

downregulated genes (Figures 2A, B). Subsequently, 776 ULM-

related genes were identified, including 301 upregulated genes

positively correlated with ULM (Figure 2C) and 475 downregulated

genes negatively correlated with ULM (Figure 2D). Through the

intersection of 776 ULM-related genes and 436 OSRGs, 42 DE-

OSRGs were identified (Figure 2E). GO analysis indicated that these

DE-OSRGs were predominantly involved in cellular response to

hydrogen peroxide, cellular response to toxic substance, cellular

detoxification, response to oxidative stress, cellular response to

oxidative stress, response to reactive oxygen species, cellular

response to chemical stress, cellular response to reactive oxygen

species, response to hydrogen peroxide and cellular oxidant

detoxification pathways (Figure 2F). KEGG pathway analysis

revealed enrichment in the IL-17 signaling pathway, endocrine

resistance, hepatitis B, lipid and atherosclerosis, proteoglycans in

cancer, relaxin signaling pathway, leishmaniasis, fluid shear stress and

atherosclerosis, malaria, and TNF signaling pathway (Figure 2G).
3.3 Identification of four biomarkers
through MR analysis

MR analysis was conducted to assess the relationship between

DE-OSRGs and ULM. F-statistics for SNP were shown in

Supplementary Table S2. Based on the IVW method, four

biomarkers—ANXA1 (p = 0.0474, odds ratio (OR) = 1.021),

CD36 (p = 0.0013, OR = 1.074), MICB (p = 0.0025, OR = 1.032),

and PRDX6 (p = 0.0215, OR = 1.042)—demonstrated significant

causal relationships with ULM, all with p < 0.05. The OR values

greater than 1 suggest these biomarkers are potential risk factors for

ULM (Figure 3A). Scatter plots for the five algorithms showed

positive slopes, confirming consistent and robust positive causal

relationships with ULM (Figures 3B–E). Moreover, the MR effect

sizes in the forest plots were all above 0, further supporting these

biomarkers as ULM risk factors (Figures 3F–I). The funnel plot

revealed uniform SNP distributions for ANXA1, CD36, MICB, and

PRDX6, indicating consistency with Mendel’s second law of

random assortment (Figures 4A–D).

Sensitivity analysis revealed that the heterogeneity (Table 1) and

pleiotropy (Table 2) tests for ANXA1, CD36, and MICB yielded p-

values greater than 0.05, suggesting no significant heterogeneity or

horizontal pleiotropy. Although the p-value for the heterogeneity test

of PRDX6 was 0.0153, the IVWmethod remained unaffected, ensuring

reliable MR results. The leave-one-out sensitivity tests further

demonstrated that the SNPs for the exposure factors and outcomes

were consistently aligned to the right of 0, with no substantial

deviations, confirming stable results without excessive sensitivity to

individual SNPs (Figures 4E–H). Therefore, ANXA1, CD36, MICB,

and PRDX6 were confirmed as reliable biomarkers for ULM.
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3.4 Diagnostic value of biomarkers

In the GSE64763 dataset, the AUC values for ANXA1, CD36,

MICB, and PRDX6 were 0.927, 0.853, 0.768, and 0.849, respectively

(Figure 5A). Similarly, in the GSE31699 dataset, all biomarkers

exhibited AUC values exceeding 0.7 (Figure 5B), confirming their

diagnostic potential.
3.5 Establishment and validation of a
predictive alignment chart

To enhance predictive efficiency, these biomarkers were used to

construct a predictive alignment chart in the training set

(Figure 6A). The p-value from the Hosmer-Lemeshow test was

0.54, indicating no significant difference between predicted and

ideal values (Figure 6B). The DCA demonstrated that the alignment

chart had a graceful benefit rate, underscoring its refined predictive

capability (Figure 6C). CIC analysis further evaluated the clinical
Frontiers in Endocrinology 06
utility of the alignment chart, revealing a favorable net benefit

across a wide and practical threshold probability range, suggesting

the chart’s significant predictive value (Figure 6D).
3.6 Correlation and pathway analysis
of biomarkers

To explore biomarker correlations, GO analysis indicated that

MICB and ANXA1 shared higher average functional similarity

(Figure 7A). CD36 and ANXA1 exhibited the strongest positive

correlation with a coefficient of 0.666, while MICB and PRDX6

displayed the strongest negative correlation (cor = -0.636)

(Figure 7B). Additionally, GSEA revealed that ANXA1, CD36,

and MICB were significantly enriched in chemokine signaling

pathways and neural active ligand-receptor interactions

(Figures 7C–E), while PRDX6 was prominently enriched in

oxidative phosphorylation and cytokine-cytokine receptor

interactions (Figure 7F).
FIGURE 1

Identification of key module genes associated with ULM. (A) Soft threshold filtering. (B) Gene dendrogram and modules before merging.
(C) Heatmap of module correlations with phenotypes.
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3.7 Correlation between immune
infiltration and biomarkers

The relationship between biomarkers and immune infiltration

was investigated by calculating the abundance of 22 types of

immune-infiltrating cells (Figure 8A). Notably, follicular helper T

cells and neutrophils were significantly more abundant in ULM

samples compared to controls, while M0 macrophages, resting mast

cells, and monocytes were more prevalent in the control group

(Figure 8B). Spearman correlation analysis revealed a strong

positive association between M0 macrophages and neutrophils,
Frontiers in Endocrinology 07
while M0 macrophages showed significant negative correlations

with resting mast cells and monocytes (Figure 8C). Further analysis

showed that ANXA1 was significantly associated with follicular

helper T cells (p = 0.0097), resting mast cells (p = 0.0049), and M0

macrophages (p = 0.0038). Specifically, ANXA1 was positively

correlated with resting mast cells (cor = 0.48) and negatively

correlated with M0 macrophages (cor = -0.49) and follicular

helper T cells (cor = -0.44). CD36 was significantly positively

correlated with resting mast cells (p = 0.0121, cor = 0.43),

whereas MICB exhibited a significant negative correlation with

M0 macrophages (p = 0.0297, cor = -0.38) (Figure 8D).
FIGURE 2

Differential expression analysis and enrichment analysis. (A) Volcano plot of DEGs. (B) Heatmap of DEGs. (C) Venn diagram showing 301 intersection
genes from up-regulated DEGs and ULM positively correlated module genes. (D) Venn diagram showing 475 intersection genes from down-
regulated DEGs and ULM negatively correlated module genes. (E) Venn diagram showing 42 DE-OSRGs from the intersection of 776 ULM-related
genes and 436 OSRGs. (F) GO analysis of DE-OSRGs. (G) KEGG pathway analysis of DE-OSRGs.
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3.8 Regulatory network of biomarkers

To investigate the potential mechanisms of the biomarkers in

ULM, 36 TFs were predicted. Among these, GATA2 was associated

with CD36, MICB, and PRDX6, while NR3C1 and YY1 were linked

to CD36 and ANXA1 (Figure 9A). Additionally, 17 miRNA-mRNA

interaction pairs were identified from two databases (Figure 9B),

and 324 lncRNAs were predicted. Ultimately, a ceRNA network was

constructed, involving 4 mRNAs, 15 miRNAs, and 324 lncRNAs.

PRDX6 was regulated solely by hsa-mir-24-3p and various

lncRNAs, including PVT1, OLMALINC, and VASH1-AS1.

ANXA1 and CD36 were regulated by hsa-mir-335-5p and hsa-

mir-26b-5p (Figure 9C).
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3.9 Associated between biomarkers and
uterine diseases

The study also revealed associations between the 4 biomarkers

and various uterine diseases. CD36 was exclusively linked to uterine

prolapse, uterine cervicitis, and uterine cervical diseases, while the

other biomarkers were associated with conditions such as uterine

hemorrhage, uterine anomalies, uterine cervical dysplasia, uterine

neoplasms, and uterine cervical neoplasms (Figure 10A). Small-

molecule drugs corresponding to the biomarkers were predicted as

well. ANXA1 exhibited the strongest interaction with amcinonide

(interaction score = 1.77), CD36 had a notable interaction with

ABT-510 (interaction score = 15.46), and MICB interacted with
frontiersin.or
FIGURE 3

MR analysis. (A) Forest plot showing MR analysis of ULM candidate genes. (B–E) Scatter plots showing positive causal relationships of ANXA1, CD36,
MICB, and PRDX6 with ULM. (F–I) Forest plots predicting SNP loci exposure factors for outcome diagnosis.
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TABLE 2 MR pleiotropy test.

Gene egger_intercept se pval

ANXA1 0.0014 0.0053 0.7898

CD36 -0.0007 0.0056 0.8983

MICB 0.0089 0.0129 0.4964

PRDX6 0.0051 0.0083 0.5514
FIGURE 4

Sensitivity analysis for MR results. (A–D) Funnel plots showing uniform SNP distributions for biomarkers ANXA1, CD36, MICB, and PRDX6.
(E–H) Leave-one-out analysis for ANXA1, CD36, MICB, and PRDX6.
TABLE 1 MR heterogeneity test.

Gene Method Q Q_df Q_pval

ANXA1 Inverse variance weighted 13.3013 13 0.4248

CD36 Inverse variance weighted 13.6213 16 0.6269

MICB Inverse variance weighted 17.3819 18 0.4970

PRDX6 Inverse variance weighted 24.9094 12 0.0153
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ribavirin (interaction score = 1.93) (Table 3). A gene-drug

interaction network was then established (Figure 10B).

Subsequently, molecular docking was performed between the

biomarkers and the drugs with the highest interaction scores.

ANXA1 and amcinonide had the lowest binding energy of -8.6

kcal/mol (Figure 10C), while MICB and ribavirin exhibited a

binding energy of -6.2 kcal/mol (Figure 10D), indicating strong

binding affinities.
3.10 Expression of biomarkers

In terms of expression, the biomarkers showed significant

differential expression in the training set. Specifically, ANXA1,

CD36, and MICB were markedly downregulated in ULM samples,

whereas PRDX6 was upregulated (Figure 11A). These expression

trends were consistent in both the validation set and RT-qPCR

results, confirming the findings from the training set (Figures 11B, C).
4 Discussion

ULM is the most prevalent benign tumor in the female

reproductive system, often asymptomatic and incidentally

detected during routine medical examinations. Although the exact

etiology of ULMs remains unclear and specific tumor markers for
Frontiers in Endocrinology 10
diagnosis are lacking (36), growing evidence implicates oxidative

stress as a key factor in their development and progression (11, 37).

Oxidative stress can induce abnormal proliferation of ULM cells,

promote DNA synthesis, and alter cell cycle dynamics, thereby

driving tumor growth (38–40). Additionally, it influences cell

apoptosis, inflammatory responses, and angiogenesis, further

exacerbating ULM pathogenesis (10, 41–43). However, the precise

roles of oxidative stress-related genes in ULMs remain insufficiently

understood. In this study, transcriptional datasets from the GEO

database were analyzed, identifying four biomarkers (ANXA1,

CD36, MICB, and PRDX6) associated with oxidative stress in

ULMs through differential analysis, WGCNA, and MR. MR

analysis revealed that these biomarkers exert significant effects on

ULM. ROC curve analysis further underscored their diagnostic

potential for ULMs. Additionally, a predictive alignment chart

incorporating these biomarkers was developed, effectively

forecasting ULM risk.

In the NCBI (National Center for Biotechnology Information),

there are more than 10 datasets on ULM. These data sets are used in

different studies for different purposes and sample characteristics.

For example, the study by José A Castro-Martıńez et al. (44) used

two datasets, GSE12814 and GSE23112. GSE23112 focused on

microRNA expression, while GSE12814 was associated with

molecular signatures of the del(7q) UL subgroup. Through

comprehensive transcriptome analysis, this study provides an in-

depth understanding of the molecular mechanisms of uterine
FIGURE 5

ROC curve analysis. (A) ROC curve of biomarkers in the training set (GSE64764). (B) ROC curve of biomarkers in the validation set (GSE31699).
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diseases and provides scientific support for future diagnosis and

treatment strategies. Another study (45) combined four datasets,

GSE64763, GSE45188, GSE30673, and GSE593, to deepen our

understanding of the pathogenesis of ULM and to identify genes

involved in the development of ULM. Among them, GSE64763 is

consistent with the one selected in this study; GSE45188 showed the

DNAmethylation profile of myometria in uterine fibroids and non-

fibroids. GSE30673 focuses on MED12 mutation; GSE593

contained genome-wide expression profiles of 5 uterine fibroids

and 5 normal uterine tissues. Compared with other datasets, we

finally decided to use the two datasets GSE64763 and GSE31699

after comprehensively considering factors such as research design,

requirement matching degree and sample size.

ANXA1, a 37-kDa protein belonging to the annexin A family,

plays multifunctional roles in both innate and adaptive immunity

(46). In recent years, the role of ANXA1 in tumors has garnered

increased attention (47), with studies showing its expression varies

by tissue type (48). For instance, ANXA1 is overexpressed in

melanoma, hepatocellular carcinoma, gastric cancer, and lung

cancer (49), while its expression is diminished in prostate and
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esophageal cancers (50). Jamaluddin et al. conducted genetic and

proteomic analyses on ULM and adjacent normal muscle tissues to

characterize the expression patterns of extracellular matrix (ECM)

proteins in MED12 mutation-positive and -negative ULMs. Among

ECM-related proteins, ANXA1 was found to be downregulated in

ULMs of various sizes (51), aligning with the findings of this study

and suggesting potential therapeutic targets.

MHC Class I polypeptide-related sequence B (MICB), a non-

classical HLA-I gene within the human major histocompatibility

complex, is highly polymorphic, with 40 polymorphic sites and 26

protein variants identified to date (52–54). MICB is a stress-

inducible protein primarily expressed on cell membranes, acting

as a ligand for NK cell receptors (53). Its surface expression is

minimal in normal cells but markedly upregulated in tumor cells or

cells infected with viruses (55). This study is the first to implicate

MICB in ULM, laying the groundwork for future investigations.

However, further research is needed to elucidate the underlying

mechanisms of this interaction.

CD36, a transmembrane protein and member of the class B

scavenger receptor family, interacts with other transmembrane
FIGURE 6

Biomarker alignment diagram. (A) Alignment diagram model based on biomarkers. (B) Calibration curves. (C) DCA curves. (D) Clinical impact curves
evaluating the alignment diagram’s predictive power.
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FIGURE 8

Immune infiltration correlation with biomarkers. (A) Immune cell infiltration abundance in the training set (GSE64763). (B) Boxplots comparing
differential immune-infiltrating cell abundance between ULM and normal. (C) Heatmap of correlations between differentially immune-infiltrating
cells. (D) Lollipop plot showing correlations between immune-infiltrating cells and biomarkers. *p < 0.05; **p < 0.01.
FIGURE 7

Correlation and pathway analysis of biomarkers. (A) Functional similarity analysis of biomarkers. (B) Heatmap of biomarker correlations. (C–F) GSEA
for ANXA1, CD36, MICB, and PRDX6.
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proteins on the cell surface to mediate ligand binding and signal

transduction (56). It is widely expressed on the surface of

microvascular endothelial cells and plays a pivotal role in regulating

endothelial cell function (57). In tumor microvasculature, CD36 binds

to thrombospondin-1 (TSP-1), mediating endothelial cell apoptosis

within tumor vasculature (58). Knapp et al., in their study on energy

substrate transport proteins in ULM, discovered that CD36

expression was reduced in patients with ULM compared to

matched healthy muscle layers (59). These findings align with our

study results.
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PRDX6, a peroxidase enzyme composed of 224 amino acids, is

expressed in various tissues and organs. Recent research has

highlighted its significant role in cancer. PRDX6 is notably

overexpressed in cervical cancer tissues, where its overexpression

promotes proliferation, migration, and invasion of cancer cells

while inhibiting apoptosis (60). Our findings similarly indicate

elevated PRDX6 expression in ULM. Research has demonstrated

that PRDX6 knockout in HepG2 cells results in slowed cell division,

mitochondrial dysfunction, and cell cycle arrest at the G2/M

phase (61).
FIGURE 9

Regulatory network of biomarkers. (A) Network of TFs and biomarkers (TFs in purple, biomarkers in orange). (B) miRNA-mRNA interaction pairs.
(C) ceRNA regulatory network (biomarkers in orange, miRNAs in green, lncRNAs in pink).
FIGURE 10

Gene-disease and gene-drug analysis. (A) Relationships between biomarkers and intrauterine diseases. (B) Relationships between biomarkers and
small molecule drugs (biomarkers in orange, drugs in green). (C) Molecular docking between ANXA1 and amcinonide. (D) Molecular docking
between MICB and ribavirin.
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GSEA of ANXA1, MICB, CD36, and PRDX6 revealed common

enrichment in signaling pathways, including chemokine signaling

and cytokine-cytokine receptor interactions. These pathways are

hypothesized to play a role in ULM development. Xia et al., in

their comprehensive analysis of four ULM-related mRNA datasets,

suggested that extracellular matrix-receptor interactions could lead to

abnormal extracellular matrix formation in ULM. Additionally, focal

adhesion and cell adhesion molecules were implicated in ULM

pathogenesis. Xia et al. further proposed that chemokine signaling

and cytokine-cytokine receptor interactions are likely involved in

ULM progression (45). Prates et al. demonstrated that ANXA1

influences cervical cancer development by activating the

transcriptional expression of formyl peptide receptors (FPRs) and

the inhibitor of DNA binding 1 (ID1) (62). FPR plays a central role in

the chemokine signaling pathway, while ID1, a DNA transcription

regulator, is closely linked to DNA replication. Our findings are

consistent with their results, reinforcing the involvement of these

pathways in ULM development.

Through in-depth analysis of the functional and pathway

information enriched by GO and KEGG, we found several clues

closely related to the pathogenesis or related hypotheses of ULM.

Studies have shown that ROS, as a pro-inflammatory mediator, can

regulate cell proliferation and is known to activate the MAPK/ERK

pathway in endometriosis (63), suggesting that ROS may also be

involved in the pathological process of ULM, although this

hypothesis needs to be further verified. Notably, ganirelix as a

potential therapeutic agent has demonstrated significant toxicity to

ULM cells, suggesting that it may induce tumor reduction in a

broad patient population (64). In addition, chronic inflammation

caused by visceral fat plays a key role in cell differentiation and

proliferation, which is a necessary condition for the onset of ULM.

Increased visceral fat deposits may alter cholesterol composition,

thereby increasing the risk of subclinical atherosclerosis in patients

with ULM (65). Fibromodulin (FMOD), as an important

component of the extracellular matrix, not only plays a role in
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structure, but also is regarded as a novel tumor-associated antigen

for a variety of malignant tumors, including ULM, and has the

potential as a biomarker for cancer diagnosis and treatment (66).

Relaxin has also been suggested to be involved in the pathogenesis

of ULM, providing a new perspective for disease research (67). At

the same time, TNF-a up-regulates MMP-2 expression and

promotes cell migration by activating extracellular signal-

regulated kinase (ERK) signaling pathway in uterine fibroid

smooth muscle cells, which provides a theoretical basis for the

development of ULM treatment strategies targeting TNF-a and

MMPs inhibitors (68).

Immunoreactive cells, including lymphocytes, macrophages,

granulocytes, and dendritic cells, are crucial participants in

immune responses. Recent studies suggest that the composition

and abundance of these cells may influence the development and

progression of uterine ULMs (69). Using the CIBERSORT

algorithm, we analyzed the immunoreactive cell infiltration

characteristics in ULM versus normal tissues, revealing significant

differences in five types of immunoreactive cells between the two

groups. Supporting our findings, Zannotti et al. reported a greater

abundance of macrophages within and around ULMs compared to

distant myometrial tissue (69). The dysregulation of macrophage

proliferation, infiltration, and accumulation contributes to

pathological fibrosis and uncontrolled tissue repair, with key roles

played by factors such as MCP-1, GM-CSF, TGF-b, and TNF-a.
Similarly, Protic et al. observed a higher density of CD68-positive

macrophages in ULMs and adjacent myometrium compared to

distant myometrium (70). In this context, TNF-a secreted by

macrophages may enhance activin A mRNA expression in ULM

cells, potentially leading to excessive extracellular matrix

production, tissue remodeling, and tumor growth. However, a

clinical study by Liu et al. found no significant differences in

MCT-positive mast cells or CD45-positive leukocytes between

ULM and normal tissues in premenopausal women (71).

In another study, Wang et al. identified significant

overexpression of miR-30a, miR-34, and miR-24, in addition to

Let-7, in ULM. These miRNAs may inhibit ULM proliferation and

differentiation by suppressing HMGA2a, acting as protective factors

against the overexpression of oncogenes such as RAS andMYC (72).

Extensive research has also explored miR-196a’s role in various

cancers, showing its involvement in key biological processes related

to tumorigenesis. Hu et al. demonstrated that miR-196a regulates

the proliferation, invasion, and migration of esophageal squamous

cell carcinoma by targeting ANXA1 (73). In breast cancer, miR-

196a expression correlates with certain HOXC genes involved in

tumor progression (74), while in cervical cancer, it targets netrin 4,

influencing cell proliferation and migration (75). Although ULMs

are benign, their abnormal cellular proliferation mirrors that of

malignant tumors, suggesting that miR-196a may play a similar role

in ULM pathogenesis. Furthermore, miR-155-5p exhibits dual

roles, acting as an oncogene or tumor suppressor depending on

the cellular environment and cancer type. Research by Navarro et al.

indicated that miR-155-5p is implicated in the inflammatory

processes often associated with ULMs (76).

Our research identified a strong binding affinity between

ANXA1 and amcinonide, as well as between MICB and ribavirin.
TABLE 3 Correspondences between hub genes and drugs.

Gene
Drug Query

Score
Interaction

Score

ANXA1 AMCINONIDE 2.46 1.77

ANXA1 MOMETASONE 2.15 1.55

ANXA1 HYDROCORTAMATE 2.15 1.55

ANXA1 CLOCORTOLONE 1.43 1.03

ANXA1 DIFLORASONE 1.43 1.03

ANXA1 ALCLOMETASONE 1.43 1.03

ANXA1 DESONIDE 1.43 1.03

ANXA1 CLOBETASOL 1.08 0.77

ANXA1 PREDNICARBATE 1.08 0.77

ANXA1 RIMEXOLONE 0.86 0.62

CD36 ABT-510 1.08 15.46

MICB RIBAVIRIN 0.13 1.93
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Previous studies have demonstrated that amcinonide, an anti-

inflammatory agent with affinity for glucocorticoid receptors, can

induce depigmentation in both black and albino mice. It

significantly reduces the number of DOPA-positive epidermal

melanocytes in these animals (77). Ribavirin, a broad-spectrum

antiviral agent effective against HCV, HIV, and RSV, has been

shown to decrease activin A levels while increasing follicle-
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stimulating hormone concentrations in the serum and liver of

Wistar rats (78). The drug-binding analysis in this study suggests

that amcinonide and ribavirin may serve as potential therapeutic

agents for ULM, interacting with ANXA1 and MICB, respectively.

While these findings hold promise for therapeutic interventions in

ULM, further investigation into the precise mechanisms of action

is necessary.
FIGURE 11

Biomarker expression analysis. (A) Violin plots of biomarker expression in the training set (GSE64763). (B) Violin plots of biomarker expression in the
validation set (GSE31699). (C) RT-qPCR results for biomarkers in clinical samples. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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In conclusion, this study identified oxidative stress-related

biomarkers in ULM and provided a comprehensive analysis of

drug networks and immune cell infiltration, shedding light on the

molecular mechanisms of these biomarkers in ULM. The findings

offer potential new avenues for ULM treatment.

However, several limitations should be noted. The relatively

small sample size used in this study may have introduced bias and

affected both the statistical power and the biological relevance of the

results. Future studies will aim to include larger sample sizes to

further validate the accuracy of these biomarkers and their

association with disease. At the same time, we will also consider

implementing cross-validation strategies on a broader dataset to

further consolidate and extend our research results. Additionally,

the study focused exclusively on gene expression levels, which do

not necessarily reflect direct biological effects. To validate these

findings, further animal and clinical studies employing different

experimental approaches will be required.
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