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Plasma GFAP, NfL and pTau
181 detect preclinical stages
of dementia
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Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, San Donato Milanese, Italy,
5Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, Florence, Italy
Background: Plasma biomarkers are preferable to invasive and expensive

diagnostic tools, such as neuroimaging and lumbar puncture that are gold

standard in the clinical management of Alzheimer’s Disease (AD). Here, we

investigated plasma Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light

Chain (NfL) and Phosphorylated-tau-181 (pTau 181) in AD and in its early stages:

Subjective cognitive decline (SCD) and Mild cognitive impairment (MCI).

Material and methods: This study included 152 patients (42 SCD, 74 MCI and 36

AD). All patients underwent comprehensive clinical and neurological assessment.

Blood samples were collected for Apolipoprotein E (APOE) genotyping and plasma

biomarker (GFAP, NfL, and pTau 181)measurements. Forty-three patients (7 SCD, 27

MCI, and 9 AD) underwent a follow-up (FU) visit after 2 years, and a second plasma

samplewas collected. Plasma biomarker levels were detected using the Simoa SR-X

technology (Quanterix Corp.). Statistical analysis was performed using SPSS

software version 28 (IBM SPSS Statistics). Statistical significance was set at p < 0.05.

Results: GFAP, NfL and pTau 181 levels in plasma were lower in SCD and MCI than

in AD patients. In particular, plasma GFAP levels were statistically significant

different between SCD and AD (p=0.003), and between MCI and AD (p=0.032).

PlasmaNfL was different in SCD vsMCI (p=0.026), SCD vs AD (p<0.001), SCD vs AD

FU (p<0.001), SCD FU vs AD (p=0.033), SCD FU vs AD FU (p=0.011), MCI vs AD

(p=0.002), MCI FU vs AD (p=0.003), MCI FU vs AD FU (p=0.003) and MCI vs AD FU

(p=0.003). Plasma pTau 181 concentration was significantly different between SCD

and AD (p=0.001), MCI and AD (p=0.026), MCI FU and AD (p=0.020). In APOE ϵ4
carriers, a statistically significant increase in plasma NfL (p<0.001) and pTau 181

levels was found (p=0.014). Moreover, an association emerged between age at

disease onset and plasma GFAP (p = 0.021) and pTau181 (p < 0.001) levels.

Discussion and conclusions: Plasma GFAP, NfL and pTau 181 are promising

biomarkers in the diagnosis of the prodromic stages and prognosis of dementia.
KEYWORDS

Alzheimer's disease, preclinical stages, plasma biomarkers, glial fibrillary acidic protein,
neurofilament light chain, phosphorylated-tau-181
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1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder and

the most common form of dementia worldwide (1). The hallmark of

AD is the deposition of Amyloid Beta (Ab) plaques and

neurofibri l lary tangles (NFT) in neurons due to the

hyperphosphorylation of tau protein, that leads to a growing

neuronal death with a consequent gradual cognitive decline and

impaired activities of daily life (2). A long prodromic phase, before

first symptoms of dementia appear, was identified, characterized by

two different and progressive stages: Subjective Cognitive Decline

(SCD) and Mild Cognitive Impairment (MCI). According to the

National Institute of Aging-Alzheimer’s Association (NIA-AA), SCD

is the first manifestation of AD, defined as a self-perception of decline

in memory and/or other cognitive abilities compared to the subject’s

previously normal level of performance without any objective

neuropsychological deficits (3, 4). MCI is a predementia stage with

a presentation of cognitive impairment on standardized tests (4, 5).

The currently recognized disease biomarkers of AD, such as PET

neuroimaging or CSF biomarkers, are expensive and invasive

techniques and are requested only when pathological changes are

considerable. Biomarkers analyzed on blood sample are desirable as

easily accessible and non-invasive tools. Plasma biomarkers are

promising candidates for the early diagnosis of AD, tied to the

biological b Amyloid (A) deposition, pathologic Tau (T), and

Neurodegeneration (N) [ATN] framework (4, 6–8). Recently,

plasma glial fibrillary acidic protein (GFAP), an intermediate

filament protein of astrocytes, has been demonstrated to be

associated with brain amyloid status and the development of

clinical AD and cognitive decline (9, 10). Plasma neurofilament

light chain (NfL), a cytoplasmic protein, is a marker of

neurodegeneration associated with cognitive decline, brain atrophy,

and hypometabolism (11–13). Plasma phosphorylated-tau (pTau)

181 was found to reflect tau pathological changes and was associated

with tau positivity on positron emission tomography (PET) (14, 15).

Moreover, clinical studies reported that plasmatic concentrations of

GFAP, NfL and pTau 181 were correlated with the concentrations of

the same biomarkers in the CSF, being increased in AD patients

compared to Healthy Controls (HC) (16). Unfortunately, nowadays,

plasma biomarkers, taken individually, are not sufficient to predict

and/or make a defined diagnosis of AD. In addition, few studies have

investigated the roles of plasma GFAP, NfL, and pTau 181 in the early

stages of AD (17, 18).

Here, we evaluated the role of plasma GFAP, NfL, and pTau

181, combined together, as biomarkers for the early diagnosis of AD

and for the assessment of progression to dementia.
2 Materials and methods

2.1 Patients

A total of 152 patients were consecutively recruited at the

Neurology Unit of Careggi Hospital in Florence from September

2018 to May 2023. At first visit, all patients underwent a
Frontiers in Endocrinology 02
comprehensive clinical and neurological assessment. Forty-two

patients received a clinical diagnosis of SCD (19), 74 of MCI (20)

and 36 of AD (21). A blood sample for plasma and genetic analysis

was collected at baseline for all patients, and a second plasma

sample was isolated at follow-up visit, after two years, for 43

patients. During the first visit, a lumbar puncture was performed

for CSF collection to analyze Ab42, Ab42/Ab40, total‐tau (t‐tau)

and p‐tau biomarkers. CSF samples were collected from 32 SCD

patients, 66 MCI patients, and 34 AD patients. After collection, the

CSF sample was immediately centrifuged and stored at −80 °C until

testing. CSF biomarkers were measured using a chemiluminescent

enzyme immunoassay (CLEIA) analyzer LUMIPULSE G600

(Fujirebio, Tokyo, Japan). Cut-off values for CSF were determined

by following Fujirebio guidelines and normal values were: Ab42>
670 pg/mL, Ab42/Ab40 ratio > 0.062, t‐tau < 400 pg/mL and p‐

tau < 60 pg/mL (22).

According to the ATN system (4) and considering only the CSF

analysis, we classified patients as: A+ = CSF amyloid biomarkers

(Ab42, Ab42/Ab40) lower than the cut-off values; A- = normal

values of CSF amyloid biomarkers; T+ = CSF p-tau higher than the

cut-off value; T- = CSF p-tau lower than the cut-off value; N+ = CSF

t-tau higher than the cut-off value; N- = normal value of CSF t-tau.

Therefore, we considered as “CSF +”, all the patients that had the

following biomarker profiles: A+/T+/N+, A+/T-/N-, A+/T-/N+ and

A-/T+/N+. In the other cases, patients were classified as “CSF –”.

Progression to MCI and AD was established according to the

NIA‐AA criteria (20, 21). Age at baseline was the age at the time of

plasma collection. A positive family history was defined as one or

more first degree relatives with documented cognitive decline. The

study protocol was approved by the local ethics committee and

conducted in accordance with the provis ions of the

Helsinki Declaration.
2.2 Plasma analysis

Plasma was isolated from peripheral blood sample within 2 hours

from collection. Blood sample was centrifuged at 4° at 1300 rcf for 10

minutes. The supernatant was immediately collected and stored at -80°

until tested. Plasma analysis was performed on the automated Single

molecule assay (Simoa) SR-X platform (Quanterix corp.). For GFAP

and NfL measurement, the Simoa Human Neurology 2-Plex B assay

(N2PB) (Item 103520) was used. The assay range of GFAP was 0 -

~40000 pg/mL, instead of NfL was 0 - ~2000 pg/mL. The N2PB kit

analytical Lower Limit of Quantification (LLOQ) was for GFAP 4.15

pg/mL (pooled CV 16%, mean recovery 101%; Functional LLOQ =

16.6 pg/mL) and for NfL 0.400 pg/mL (pooled CV 18%, mean recovery

101%; Functional LLOQ = 1.60 pg/mL). The N2PB kit Limit of

Detection (LOD) was 0.410 pg/mL (range 0.133-0.740 pg/mL) for

GFAP and 0.071 pg/mL (range 0.012-0.149 pg/mL) for NfL

measurements. Quality controls (1= low protein level, 2= high

protein level) were included in the run (GFAP control 1= 94.8 pg/

mL, control 2= 12701 pg/mL; NfL control 1= 4.21 pg/mL, control 2=

556 pg/mL). pTau 181 was detected using the Simoa® pTau-181

Advantage V2.1 Kit (Item 104111). The Analytical LLOQ of the

pTau 181 kit was 2.23 pg/mL (pooled CV 19.0%, mean recovery
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97.0%; Functional LLOQ =8.92 pg/mL), instead the LOD was 1.04 pg/

mL (range 0.146-1.750 pg/mL). pTau 181 quality controls were: control

1= 50.5 pg/mL, control 2= 530 pg/mL. The N2PB and pTau 181 kit

analysis in all samples were performed in a single run basis,

respectively. All plasma samples were diluted to 1:4. A reference

calibration curve was established using serially diluted calibrators,

provided by Quanterix. Plasma samples, calibrators, and controls

were run in duplicate.
2.3 Apolipoprotein E genotyping

Genomic DNA was isolated from peripheral blood samples with

the QIAamp DNA blood mini QIAcube Kit (Qiagen, Germany), using

the automatized extractor Qiacube, provided by Qiagen Corp,

following the manufacturer protocol. DNA amount and quality was

checked with the QIAxpert spectrophotometer (Qiagen, Germany).

APOE genotypes were investigated using two sets of PCR primers

designed to amplify the regions encompassing rs7412 [NC_000019.9:

g.45412079C > T] and rs429358 (NC_000019.9:g.45411941T > C) and

PCR products were analyzed by the high-resolution melting analysis

(HRMA) (23). Control samples with known APOE genotypes,

validated by DNA sequencing, were used as standard references.
2.4 Statistical analysis

Statistical analysis was performed using SPSS software version

28 (IBM SPSS Statistics). Continuous variables were correlated

using Pearson’s correlation analysis. Shapiro–Wilk test was used

to test the normal distribution of data. To analyze differences

between groups, we used independent-samples t-test, Mann-

Whitney U test, and Kruskal Wallis test and ANOVA test for

differences between more than two groups. Welch t-test was

performed when the assumption of homogeneity of variances was

violated. To test whether the difference between two proportions is

statistically significant we used Fisher's exact test. p < .05 was set as

significant. Continuous variables were reported as mean ± standard

deviation. Allele frequency of APOE ϵ4 was determined by counting

and calculating sample proportions.
3 Results

Clinical and demographic data of 152 patients (42 SCD, 74 MCI

and 36 AD) are shown in Table 1. A difference was present between

groups in mean age at disease onset (SCD vs MCI, b=-3.396,
p<0.001; SCD vs AD, b=-3.486, p<0.001; not between MCI vs

AD; p=0.344), with a later onset in AD patients (67.22 ± 6.536;

mean ± SD) compared to MCI (65.47 ± 8.124) and SCD

(59.38 ± 8.403). A statistically significant difference in APOE ϵ4
allele distribution was found between groups (MCI vs AD b=-2.442
p=0.015; SCD vs AD b=-3.163 p=0.002, not between SCD vs MCI,

p=0.214), as AD patients showed a higher ϵ4 allele percentage

(33.3%) than MCI (23.6%) and SCD (15.4%).
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Follow-up (FU) plasma samples were available for 43 patients: 7

SCD, 27 MCI and 9 AD. Plasma NfL measurement was executed

both on 152 plasma samples collected during the first visit and on

the 43 FU samples. Instead, GFAP and pTau 181 were analyzed, at a

later time, on aliquots of plasma samples of the first visit still

available: GFAP was measured in 42 plasma samples (5 SCD, 25

MCI, 12 AD); pTau 181 was measured in 81 plasma samples (25

SCD, 39 MCI, 17 AD). Data analysis of plasma measurements of

GFAP, NfL and pTau 181 are shown in Figure 1. GFAP levels in

plasma samples were significantly different between SCD and AD

(b=-3.379, p<0.001) and between MCI and AD (b= -2.314,

p=0.021), but not between SCD and MCI (p=0.054). AD patients

showed an increased GFAP concentrat ion in plasma

(391.10 ± 245.90) with respect to MCI (219.21 ± 103.10) and

SCD (128.31 ± 63.67) (Figure 1A). Statistical differences in

plasma NfL levels between each group are shown in Table 2. In

particular, SCD had lower NfL levels (14.69 ± 6.07) compared to

other groups: SCD FU (17.05 ± 9.02), MCI (18.51 ± 9.80), MCI FU

(17.06 ± 7.02), AD (27.61 ± 25.09) and AD FU (33.41 ± 16.88)

(Figure 1B). A statistically significant linear relationship emerged

between diagnosis and mean of NfL concentration (F(1,193)=

21.635, p<0.001, R2 = 0.102). Plasma pTau 181 concentrations

were significantly different between SCD and AD (b= -3.320,

p<0.001) and between MCI and AD (b=-2.914, p=0.004). In fact,

AD had higher pTau 181 levels (3.81 ± 1.44) than MCI (2.69 ± 1.27)

and SCD patients (2.17 ± 1.02) (Figure 1C).

A statistically significant positive association was found between

APOE ϵ4 carriers and NfL levels (b=11.132, p<0.001), and between

APOE ϵ4 carriers and pTau 181 levels (b=6.040, p=0.014). APOE ϵ4
carriers had higher NfL (23.11±19.16) and pTau181 levels

(3.10 ±1.20) than non-carriers (NfL=16.89±7.62; pTau

181=2.51±1.32). No differences emerged in biomarker levels

between APOE ϵ4 homozygous and heterozygous carriers.

Moreover, a positive correlation emerged between age at disease

onset and plasma GFAP (b = 0.372, p = 0.021) and pTau 181 (b =

0.439, p < 0.001) levels.
TABLE 1 Clinical and demographic data of 152 studied patients.

SCD MCI AD

n 42 74 36

Sex f/m 28/14 48/26 19/17

Age at onset mean (SD) 59.38
(8.403)

65.47
(8.124)

67.22
(6.536)

APOE ϵ4 allele frequency (%) 13/84 (15.4) 35/
148 (23.6)

24/72 (33.3)

CSF + biomarker
frequency (%)

7/32 (21.8) 35/66 (53) 30/34 (88.2)
fr
CSF+ positive biomarker, when A+/T+/N+, A+/T-/N-, A+/T-/N+ and A-/T+/N+ (A+=CSF
amyloid biomarkers (Ab42, Ab42/Ab40) lower than the normal values; A- = normal values of
CSF amyloid biomarkers; T+ = CSF pospho-tau higher than the normal value; T- = normal
value of CSF pospho-tau; N+ = CSF t-tau higher than the normal value; N- = normal value of
CSF t-tau).
AD, Alzheimer’s Disease; APOE, Apolipoprotein E; CSF, Cerebrospinal fluid; f, females; m,
males; n, number; MCI, Mild Cognitive Impairment; SCD, Subjective Cognitive Decline; SD,
Standard Deviation.
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Patients with a higher age at disease onset had increased plasma

levels of GFAP and pTau 181.

CSF analysis was performed in 132 patients (32 SCD, 66 MCI,

and 34 AD), and a statistically significant association between CSF+

biomarkers and diagnosis was found (b=27.762, p<0.001). AD
patients had a higher frequency (88.2%) of CSF+ biomarkers than

MCI (53%) and SCD (21.8%) patients. A comparison between

patients with CSF+ biomarkers and patients with negative CSF

biomarkers highlighted a significant difference in mean age at

disease onset (67 ± 5.93 vs 60.98 ± 9.33 years, 95%CI 2.977-9.061,

p<0.001), in mean GFAP levels (350.08 ± 194.19 vs 158.75±88.43

pg/ml, 95%CI 89.63-293.01, p<0.001), in mean NfL levels

(24.86 ± 19.91 vs 14.34 ± 5.26, 95%CI 5.27-15.75, p<0.001), in
Frontiers in Endocrinology 04
mean pTau 181 levels (3.66 ±1.25 vs 2.02 ± 0.87, 95%CI 1.11-2.15,

p<0.001). No difference in APOE ϵ4 frequency between the two

groups was found.
4 Discussion

The aim of our study was to investigate plasma biomarkers in a

cohort of patients with different stage of cognitive decline and to

evaluate if they could represent a diagnostic tool. In particular, we

evaluated GFAP, NfL and pTau 181 in AD and in its preclinical

stages (SCD and MCI). Our results showed that these plasma

biomarkers were able to distinguish the different phases of the

disease. Increasing plasma biomarker levels correlated to the

progress and stage of the disease. In fact, AD patients had higher

plasma levels of GFAP, NfL and pTau 181 with respect to MCI, and

with respect to SCD that had lowest concentrations. Patients with

CSF + biomarkers for AD pathology exhibited increased levels of

plasma biomarkers. A greater age at disease onset correlated with a

higher plasma concentration of GFAP and pTau 181. These results

provide evidence that plasma biomarkers can detect advancing AD-

associated biologic changes, discriminating all the stages of AD

continuum and predicting cognitive decline. For these reasons,

GFAP, NfL and pTau 181 can be useful tools to support

clinical diagnosis.

Moreover, we tested thepower of plasma NfL in relation to the

progression of the disease. A FU plasma sample was available for a

subgroup of patients and data highlighted the capability of NfL to

assess the longitudinal changes along the AD continuum. There was

a linear association between the dementia stage and mean NfL

levels. In fact, SCD showed the lowest NfL levels while AD FU

showed the highest value of this biomarker. This study extended

and confirmed our previous results, where we speculated that

plasma NfL can predict the underlying AD pathology (24–26).

Our previous data showed that patients who progressed through the

dementia stages had higher plasma NfL levels than non-progressive

patients. Moreover, we identified plasma NfL cut-off values of

19.45 pg/mL for SCD and 20.45 pg/mL for MCI (25). Our results

were in line with literature data (27–29). Simrén and colleagues

established the plasma NfL reference limit value at 20 pg/mL for the

neurologically healthy individuals (29). Furthermore, studies

conducted on AD mutation carriers reported that plasma NfL can

predict AD 16 years before symptom manifestation, increasing in

the transition from the preclinical to clinical phase (30, 31).

Our findings corroborate data from previous studies that

reported elevated plasma GFAP, NfL and pTau181 in preclinical

AD, prodromal AD, and AD (7–9, 15, 32–39). Taking into

consideration all the plasma biomarkers together, they can

provide a plasma profile of dementia to aid clinical assessment

and identify different clinical phenotypes. Plasma-based biomarkers

are a better choice because of their simple, easily accessible,

repeatable, and inexpensive characteristics. More importantly, the

possibility of recognizing the preclinical phase is fundamental for

clinical decision-making and more efficient management of the

patient (40, 41). The goal of early diagnosis is linked to the early

therapeutic strategy (42, 43).
A

B

C

FIGURE 1

Study patients, divided in groups, compared for mean plasma
biomarker levels. (A) Mean GFAP levels in the studied groups. AD
showed higher GFAP levels than MCI and SCD. (B) Mean NfL levels in
the studied groups. NfL levels were highest in AD FU. AD had higher
NfL concentration in plasma than SCD, SCD FU, MCI, MCI FU. NfL in
MCI were increased with respect to SCD. (C) Mean pTau 181 levels in
the studied groups. Statistical significance accepted at the p < .05,
highlighted with asterisk. AD had increased pTau 181 concentration
compared to MCI and SCD. AD, Alzheimer’s Disease; FU, Follow-Up;
GFAP, Glial Fibrillary Acidic Protein; MCI, Mild Cognitive Impairment;
NfL, Neurofilament Light Chain; pTau 181, phosphorylated Tau 181;
SCD, Subjective Cognitive Decline.
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In addition, our studied patients carrying the genetic AD risk

factor, ϵ4 allele of APOE, had higher NfL and pTau 181 levels than

non-carriers. Since 2004 studies have suggested that APOE

genotype modulates NFT development and Ab metabolism (44,

45). APOE ϵ4 allele is thought to be involved in Ab and neuritic

plaque accumulation, affecting Ab clearance (46–48). In vivo

experiments on AD transgenic mouse models showed differences

in Ab deposition in an ApoE isoform-dependent manner: mice

ApoE ϵ4-expressing had more than 10-fold fibrillar deposits

compared to ApoE ϵ3 and ApoE ϵ2 mice (46, 49). Both in vitro

and animal experiments suggest that ApoE ϵ4 promote

NFT inclusions, inducing the activation of glycogen synthase

kinase (GSK) 3b , an enzyme responsible for the tau

hyperphosphorylation (50–52). Thus, plasma NfL and pTau 181,

combined with APOE genotype, may help to identify individuals at

increased risk of dementia.

This study has several limitations: i) The number of patients was

relatively small. ii) A control group was not present to verify that

levels of plasma biomarkers in healthy individuals are lower than in

preclinical stages, thus all plasma biomarker levels were compared

to literature data. iii) The plasma GFAP and pTau 181 data were

limited with respect to the total sample size as plasma aliquots were

not available for all. iv) A FU plasma sample was available only for a

subgroup of patients (43) and a longitudinal study was possible only

for NfL, the first peripheral protein evaluated by our team.

On the other hand, all samples were collected prospectively,

processed and stored using the same standardized method and

measurements of plasma biomarkers were done in a single batch,

ensuring good reproducibility. Moreover, few studies have
Frontiers in Endocrinology 05
investigated the combination of GFAP, NfL, and pTau 181 in the

preclinical stage of dementia (17, 18).

In conclusion, our study provides evidence for the potential use

of plasma biomarkers in the diagnosis and prognosis of preclinical

stages of dementia. Plasma GFAP, NfL and pTau 181 can

distinguish all phases along the AD continuum. Their levels

increase mirroring the progression of the neurodegeneration. The

measurement of peripheral proteins through a simple and non-

invasive blood sample is desirable for clinical routine and for patient

management. Moreover, in future we will extend data analysis on

GFAP and pTau 181 in all the samples in order to confirm

our findings.
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TABLE 2 Pairwise comparisons of plasma NfL levels between groups.

B SE b p-value

SCD-SCD FU -11,369 22,804 -,499 ,618

SCD-MCI FU -18,163 13,779 -1,318 ,187

SCD-MCI -24,125 10,818 -2,230 ,026*

SCD-AD -60,569 12,784 -4,738 ,000*

SCD-AD FU -83,163 20,518 -4,053 ,000*

SCD FU-MCI FU -6,794 23,692 -,287 ,774

SCD FU-MCI -12,756 22,102 -,577 ,564

SCD FU-AD -49,200 23,128 -2,127 ,033*

SCD FU-AD FU -71,794 28,150 -2,550 ,011*

MCI FU-MCI 5,963 12,582 ,474 ,636

MCI FU-AD -42,406 14,308 -2,964 ,003*

MCI FU-AD FU -65,000 21,500 -3,023 ,003*

MCI-AD -36,444 11,484 -3,173 ,002*

MCI-AD FU -59,037 19,734 -2,992 ,003*

AD-AD FU -22,594 20,877 -1,082 ,279
fro
Between-group comparisons: ANOVA with Bonferroni post-hoc. Statistical significance accepted at the p < .05, highlighted with asterisk. AD, Alzheimer’s Disease; FU, Follow Up; MCI, Mild
Cognitive Impairment; NfL, Neurofilament Light Chain; SCD, Subjective Cognitive Decline; SE, Standard Error.
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