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Conflicting findings have been reported regarding the association between

Agent Orange (AO) exposure and type 2 diabetes. This study aimed to examine

whether AO exposure is associated with the development of type 2 diabetes and

to verify the causal relationship between AO exposure and type 2 diabetes by

combining DNA methylation with DNA genotype analyses. An epigenome-wide

association study and DNA genotype analyses of the blood of AO-exposed and

AO-unexposed individuals with type 2 diabetes and that of healthy controls were

performed. Methylation quantitative trait locus and Mendelian randomisation

analyses were performed to evaluate the causal effect of AO-exposure-identified

CpGs on type 2 diabetes. AO-exposed individuals with type 2 diabetes were

associated with six hypermethylated CpG sites (cg20075319, cg21757266,

cg05203217, cg20102280, cg26081717, and cg21878650) and one hypo-

methylated CpG site (cg07553761). Methylation quantitative trait locus analysis

showed the methylation levels of some CpG sites (cg20075319, cg20102280,

and cg26081717) to be significantly different. Mendelian randomisation analysis

showed that CpG sites that were differentially methylated in AO-exposed

individuals were causally associated with type 2 diabetes; the reverse causal

effect was not significant. These findings reflect the need for further epigenetic

studies on the causal relationship between AO exposure and type 2 diabetes.
KEYWORDS

Agent Orange, ageing, epigenome-wide association study, microvascular
complications, Mendelian randomization, type 2 diabetes
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1 Introduction

Type 2 diabetes is a complex metabolic disorder characterised

by hyperglycaemia owing to defects in insulin secretion, action, or

both (1–4). The pathophysiology in only 10%–15% of type 2

diabetes cases can be attributed to genetic factors, implying the

need for research on the environment, lifestyle, and epigenetics of

individuals (5). In epigenetic processes, DNA methylation is a

crucial regulator of gene expression and molecular phenotypes.

Identification of differentially methylated regions (DMRs)

associated with exposure to exposome may provide more

substantial evidence for causality and may help elucidate

associations with complex human diseases (6). Recent epigenetic

studies have shown that DNA methylation markers are associated

with type 2 diabetes (7–15), and several DMRs associated with

TXNIP, ABCG1, and SREBF1 have been linked to glycaemic

characteristics and diabetic microvascular complications (16, 17).

Agent Orange (AO) is an herbicide that was sprayed across

Vietnam and Southeast Asia during the Vietnam War; it contains

the most toxic form of dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD). Given that TCDD has been documented to possess an

epigenetic effect on the body (18–20), it is imperative to take into

account its extended half-life in the human body, which ranges

from 7 to 11 years (21), and the consequential build-up it may

induce. Direct exposure to TCDD can lead to tumorigenesis,

including prostate cancer, and development of chronic diseases,

including diabetes (22–29). Previous experimental studies had

reported that TCDD increased hyperglycaemia via peroxisome

proliferator activated receptor-gamma in a rat model of diabetes

(24) and that female mice exposed to TCDD during pregnancy had

increased susceptibility to diabetes (30). Epidemiological research

on the effects of AO exposure indicated a significant association

(odds ratio: 2.69, 95% confidence interval: 1.09–6.67) between AO

exposure and type 2 diabetes development in VietnamWar soldiers

(31). Furthermore, subsequent studies on US veterans have revealed

a potential link between AO exposure and type 2 diabetes

development (32–34). However, an increase in AO exposure did

not increase the incidence of diabetes, according to a meta-analysis

of AO exposure (35). Additionally, the US Veterans Affairs

Commission concluded that the link and causality between AO

exposure and type 2 diabetes development are uncertain (21).

However, the studies are limited by the challenges faced when

determining the extent of genome-level exposure from actual

epidemiological investigations, since a combination of genetic and
Abbreviations: AO, Agent Orange; BBJ, BioBank Japan; DMP, differentially

methylated position; DMR, differentially methylated region; EPIC- Norfolk

study, European Prospective Investigation into Cancer and Nutrition-Norfolk

study; EWAS, epigenome-wide association study; FC, fold-change; FDR, false

discovery rate; GSIS, glucose-induced insulin secretion; GWAS, genome-wide

association study; KoGES, Korean Genome and Epidemiology Study; Limma,

linear models for microarray data; MR, Mendelian randomisation; meQTL,

methylation quantitative trait locus; PC, principal component; PRS, polygenic

risk score; QC, quality control; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin;

VHSMC, Veterans Health Service Medical Center.
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environmental factors contributes to the development of the

disease. The novelty of our study lies in identifying the

biochemical mechanism of the association of AO and diabetes.

Recent advances in the interpretation of DNA methylation and

bioinformatics have facilitated epigenetic studies on AO exposure

(12, 36). Studies have shown that DNA methylation markers are

associated with AO exposure and are potential biomarkers of

clinical diseases (12, 36). Furthermore, the combination of

mediator analysis with genotype and methylation data is expected

to help address the concerns regarding the causal relationship

between AO exposure and type 2 diabetes development.

Therefore, in this study, we aimed to investigate the association

factors and causality between AO exposure and type 2 diabetes

development in Korean veterans of the Vietnam War. We

conducted DNA methylation analysis, which could be divided

into the following phases: 1) an epigenome-wide association study

(EWAS) of all individuals with type 2 diabetes and of a community-

based cohort consisting of a general population without type 2

diabetes to identify type 2 diabetes-related DMPs and 2) an EWAS

of Korean veterans with type 2 diabetes (AO-exposed group) and a

community cohort consisting of individuals with type 2 diabetes

(AO-unexposed controls) to identify AO-related DMPs.

Additionally, by combining the genotype and DNA methylation

data, an association study was conducted, and causality was assessed

using Mendelian randomisation (MR) analysis. Furthermore, using

estimated polygenic risk scores (PRSs) for type 2 diabetes, we

compared differences in diabetogenic genetic predisposition and

epigenetic impact between AO-exposed and AO-unexposed

patients with type 2 diabetes.
2 Materials and methods

2.1 Study design and participants

Clinical and genetic data from the Veterans Health Service

Medical Center (VHSMC) cohort (37, 38) and the Korean Genome

and Epidemiology Study (KoGES) of the National Biobank of Korea

were integrated into this study (sample size, n = 89,297, Figure 1)

(38, 39). In total, 2,500 and 86,797 individuals from the VHSMC

and KoGES cohorts, respectively, were eligible to participate in the

study. Adequacy of sample sizes were assessed using pwrEWAS (40)

considering power and expected effect sizes. The simulation

accounted for tissue type (blood samples), number of total and

differentially methylated CpGs (80,000, 50), effect size (0.05, 0.1,

0.2), target false discovery rate (0.05), and statistical methods to

perform differential methylation analyses(limma). For each

parameter set, 50 data sets were simulated and the powers were

calculated. AO-exposed participants with type 2 diabetes were

selected from the VHSMC cohort based on service-connected

disease codes, assigned by official medical examinations for

diabetes, with data on their service areas and the duration of their

exposure AO exposure during the Vietnam War. Through official

medical examinations, the participants were certified as having type

2 diabetes, initially not requiring insulin treatment and responding

to oral hypoglycemic agents, along with appropriate test results. The
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participants with or without type 2 diabetes who were not exposed

to AO were selected from the KoGES database and constituted the

control group. DNA methylation and genotype analyses involved

125 AO-exposed individuals with type 2 diabetes, 11,959 AO-

unexposed individuals with type 2 diabetes, and 77,213 healthy

individuals. The exclusion criteria were as follows: 1) individuals

who had not passed the pre-process procedure and not fulfilled the

quality control (QC) criteria for methylation and 2) individuals who

had not passed the QC for genotype and imputation. Finally, 1,249

individuals were included in EWAS, 1,106 individuals were

included in the combined analysis of methylation and genotype,

and 1,198 individuals were included in PRS modelling.
Frontiers in Endocrinology 03
2.2 Ethics

The study protocol was approved by the institutional review

board (IRB) of the Veterans Health Service Medical Center

(VHSMC) (IRB no. 2018-12-016 and IRB no. 2018-08-032). All

participants provided written informed consent before

participation. The Korean Genome and Epidemiology Study

(KoGES) cohort obtained the informed consent from participants.

For control data, the IRB of VHSMC approved the study and

waived informed consent from the individuals (IRB no. 2019-06-

007), since data analysis was retrospective and the data were de-

identified. The study was conducted in compliance with the
FIGURE 1

Schematic illustration of the flow of this study. AO, Agent Orange; EWAS, epigenome-wide association study; GWAS, genome-wide association
study; KoGES, Korean Genome and Epidemiology Study; meQTL, methylation quantitative trait locus; SNP, single nucleotide polymorphism; T2D,
type 2 diabetes; VHSMC, Veterans Health Service Medical Centre.
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Helsinki Declaration. The study was conducted with bioresources

from the National Biobank of Korea, the Centers for Disease

Control and Prevention Agency, Republic of Korea (KBN-2021-

042) and (KBN-2020-101).
2.3 DNA methylation profiling

Blood samples from the participants were collected in EDTA

tubes during baseline visits and corresponding genomic DNA was

extracted for methylation profiling. DNA quality was analysed

using PicoGreen (Invitrogen, Carlsbad, CA, USA) with the

Synergy HTX reader (BioTek, Winooski, VT, USA); DNA purity

was assessed using a spectrophotometer (NanoDrop ND 1000UV-

vis; Thermo Fisher Scientific, MA, USA) and DNA quality was

assessed using gel electrophoresis. High-quality DNA samples

(genomic DNA: concentration > 70 ng/mL, volume > 20 mL, total
amount > 1.4 mg) were subjected to bisulphite conversion using an

EZ DNAmethylation kit (Zymo Research, Irvine, CA), according to

the manufacturer’s instructions. The DNA methylation fraction

values were measured using Illumina Infinium Methylation EPIC

BeadChip 850 K (Illumina Inc., San Diego, CA), which can detect

850,000 CpG sites; 90% of the 450,000 sites are in the distal cis-

regulatory regions and more than 350,000 CpGs of these are located

in enhancer regions. MethylationEPIC BeadChip experiments were

performed in accordance with the manufacturer’s instructions, and

image BeadChips were constructed in l ine with the

Mac instructions.

The raw signal intensity files were imported, and unreliable

intensity values were considered missing values based on the p-

values, which were calculated by comparing the fluorescence

intensity and noise distribution (41). Two colour channels of

BeadChips were normalised using the correct_dye_bias function

from the ewastools package and the data were converted to beta

values (the ratio of methylated to unmethylated signal intensities).

The pre-processed data were subjected to QC. First, the samples of

participants who did not meet the threshold recommended in the

BeadArray Control Reporter Software Guide by Illumina were

excluded. The sex of each individual was compared with that

inferred by the normalised intensities of the CpGs located in the

sex chromosomes, and the mismatched individuals were filtered

out. Additionally, samples with logarithmic odds of being outliers

greater than -4.0 were excluded. Leukocyte compositions were

predicted using the function estimateLC (42) and data from

individuals who had > 30% NK cells or > 9% nRBCs. The

estimated cell proportions were not different between groups and

are summarised in Supplementary Table 7. Individuals with

principal component (PC) scores having standard deviations

greater than ±1.5 were considered outliers, and hence, were not

included in the following analyses. All the described pre-processing

steps were performed using the functions from the ewastools

package (42) in R. Second, the CpG sites were subjected to QC.

We eliminated the CpG sites with a missing rate of ≥ 3%. Single

nucleotide polymorphism (SNP)-overlapped probes and cross-

reactive probes were removed by referring to the manifest file and
Frontiers in Endocrinology 04
provided as a cross-reactive probe list (43). Two cohorts were

considered as a batch, and batch effects were adjusted using the

ComBat function of the surrogate variable analysis package (44).

After QC, 1,249 individuals with 821,509 CpGs remained and were

subjected to further analysis. The MDS plot on M-values for the

1,249 individuals was plotted using plotMDS with default options

from the limma package.
2.4 Genotyping and imputation

Genotyping was performed on 89,144 individuals using the

Affymetrix 5.0 or 6.0 Array or the Korea Biobank Array (Version

1.0 or 1.1; Affymetrix, Santa Clara, CA, USA) (45). Genotypes were

identified by minimising the batch effect using the K-medoid

clustering-based method (46). SNPs were removed if the missing

rate was > 5%, the p-value of the Hardy–Weinberg equilibrium test

was < 1 × 10-5, or the minor allele frequency was < 0.05. Individuals

whose sex information was inconsistent, whose missing rate was >

5%, or whose heterozygosity was < 1 × 10-5 were excluded. QC was

conducted using ONETOOL (47). Genotype imputation was

conducted using the Northeast Asian Reference Database

imputation server (https://nard.macrogen.com/) (48), and the

SNPs with an INFO > 0.8 were included in the analysis. A total

of 81,892 individuals presenting 21,444,246 SNPs were included in

subsequent analysis.
2.5 Statistical analyses

2.5.1 DMPs associated with AO exposure on
disease-risk epigenetic markers

Association between the methylation level of each CpG site and

type 2 diabetes development in 121 AO-exposed individuals with

type 2 diabetes, 205 AO-unexposed individuals with type 2 diabetes,

and 923 healthy individuals was tested with M-values, calculated as

the log2 ratio of the methylated probe intensity to the unmethylated

probe intensity, using the ‘linear models for microarray data’

(limma) package in R, version 3.6.3 (R Core Team, Vienna,

Austria) (49). Age and sex were included as covariates. In

addition, we included 10 PC scores to effectively remove the

batch effect. An EWAS was conducted to identify DMPs based on

the fold-change (FC) and the ratio between cases and controls,

using Benjamini–Hochberg correction for controlling the false

discovery rate (FDR) (50). The statistical significance of the

volcano plot was set at |log2FC| > 0.1 and FDR-adjusted p < 0.05.

The analysis involved two steps, as follows: 1) assessing the

relationship between type 2 diabetes development and DNA

methylation (type 2 diabetes vs. healthy individuals), which

allowed the identification of DMPs related to type 2 diabetes; and

2) assessing the link between AO exposure and type 2 diabetes

development using methylation analysis (AO-exposed individuals

with type 2 diabetes vs. AO-unexposed individuals with type 2

diabetes). Through the intersection of these two gene sets, we could

identify methylation markers in AO-exposed individuals with type
frontiersin.org
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2 diabetes. All individuals with type 2 diabetes, who were exposed to

AO, were men, and the same covariates, except for sex, were

employed. Differentially methylated regions (DMRs) were also

explored with DMRcate. DMRcate function was used with the

default options except for the inclusion of a minimum number of

10 CpG sites.

DMPs discovered to be associated with type 2 diabetes were

validated with the European Prospective Investigation into Cancer

and Nutrition (EPIC)-Norfolk study (7). Methylation intensities

were measured using Illumina HumanMethylation450 array in

whole blood samples of 1,264 individuals, comprising 563 type 2

diabetes cases and 701 controls. Logistic regression was employed to

determine the impact of DMPs on type 2 diabetes after adjusting the

effect of age, sex, estimated cell counts, and sample plate. Summary

statistics derived from the logistic regression were downloaded from

https://www.repository.cam.ac.uk/handle/1810/299058.

Additional sensitivity analysis was performed with a more

homogenous population. All female participants were found to be

healthy, with none identified as having type 2 diabetes. To eliminate

the potential bias caused by this imbalance, we conducted EWAS

exclusively with male participants and compared their estimates

with the results obtained from all the study participants. Ages were

significantly different between cases and controls (p < 0.0001,

Table 1), and to address potential confounding by age, we

performed the same process with only sensitivity analyses to

assess older participants, aged above the median age of all

participants. Further, since our analyses included individuals with

an average age of 60 years, including those with a history of cancer,

this could potentially result in inaccurate conclusions. Therefore, we

conducted an additional analysis, excluding patients with a history

of cancer. Moreover, we conducted subgroup analyses on type 2

diabetes microvascular complications, including diabetes mellitus

(DM) CKD and DM retinopathy. Patients were categorised based

on the type of complication. We assumed those with unknown DM

microvascular complication status in the AO-unexposed group to

have no complication. Next, we conducted separate subgroup

analyses for patients with each complication and compared the

coefficients of AO for the methylation level to those obtained from

EWAS results using all patients with type 2 diabetes.

2.5.2 Methylation quantitative trait locus analysis
and MR analysis

Methylation quantitative trait locus (meQTL) analysis was

performed; the SNPs within 500 kb (cis) of the identified DMPs

were pruned to consider the linkage dependency of SNPs in further

analysis. The linear model for each methylation–SNP pair after

adjusting for age and sex was tested using the MatrixEQTL package

at an FDR-adjusted significance level of 0.05 (51).

To investigate whether the identified DMPs play a causal role in

type 2 diabetes or whether type 2 diabetes affects the methylation

levels, we performed a one-sample MR analysis using the

methylation and genotype data of 1,106 individuals, including 119

AO-exposed individuals with type 2 diabetes, 169 AO-unexposed
Frontiers in Endocrinology 05
individuals with type 2 diabetes, and 818 healthy individuals

(Figure 1). The pairs of SNPs and methylation levels that were

significantly associated but were not associated with type 2 diabetes

were utilised in the MR analysis using the two-stage estimation

method. We assumed that the methylation level of the CpG sites

detected in DMPs affects type 2 diabetes predisposition, and SNPs

were used as instrumental variables. First-stage regression estimated

the regression coefficient of an SNP at the methylation level. Next,

the predicted methylation level was plugged into the second-stage

logistic regression to estimate the effect of methylation level on type

2 diabetes. Further analysis to check the existence of a reverse

causation effect was conducted using a two-stage estimation

method. The SNPs with genome-wide significant associations

were used to confirm whether the instrumental variable was

associated with type 2 diabetes development. The estimated bias

of the binary model was adjusted using the control function, as

suggested by Vansteelandt, with the ivtools package (52).

2.5.3 Estimation of PRSs for type 2
diabetes development

A genome-wide association study (GWAS) of 80,694

individuals from the KoGES cohort was performed (Figure 1),

and summary statistics were used to calculate the PRS. For

replication analysis, summary statistics from GWAS and BioBank

Japan (BBJ) were used (https://pheweb.jp/) (53). Further details on

PRS analysis and pathway PRS can be found in Supplementary Data

Sheet 2. All the codes for analysis in this study can be downloaded

from https://github.com/wonlab-healthstat/Methylation_AO_T2D.
3 Results

3.1 Baseline characteristics

The baseline characteristics of the study participants are

presented in Table 1. All individuals with type 2 diabetes were

men, whereas 43% of the healthy individuals were women. The age

of the AO-exposed individuals with type 2 diabetes was higher than

that of the AO-unexposed individuals and that of healthy individuals

(p < 0.0001). The duration of type 2 diabetes in AO-exposed

individuals with type 2 diabetes was longer than that in AO-

unexposed individuals (26.22 ± 8.48 vs. 10.85 ± 8.39 years, p <

0.0001). The onset age of type 2 diabetes was lower in AO-exposed

individuals with type 2 diabetes than in AO-unexposed individuals

(46.78 ± 8.46 vs. 50.84 ± 9.37 years, p < 0.0001). The level of glycated

haemoglobin (HbA1c) in AO-exposed individuals with type 2

diabetes differed from that in AO-unexposed individuals with type

2 diabetes (7.40% ± 1.34% vs. 7.22% ± 0.98%, p = 0.0359). The

estimated glomerular filtration rate was the lowest in AO-exposed

individuals with type 2 diabetes (p < 0.0001). The incidence of

comorbidities in AO-exposed individuals with type 2 diabetes was

higher than that in AO-unexposed individuals (p < 0.0001) and all the

patients with cancer history were in AO-exposed type 2 diabetes.
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TABLE 1 Baseline characteristics of the study population of the EWAS study.

Entire VHSMC cohort KoGES cohort (AO-unexposed)

p
AO-exposed type

2 diabetes
AO-unexposed type

2 diabetes

Healthy control
(non-DM)

Male Female

(N
= 1,249)

(N = 121) (N = 205)
(N

= 505)
(N

= 418)

Age (years), median (IQR) 58 (52, 69) 73 (71, 74) 62 (55, 69) 57 (52, 66) 54 (51, 63)
<0.0001a

(A,
B, C)

BMI (kg/m2), mean ± sd 24.1 ± 2.9 25.21± 3.0 25.0 ± 2.8 23.8 ± 2.8 23.8 ± 2.9
<0.0001a

(B, C)

Duration of type 2 diabetes (years),
median (IQR)

15.4
(7.2, 23.8)

25.0 (20.0, 31.0) 8.1 (4.7, 15.1) – – <0.0001b

Onset age of type 2 diabetes (years),
median (IQR)

50.0
(43.2, 55.8)

48.0 (41.0, 54.0) 50.9 (45.1, 57.6) – – 0.0015b

HbA1c (%), mean ± sd 5.9 ± 1.0 7.4 ± 1.4 7.2 ± 1.0 5.5 ± 0.4 5.4 ± 0.2
<0.0001a

(A,
B, C)

eGFR (mL/min/1.73 m2),
median (IQR)

72.7
(63.5, 79.6)

53.0 (42.0, 63.0) 73.2 (64.1, 81.8)
75.1

(69.1, 82.6)
71.9

(66.0, 76.9)
–

Creatinine (mg/dL), mean ± SD 1.0 ± 0.3 1.5 ± 0.7 1.1 ± 0.4 1.0 ± 0.1 0.8 ± 0.1
<0.0001a

(A,
B, C)

Comorbidity

Ischaemic heart disease, n (%) 38 (3.0) 35 (28.9) 1 (0.5) 2 (0.4) 0 <0.0001c

Hypertension, n (%) 195 (15.6) 102 (84.3) 27 (13.2) 41 (8.1) 25 (6.0) <0.0001d

DM CKD (60), n (%) 173 (13.9) 81 (66.9) 34 (16.6) 31 (6.1) 27 (6.5) <0.0001d

DM retinopathy, n (%) 56 (4.5) 56 (46.3) – – – –

Cancer, n (%) 24 (1.9) 24 (19.8) 0 0 0 <0.0001c

Prostate cancer 9 (0.7) 9 (7.4) 0 –

Lymphoma 2 (0.2) 2 (1.7) – – – –

Colon cancer 3 (0.2) 3 (2.5) – – – –

Gastric cancer 4 (0.3) 4 (3.3) 0 0 0 –

Pancreatic cancer 2 (0.2) 2 (1.7) 0 0 0 –

Leukaemia 1 (0.1) 1 (0.8) – – – –

Liver cancer 3 (0.2) 3 (2.5) 0 0 0 –

Other 1 (0.1) 1 (0.8) – – – –

Stroke, n (%) 35 (2.8) 27 (22.3) 5 (2.4) 1 (0.2) 2 (0.5) <0.0001c
F
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 fron
VHSMC cohorts (Veterans Health Service Medical Center cohort): AO-exposed type 2 diabetes.
KoGES cohort (Korean Genome and Epidemiology Study): AO-unexposed individuals with type 2 diabetes and healthy individuals.glycated haemoglobin (HbA1c), estimated glomerular
filtration rate (eGFR), chronic kidney disease (CKD).
aANOVA and Tukey’s Honest test results in parentheses at 0.05 significance level after multiple comparison adjustment (A: AO-exposed T2D vs. AO-unexposed T2D, B: Healthy vs. AO-exposed
T2D, C: Healthy s AO-unexposed T2D).
bYuen trimmed mean t-test.
cFisher’s exact test.
dChi-square test.
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3.2 Association between AO exposure and
DNA methylation

After performing the QC procedures, DMPs of 1,249

individuals with 821,509 CpG sites, including 121 AO-exposed

individuals and 1,128 controls (205 AO-unexposed individuals

with type 2 diabetes and 923 healthy individuals), were analysed

(Supplementary Figure 1). The power analyses show that to detect

effect sizes as small as 0.05 with 80% power, 250 subjects are

required (Supplementary Figure 7), which supports that the

number of sample sizes is sufficient. The MDS plot did not reveal

any distinct cluster, and Q-Q plots indicated no inflation of analysis

with the inflation factors of 1.1 and 1.04 for type 2 diabetes vs.

healthy and AO-exposed type 2 diabetes vs. AO-unexposed type 2

diabetes, respectively, thereby indicating the absence of population

genetic structure. The volcano plot is shown in Supplementary

Figure 2.

Fifty-nine CpGs were significantly associated with the DM

phenotype (AO-unexposed individuals with type 2 diabetes and

AO-exposed individuals with type 2 diabetes) compared to those of

healthy individuals (Figure 2). Furthermore, the DMPs between

AO-exposed individuals with type 2 diabetes and AO-unexposed

individuals revealed that 2,135 CpG sites were significantly
Frontiers in Endocrinology 07
associated with AO exposure (Figure 2). The Venn diagram

shows that seven CpG sites were significantly associated with

both DM phenotype and AO-exposed individuals with type 2

diabetes (Figure 2). They consisted of six hyper-methylated CpG

sites (cg20075319, cg21757266, cg05203217, cg20102280,

cg26081717, and cg21878650, which are associated with KCND3,

FLT1, KCNS1, HTR2A, TMEM246, and ADAMTS6, respectively)

and one hypo-methylated CpG site (cg07553761, which is

associated with TRIM59). The highest methylation level was

observed in AO-exposed individuals with type 2 diabetes,

followed by AO-unexposed individuals and healthy individuals

for the hyper-methylated CpGs, and vice versa for the hypo-

methylated CpG, when comparing the absolute log2FC values

(Figure 3, Supplementary Table 2). DMR analysis did not reveal

any significant association. Validation was carried out using

participants from the EPIC-Norfolk study. Out of 59 significant

CpG sites, analysis results were available for 18 CpG sites.

Directions of the estimates were consistent for 14 CpG sites, and

among them, 6 CpGs were significant at the significance level of

0.05 (Supplementary Table 3). Sensitivity analyses, to assess the

robustness of our analysis, showed the consistent direction of all

estimates and similar effect sizes (Supplementary Figure 3).

Subgroup analyses for each DM microvascular complication
FIGURE 2

Volcano plot and Venn diagram showing the significant CpG sites of all the groups studied. The number of significant CpG sites at a significance
level of 0.05, with an absolute log2(fold-change) > 0.1. Significant CpG sites that met the two criteria were further categorised as hyper/hypo. DM,
diabetes mellitus; AO, Agent Orange; T2D, type 2 diabetes; hyper, hypermethylation; hypo, hypomethylation.
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resulted in similar estimates. Estimates for the seven identified

CpGs are listed in Supplementary Table 4.
3.3 meQTL analysis and MR analysis

To assess whether the CpGs associated with AO have a causal

effect on type 2 diabetes, we considered the cis-SNPs within 500 kb

from the CpGs, and meQTL was found by testing the correlations

for 2,569 SNP-CpG pairs in 59 CpG sites. Significant correlations

were found for 134 pairs at an FDR-adjusted significance level of

0.05 (Supplementary Figures 4, 5, Supplementary Table 5). They

were utilised for MR, and a causal effect was found for six CpGs,

namely cg06827192, cg20075319, cg20102280, cg22400605,

cg26081717, and cg26826927, which are associated with CNKSR3,

KCND3, HTR2A, LOC101929532, TMEM246, and COG5,

respectively (Table 2, Supplementary Table 8). Among these,

cg20075319, cg20102280, and cg2608171 were significantly
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associated with AO exposure, according to the DMP analysis.

Their log2FC values (adjusted p-values) were 0.2555 (9.40 × 10-

11), 0.288 (1.78 × 10-6), and 0.250 (1.87 × 10-7), respectively.

Conversely, to investigate the influence of type 2 diabetes on the

CpG methylation levels, GWAS SNPs were used as instrumental

variables, and none of the CpGs showed reverse causality (Figure 1,

Supplementary Table 6). These findings implied that alterations in

DMPs in relation to diabetes were not caused by type 2 diabetes, but

rather by AO exposure.
3.4 Estimation of the PRSs for type
2 diabetes

The PRS of individuals in both type 2 diabetes groups (AO-

exposed and AO-unexposed individuals with type 2 diabetes) was

higher than that of healthy individuals (p < 0.05, Supplementary

Figure 6). However, no significant difference in PRS values was
TABLE 2 Mendelian randomisation analysis of significant associations between CpGs (mediators) and type 2 diabetes (outcomes).

CpG Chr Position
Associated

gene
Location
in gene

Location in
CpG island

Fa Estimate
Standard
error

p
Adjusted

p

cg20075319 1 112332718 KCND3 body Open sea 31.7 -2.5262 0.4707
7.99E-
08

1.02E-05††

cg26826927 7 107103667 COG5 body Open sea 112.9 -2.0690 0.5318
1.00E-
04

0.0127†

cg20102280 13 47470793 HTR2A body Open sea 15.4 -1.3341 0.3491
1.33E-
04

0.0166†

cg26081717 9 104249747 TMEM246 TSS1500 Shore 20.6 -1.3761 0.3705
2.04E-
04

0.0230†

cg06827192 6 154730156 CNKSR3 body Open sea 36.0 -1.0452 0.2895
3.06E-
04

0.0325†

cg22400605 2 162975451 LOC101929532 body Open sea 30.6 -1.4692 0.4177
4.36E-
04

0.0454†
†0.01< Benjamini–Hochberg adjusted p < 0.05.
††Benjamini–Hochberg adjusted p < 0.01.
aSignificant CpG sites from Mendelian randomisation analysis. The SNPs with the highest correlation with each CpG are listed and their F-statistics are listed as a measure of the
instrument’s strength.
FIGURE 3

Change in the log2(fold-change) values of seven CpG sites. The sites were identified as significant in type 2 diabetes versus healthy individuals, and in
AO-exposed individuals with type 2 diabetes versus AO-unexposed individuals. AO, Agent Orange; Chr, chromosome; T2D, type 2 diabetes; FC,
fold-change.
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found between the AO-exposed individuals with type 2 diabetes and

the AO-unexposed individuals (p > 0.05, Supplementary Figure 6,

Supplementary Data Sheet 2). Further, the relationships between

AO exposure and specific pathogenic pathways in type 2 diabetes

were investigated by calculating the pathway-specific PRS.

Pathways related to adipocytokine signalling, apoptosis, insulin

signalling, and maturity onset diabetes of the young were

examined. However, through the comparisons between AO-

unexposed and AO-exposed groups, no statistically significant

differences were found in pathway enrichment, indicating a lack

of discernible pathway-level variations associated with AO exposure

in the context of type 2 diabetes pathogenesis.
4 Discussion

Our investigation revealed that seven DMPs were associated

with both AO exposure and type 2 diabetes, and MR analysis for

causality demonstrated that AO exposure was a causal epigenetic

factor of type 2 diabetes in Korean veterans who were involved in

the VietnamWar. The PRS was different between the individuals in

both type 2 diabetes groups and healthy individuals; however, there

was no change with or without AO exposure, indicating that AO

exposure can cause type 2 diabetes development via epigenetic

modifications in individuals with a genetic predisposition to type 2

diabetes. Additionally, the 2,135 AO-related DMPs identified in our

study may be associated with conditions such as cancer, post-

traumatic stress disorders, and Parkinson’s disease, which have

been linked to AO exposure in epidemiological studies (22, 31, 34);

therefore, additional research in this direction is recommended.

The relationship between AO exposure and type 2 diabetes

development had previously been investigated by performing an

epidemiological study involving Korean veterans and the Air Force

Health Study cohort (31–33). Subsequent investigations based on

this cohort demonstrated that AO exposure is associated with type 2

diabetes development (34). In addition to these epidemiological

investigations, data from cellular and animal studies supported the

potential link between AO exposure and type 2 diabetes

development (54). Previous research has revealed that mice

lacking the aryl hydrocarbon receptor have increased insulin

sensitivity and glucose tolerance, indicating that the receptor

plays a physiological role in glucose metabolism (54). A study

employing a transcriptome approach to investigate the putative

molecular pathways of AO-induced alterations in pancreatic islet

and cell insulin secretion (55) identified the potential mechanisms

underlying the metabolism-modulating effects of AO, which are

essential for the progression of metabolic diseases. However, a

meta-analysis using a random-effects model showed that

increased AO exposure is not associated with an increased risk of

type 2 diabetes (35). Despite this negative finding, dose–response

relationships between the dioxin level and type 2 diabetes incidence

were observed in several other analyses that controlled the

confounding variables (35). Such contradictory findings need to

be interpreted considering the peculiarities of epidemiological

studies, and epigenomic analysis is expected to provide a more

sensitive interpretation of the results (36).
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Recent studies on the effect of AO toxicity, using DNA

methylation analysis, demonstrated a significant association of

dioxin exposure with DNA methylation in IGF2 and CYP1A1,

which are potential biomarkers for dioxin exposure in the

Vietnamese population (56). In addition, previous studies on

DNA methylation had identified four CpG sites located on

TEAD3 in the sperm (36), and DNA methylation for SLC9A3 in

adipose tissue and PTPRN2 and SMO in whole blood has been

reported (57) in veterans exposed to AO in Operation Ranch Hand.

Here, we investigated the association of DNAmethylation with AO-

exposed type 2 diabetes and found three significant CpG markers

with DMP and MR analyses. Following are the type 2 diabetes

junctions in genes, corresponding to the seven DMPs that were

supportive of the data obtained here. KCND3 and KCNS1, which

regulate the potassium channel function, expressed at low levels in

the pancreas (58). Recent research analysing the transcriptome

signature in adult human islets has revealed a significant increase

in KCND3 mRNA specifically in alpha cells, along with glucagon

(59). RNA sequencing analysis revealed that KCND3 was the only

upregulated gene and a significant biomarker in diabetic kidney

disease (60). FLT1, also known as VEGFR-1, serves as a receptor for

VEGFA in the pancreas (61). FLT1 knockout mice showed

disorganized islet vascularity and impaired insulin secretion (62).

HTR2A, which regulates the level of serotonin receptor 2A are

present in islets of mice and humans (63, 64). 5-HT2A receptors

regulate insulin secretion in human islets; a 5-HT2A receptor

agonist evoked a 1.5-fold increase in glucose-induced insulin

secretion (GSIS), while a 5-HT2A antagonist inhibited GSIS in

human islets (64). In a GDM study, TMEM246 showed abnormally

methylated results (65). ADAMTS6 encodes a secreted

metalloprotease, and showed the alleviating effect of insulin on

diminishing ADAMTS6 levels in human cell lines, suggesting a

weak link with diabetes (66). TRIM59, a negative regulator of

kappaB kinase/NF-kappaB signalling (67), is associated with

reduced GSIS and pancreatic b cell failure in animal models (68,

69). Among the genes, KCND3, FLT1, HTR2A, and TRIM59

demonstrate associations with beta cell dysfunction and GSIS.

While there is also evidence linking TMEM246 and ADAMTS6 to

diabetes, the association is ambiguous due to a lack of in vivo or

human cell experiments. Despite the limitations, it is speculated that

these genes may be related to beta cell function. Further, the genes

associated with significant CpGs for T2D, CNKSR3, COG5, and

LOC101929532, have the potential molecular mechanisms

underlying T2D. CNKSR3, a gene highly expressed in renal

collecting ducts, regulates sodium transport and is upregulated by

aldosterone, is targeted in protecting kidney disease progression in

T2D (70) representing a candidate gene for further investigation in

the context of T2D pathogenesis. Additionally, COG5, which

participates in Golgi vesicle tethering and intra-Golgi transport,

hint at intricate cellular mechanisms that may indirectly influence

insulin secretion and glucose homeostasis (71). While

LOC101929532 may not have been extensively characterized in

the literature, its association in our study underscores its potential

relevance to T2D pathology, warranting further investigation.

However, MR analysis revealed that AO exposure was a causal

factor for type 2 diabetes, whereas reverse MR revealed that the type
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2 diabetes-related SNPs did not influence the DMPs identified in

this study. These findings supported the causal relationship between

AO exposure and type 2 diabetes development. In our study, the

duration of type 2 diabetes in AO-exposed individuals with type 2

diabetes was longer than that in AO-unexposed individuals. There

may be a connection between AO exposure and the development of

young-onset DM, and this could be related to insulin deficiency

versus insulin resistance in terms of the mechanism of diabetes.

Several studies suggest that methylation in the KCNQ1 locus is

related to insulin sensitivity (72, 73). In addition, epigenetic age

measurements with DMR change could potentially be used as a

biomarker associated with type 2 diabetes development (74, 75).

Since the age and diabetes occurrence mechanisms are related to

diabetic complications, they are currently being actively researched,

and further research is still recommended. Since methylation is a

complex issue related to ageing, insulin sensitivity, and diabetes

complications, we compared the PRS constructed from genotype

data and found non-significant differences between AO-exposed

and AO-unexposed individuals with type 2 diabetes. Owing to the

polygenic nature of diabetes, upon AO exposure on the battlefield,

individuals with a genetic predisposition for type 2 diabetes may

undergo epigenetic modifications related to type 2 diabetes

development. A major strength of our study was that it provided

epigenetic evidence of molecular determinants of the susceptibility

of AO-exposed individuals to develop type 2 diabetes. In addition,

type 2 diabetes and significant DMPs were identified by combining

the genotype and DNA methylation data with causality analysis.

Our study possesses a distinctive advantage as it scrutinized the

precise mechanisms underlying the progression of AO and diabetes.

Furthermore, it delves into unexplored information that was

previously unknown in prior research. In addition, the analysis

considered the fact that type 2 diabetes is associated with

methylation, and an effort was made to avoid false positives using

a strategy that yielded results more accurate than those obtained

from the analysis of DMPs associated with multiple AO exposure.

However, the study has several limitations. The first is the long

time-lag between AO exposure and the methylation level analysis

using the Infinium 850 K Bead Chip. Since the half-life of AO is 7–

11 years (21), AO would have been degraded to an undetectable

level and would have had an epigenetic effect on the body during

that duration. In addition, the individuals were exposed to high

doses of AO employed for military use, whereas a few control

individuals may have been occupationally exposed (dioxin-industry

workers, among others). In this study, a sufficient number of

control individuals were enrolled to reduce the above-mentioned

possibility, which was predicted to have reduced the frequency of

false-positive dioxin exposure-related methylation results. It can be

assumed that Korea veterans will have a similar median half-life of

2,3,7,8-TCDD to that of Ranch Hand veterans, whose serum

samples taken in 1982 and 1987 revealed a median half-life of 7.1

years (95% confidence interval for median 5.8-9.6 years) (76).

Second, the average age of AO-exposed group individuals was

higher than that of the control group individuals. According to

the epidemiological distribution of the population, there was an age

bias in the cohort of individuals who participated in the Vietnam

War, although that was not the case in the control group.
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Considering that different ages might influence the methylation

level, all data sets were analysed by adjusting the age of the

participants. Although genotype is largely independent of age, it

was still included in the analysis with PRS. Third, in our study,

among 125 AO-exposed type 2 diabetes veterans, we targeted those

who were recognised as exposure group of AO for Korean Veterans

(https://vadisabilitygroup.com/agent-orange-exposure-benefits-

for-korean-veterans/) and this was a special group receiving state

financial support. The remaining 2,500 patients participated in a

chronic disease cohort study conducted by Veterans Hospital.

Researchers will be interested in determining the prevalence of

individuals with AO-exposed type 2 diabetes among the global

diabetic population. Based on the global population of type 2

diabetes patients being 529 million (77), it is approximately 0.4%

for the estimated percentage of type 2 diabetes patients worldwide

who have developed type 2 diabetes associated to AO exposure (2

million in Vietnamese and American veterans, 73,647 in South

Korea). Fourth, women participated in the Vietnam War; however,

they were non-combatants, and only a few of them were exposed to

AO. Therefore, the AO exposure group was exclusively composed

of men. Thus, this can result in sex bias, since some specific patterns

of DNAmethylation may exist in women. Even though, sex variable

was controlled in the model, our results still can be biased. Further

studies are necessary. There could be more unmeasured

confounders for methylation. The authors attempted to assess

population stratification through MDS plots; however, unlike

genetic analysis, where Mendelian laws govern and there are

relatively few confounders, methylation can be influenced by

environmental factors and, therefore, have more potential

confounders. As MR is robust against uncontrolled confounders,

it was applied to assess the significance of CpGs in our study. In

addition, despite the authors’ inclusion of overlapping data from the

comparison of AO with non-AO and the comparison of non-AO

type 2 diabetes with healthy individuals, it cannot be asserted that

the observed overlapping signals are directly attributable to or

associated with AO exposure. There may be additional

characteristics, such as smoking status, sweet beverage

consumption, and exercise frequency, which should be

considered. For this purpose, analysis such as epigenetic analysis

of RNA or acetylation other than methylation is necessary, and

research on factors other than AO is necessary. Further

investigation is necessary to ascertain the necessity of additional

research wherein the optimal control group comprises individuals

originating from the VHSMC.

In conclusion, we demonstrated that AO-exposure-related CpG

sites play a role as epigenetic factors in type 2 diabetes pathogenesis.

Comprehensive epigenetic profiling revealed that the effect of AO

on diabetes pathogenesis was characterised by significant epigenetic

changes in the various gene categories involved. Furthermore, while

conducting a comparative study of the PRS data based on genotype,

it was observed that there were no statistically significant disparities

between individuals with AO-exposed and AO-unexposed type 2

diabetes. However, notable distinctions were identified when

comparing these individuals to the control group consisting of

normal individuals. This finding suggests that individuals who

possess a genetic susceptibility to type 2 diabetes may have
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epigenetic alterations that are linked to the onset of type 2 diabetes.

These findings suggest that additional research is required,

including a causal investigation of the DMPs and additional

putative experimental validation.
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