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Objective: This study aimed to construct a machine learning model using clinical

variables and ultrasound radiomics features for the prediction of the benign or

malignant nature of pancreatic tumors.

Methods: 242 pancreatic tumor patients who were hospitalized at the First

Affiliated Hospital of Guangxi Medical University between January 2020 and

June 2023 were included in this retrospective study. The patients were randomly

divided into a training cohort (n=169) and a test cohort (n=73). We collected 28

clinical features from the patients. Concurrently, 306 radiomics features were

extracted from the ultrasound images of the patients’ tumors. Initially, a clinical

model was constructed using the logistic regression algorithm. Subsequently,

radiomics models were built using SVM, random forest, XGBoost, and KNN

algorithms. Finally, we combined clinical features with a new feature RAD prob

calculated by applying radiomics model to construct a fusion model, and

developed a nomogram based on the fusion model.

Results: The performance of the fusion model surpassed that of both the clinical

and radiomics models. In the training cohort, the fusion model achieved an AUC

of 0.978 (95% CI: 0.96–0.99) during 5-fold cross-validation and an AUC of 0.925

(95% CI: 0.86–0.98) in the test cohort. Calibration curve and decision curve

analyses demonstrated that the nomogram constructed from the fusion model

has high accuracy and clinical utility.

Conclusion: The fusion model containing clinical and ultrasound radiomics

features showed excellent performance in predicting the benign or malignant

nature of pancreatic tumors.
KEYWORDS

pancreatic tumors, malignant, clinical features, radiomics features, machine learning,
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1 Introduction

Pancreatic cancer is one of the major causes of cancer related

deaths in developed countries and one of the most lethal malignant

tumors in the world (1). Currently, pancreatic cancer has surpassed

breast cancer to become the third leading cause of cancer-related

deaths in the United States, and it is projected to become the second

leading cause, after only lung cancer, of cancer-related mortality

before 2040 (2, 3). The high mortality rate of pancreatic cancer

primarily stems from the fact that patients are often diagnosed at a

late stage of the disease, missing the optimal window for effective

treatment (4). This situation is compounded by the lack of a single

attributable risk factor for pancreatic cancer and the pancreas’

anatomically difficult-to-access location, which impedes routine

disease screening. Additionally, early-stage pancreatic cancer

typically presents with no symptoms or with nonspecific

symptoms, and the absence of diagnostic biomarkers for early-

stage tumors further limits early detection (5). The incidence of

pancreatic cancer is rising due to a variety of factors, including the

obesity epidemic and increased life expectancy (2, 6). The

development of new diagnostic strategies is crucial for enhancing

treatment decision-making and assessing patient prognosis.

In recent years, with the continual development of artificial

intelligence technologies, an increasing number of researchers have

begun to explore their application in the diagnosis of pancreatic

cancer. At present, the application of artificial intelligence

technologies in the genome and transcriptome analysis of

pancreatic cancer is relatively mature. For instance, Biao Zhang

and colleagues have developed a pancreatic cancer survival

prediction model using random forest algorithms and Cox

regression analysis, integrating single-cell and bulk RNA

sequencing (7). They have also employed eight different AI

algorithms to assess the immunological microenvironment

features of pancreatic cancer, providing new biomarkers for its

diagnosis and treatment (8). However, there is still a shortage of

studies on the AI-assisted diagnosis of pancreatic cancer based on

clinical and radiological features. Currently, some researchers have

used deep learning techniques to analyze pancreatic CT images and

have successfully identified pancreatic cancer lesions (9). Other

researchers have also utilized clinical variables to construct

mathematical models and scoring systems for assessing the risk of

pancreatic cancer (10). These methods have shown varying degrees

of effectiveness in clinical trials. However, the use of only clinical

features or radiomics alone has been found to be insufficient for

reliable differential diagnosis (11–14). The development of

mathematical models and scoring systems that combine clinical

and radiomics features could improve diagnostic accuracy (15). Yu

Hu and colleagues developed a model that integrates clinical risk

factors and ultrasound features for predicting the malignancy of soft

tissue tumors in the limbs (16). Amogh and colleagues applied deep

learning to combine clinical variables with MRI data to construct a

classification model for prostate cancer (17). These models have

achieved high diagnostic performance, indicating that the

synergistic use of clinical and radiomics features in model

construction can enhance the diagnostic capabilities of the models.
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This study aimed to integrate clinical and ultrasound radiomics

features of pancreatic tumor patients to construct a fusion model

that can accurately predict the benign or malignant nature of

pancreatic tumors.
2 Materials and methods

2.1 Patient enrollment

The ethics review board of The First Affiliated Hospital of Guangxi

Medical University approved this retrospective study and waived the

requirement for written informed consent. The inclusion criteria for

patients were as follows: diagnosed with either benign or malignant

pancreatic tumors via pathological examination and treated at the First

Affiliated Hospital of Guangxi Medical University from January 2020

to June 2023. The exclusion criteria for patients were as follows: (1) had

received any antitumor treatment prior to laboratory tests or

ultrasonography. (2) Patients with malignant tumors in other parts

of the body. (3) Patients with recurrent pancreatic tumors. (4) Patients

with incomplete clinical or ultrasound data. A total of 242 eligible

patients were randomly divided into two cohorts at a 7:3 ratio: the

training cohort (n=169) and the test cohort (n=73).
2.2 Clinical data collection

All patients’ clinical data, ultrasound images, and pathological

examination results were sourced from the hospital’s Health

Information System (HIS). The clinical data included general patient

information, clinical signs, and laboratory test results. General

information included sex, age, and body mass index (BMI). Clinical

signs included abdominal pain, jaundice, tumor location, tumor

diameter, and tumor subtype. The laboratory test results included

blood type, blood sugar, total bilirubin, low-density lipoprotein

cholesterol, apolipoprotein B, CA125, CA199, and other parameters.

During data preprocessing, features with more than 10% missing

values were discarded. For continuous numerical variables, missing

values were imputed using the median. For categorical variables, the

mode was employed to fill in missing values. Continuous variables such

as BMI, CA125 and CA199 were converted into categorical variables

according to the criteria of the WHO classification. Ultimately, a

complete set of 28 clinical features was obtained.
2.3 Radiomics feature collection

All the procedures were performed according to the Image

Biomarker Standardization Initiative (IBSI) standards. Ultrasound

images were acquired by Olympus or Fuji ultrasonic equipment

with linear probes of 5.0–7.5 MHz and saved in DICOM format for

further analysis. Echo texture analysis of the ultrasound images was

conducted using a computer program specifically designed for

ultrasound image analysis (MaZda v4.6; Institute of Electronics,

Technical University of Lodz, Poland) (18).
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Endoscopic ultrasonography was performed on patients by

gastroenterologists with 10 years of experience, and 1 image

containing the tumor was collected for each patient for feature

extraction. The ultrasound grayscale images were imported into

MaZda software, where a physician with ten years of experience

delineated the region of interest (ROI) encompassing the tumor on

the images. Subsequently, MaZda software was used to extract the

features of the ROIs. Then, to measure interobserver

reproducibility, a total of 100 images were randomly selected to

be re-segmented by a senior radiologist with 20 years of experience.

An interclass correlation coefficient (ICC)>0.75 indicates high

feature stability. Discrepancies were resolved through

consultation. The radiologists were unaware of the specific

histopathological type when delineating the ROI.

A total of 306 features were extracted and categorized into seven

major types: (1) first-order statistics; (2) shape-based; (3) gray level

co-occurrence matrix (GLCM); (4) gray level run length matrix

(GLRLM); (5) gray level size zone matrix (GLSZM); (6) neighboring

gray tone difference matrix (NGTDM); (7) gray level dependence

matrix (GLDM). Feature preprocessing included handling outliers

through log transformation and normalization using min–max

scaling. Following these steps, we obtained a radiomics feature

dataset for subsequent analysis from 242 patients. The process of

radiomics feature extraction and modeling is illustrated in Figure 1.
2.4 Model establishment

Clinical Model: We utilized 28 candidate clinical features to

construct the clinical model. In the training cohort, both univariate

and multivariate logistic regression analyses were employed to

compare the differences in clinical features between patients with

benign and malignant pancreatic tumors. Features with significant

differences (p < 0.05) were selected to establish the clinical model.

Radiomics Model: For the radiomics model, 306 candidate

radiomics features were used. In the training cohort, four

machine learning algorithms—support vector machine (SVM),
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random forest, XGBoost, and K-nearest neighbors (KNN) —were

utilized to construct classification models, and the best-performing

model was chosen as the radiomics model.

Fusion Model: We calculated the probability of each patient

developing a malignant pancreatic tumor using the radiomics

model, and named this probability the RDA-prob. A fusion

model was constructed through multivariate logistic regression

analysis by combining RDA-prob data with clinical data. Based

on the fusion model, a nomogram was developed. The process of

model construction is illustrated in Figure 2.
2.5 Statistical analysis

Statistical analysis was performed using Python software

(version 3.12), R software (version 4.0.2), and SPSS software

(version 26.0). For binary categorical variables, the chi-square test

was utilized; for continuous variables, comparisons between the two

groups were performed using the independent samples t-test or the

Wilcoxon rank sum test, depending on the data distribution. A two-

tailed P-value < 0.05 was considered to indicate statistical

significance. The performance metrics for the models included

accuracy, precision, recall, F1 score, and area under the curve

(AUC) value, along with the generation of ROC curves. The

model’s performance was evaluated on the training cohort using

5-fold cross-validation and was also calculated on the test cohort.

The performance of the nomogram was assessed through

calibration curves and decision curves.
3 Results

3.1 Study population and
baseline characteristics

A total of 242 patients with pancreatic tumors were randomly

divided at a 7:3 ratio into a training cohort (n = 169) and a test
FIGURE 1

Extraction and modeling of radiomics features.
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cohort (n = 73). There were no statistically significant differences in

basic clinical characteristics, such as sex, age, BMI, abdominal pain,

jaundice, tumor diameter, or tumor classification (P > 0.05),

between the training and test cohorts. The basic clinical

characteristics of the patients are shown in Table 1.
3.2 Clinical model construction
and evaluation

In the training cohort, univariate and multivariate logistic

regression analyses were conducted on 28 clinical features,

revealing that age, abdominal pain, CEA, CA125, CA199, and

HbA1c were significant independent predictors. Therefore, these

factors were used to construct the classification model. Although

the P-value for tumor diameter was slightly above 0.05 (0.058), it

was still close to the level of significance. Given its clinical
Frontiers in Endocrinology 04
importance, tumor diameter was also included as a feature in the

clinical model. The clinical model achieved an AUC of 0.892 (95%

CI: 0.85–0.94) in 5-fold cross-validation. In the test cohort, the

AUC was 0.882 (95% CI: 0.74–0.95). The results of univariate and

multivariate logistic regression analyses in the training cohort are

shown in Table 2. The detailed results of the clinical model’s

performance are presented in Table 3. The ROC curve is

illustrated in Figure 3A.
3.3 Radiomics model construction
and evaluation

In the training cohort, classification models were constructed using

306 radiomics features with four different algorithms: SVM, random

forest, XGBoost, and KNN. The performance of the model constructed

using these four algorithms is shown in Table 4. Among them, the

model built using the KNN algorithm performed the best and is

identified as the radiomics model. The radiomics model achieved an

AUC of 0.854 (95% CI: 0.78–0.92) in 5-fold cross-validation (5-CV),

and an AUC of 0.739 (95% CI: 0.61–0.87) in the test cohort. The ROC

curve for the radiomics model is illustrated in Figure 3B. The top 20

primary features of the radiomics model are shown in Figure 3D.
3.4 Fusion model construction
and evaluation

The radiomics model was utilized to calculate the probability of

each patient developing a malignant pancreatic tumor, and these

probabilities were assigned to a new feature named the RDA-prob.

By combining the RDA-prob with clinical data in a multivariate

logistic regression analysis, four features were selected for

constructing the fusion model: age, RDA-prob, CA125, and

CA199. The fusion model achieved an AUC of 0.978 (95% CI:

0.96–0.99) in 5-fold cross-validation and an AUC of 0.925 (95% CI:

0.86–0.98) in the test cohort. The fusion model consistently

outperformed the other two models in both the five-fold cross-
TABLE 1 Baseline clinical information of patients.

Variable Training
cohort
(n=169)

Test
cohort
(n=73)

P-Value

Male/female 91/78 42/31 0.709

Age 56.84 ± 13.40 58.12 ± 11.67 0.454

BMI 21.90 ± 3.57 21.97 ± 3.06 0.879

abdominal pain 126 53 0.751

Jaundice 35 14 0.785

Pancreatic head 104 47 0.675

Pancreatic body 40 15 0.595

Pancreas tail 34 14 0.866

Tumor diameter 4.04 ± 2.04 3.59 ± 1.72 0.081

Malignant tumor 117 52 0.755

Benign tumor 52 21 0.755
FIGURE 2

Flowchart of the Model Construction Process.
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validation and the test cohort, demonstrating its robustness and

generalizability. The detailed results of the performance of the

fusion model are provided in Table 3. The ROC curve for the

fusion model is shown in Figure 3C.
3.5 Nomogram

A nomogram was constructed based on the variables selected by

the fusion model (Figure 4A). This nomogram provides a visual

method for measuring the results of the fusion model, allowing for

the rapid calculation of predictive probabilities for individual patients.

To use the nomogram, one must first determine the position of each

variable on its respective axis and then draw a line to the points axis to

obtain the score for that variable. The scores for all variables are

summed to obtain a total score, which is then located on the total

points axis. The probability corresponding to this total score is the

likelihood of the pancreatic tumor being malignant. Calibration

curves (Figures 4B, C) demonstrate that the nomogram has good

accuracy in both the training and test cohorts. The decision curve

(Figure 4D) indicates that the nomogram has high clinical utility.

4 Discussion

In our study, we discovered that age, abdominal pain, tumor

diameter, CA199, CEA, CA125, LPS, and HbA1c are independent

predictors of malignant pancreatic tumors. These findings align with

those of other studies (19–25). Several studies have shown a positive

correlation between age, abdominal pain, tumor diameter and the

probability of predicting malignant pancreatic tumors (19, 20). CA199

is the only serum biomarker for pancreatic cancer recommended in the

European Oncology Guidelines, yet its sensitivity and specificity are

approximately 80%, indicating limited diagnostic performance (21).

Like CA199, CA125 is a high-molecular-weight glycoprotein that is
TABLE 2 Results of the logistic regression analysis in the
Training cohort.

Feature

Univariate
analysis

OR
(95%CI)

p-value
Multivariate
analysis OR
(95%CI)

p-value

Sex
0.89

[1.47, 3.89] 0.738 – –

Age
1.11

[0.00, 0.05] 0.000 1.12 [1.08, 1.17] 0.000

BMI
0.91

[0.83, 1.00] 0.046 0.95 [0.84, 1.06] 0.353

Abdominal
pain

4.42
[2.12, 9.21] 0.000 4.32 [1.61, 11.59] 0.004

Jaundice
2.02

[1.38, 2.83] 0.126 – –

Pancreatic
head

1.12
[1.25, 3.52] 0.732 – –

Pancreatic
body

1.45
[1.43, 2.99] 0.367 – –

Pancreas tail
0.77

[1.64, 3.44] 0.523 – –

Tumor
diameter

1.26
[0.43, 1.98] 0.016 1.24 [0.99, 1.55] 0.058

Blood type A 1.01
[0.49, 2.08] 0.977 – –

Blood type B 1.20
[0.53, 2.71] 0.661 – –

Blood
type AB – 1.000 – –

Blood
type O

0.63
[0.32, 1.23] 0.176 – –

D-II 1.96
[0.43, 4.45] 0.109 – –

HbA1c 3.07
[0.86, 6.24] 0.002 3.44 [1.22, 9.68] 0.02

BS 1.28
[0.61, 2.69] 0.514 – –

T-BIL 1.89
0.92, 3.86] 0.081 – –

D-BIL 2.32
[1.12, 4.79] 0.023 2.51 [0.52, 12.14] 0.25

ALP 2.17
[1.06, 4.43] 0.033 0.36 [0.07, 1.76] 0.21

T-CHO 1.08
[0.51, 2.29] 0.838 – –

TG 0.93
[0.45, 1.92] 0.841 – –

LDL-C 0.80
[0.40, 1.59] 0.531 – –

apoB 0.82
[0.38, 1.76] 0.602 – –

(Continued)
TABLE 2 Continued

Feature

Univariate
analysis

OR
(95%CI)

p-value
Multivariate
analysis OR
(95%CI)

p-value

LPS 1.34
[0.61, 2.94] 0.459 – –

AMS 0.64
[0.21, 1.90] 0.420 – –

CEA 11.36
[3.35, 38.58] 0.000 4.99 [1.17, 21.28] 0.03

CA125 12.63
[4.28, 37.29] 0.000

10.31
[2.73, 38.91] 0.00

CA199 10.81
[4.93, 23.68] 0.000

12.91
[4.84, 34.41] 0.00
fro
BMI, body mass index; D-II, D-Dimer; HbA1c, Glycated hemoglobin A1c; BS, Blood Sugar; T-
BIL, Total Bilirubin; D-BIL, Direct Bilirubin; ALP, Alkaline Phosphatase; T-CHO, Total
Cholesterol; TG, Triglycerides; LDL-C, Low-density lipoprotein cholesterol; apoB,
Apolipoprotein B; LPS, Lipopolysaccharide; AMS, Amylase; CEA, Carcinoembryonic
Antigen; CA125, Carbohydrate Antigen 125; CA199, Carbohydrate Antigen 19–9.
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currently primarily used as an auxiliary diagnostic tool for ovarian

cancer (22). Several studies have shown a positive correlation between

age, abdominal pain, tumor diameter, and the probability of predicting

malignant pancreatic tumors (23). CEA, LPS, and HbA1c have also

been confirmed by multiple studies to be associated with pancreatic

cancer (24, 25). The results of our study support these findings, and

based on the identified independent predictors, we constructed a

clinical classification model. This model demonstrated good

classification performance and exhibited robustness in both the

training cohort and the test cohort.

Subsequently, our study analyzed endoscopic ultrasound

images of patients with pancreatic tumors. Radiographic images

can provide quantitative and reproducible texture information (26),

and by extracting and quantifying texture features within images,

significant reference information can be provided for the diagnosis,

treatment, and prognosis, with the potential to enhance the

diagnostic performance of models. Recently, several papers have

been published by scholars on the application of image texture

features in patients with pancreatic lesions. Zixing Huang and

colleagues compared CT image texture features of patients with
B C

D

A

FIGURE 3

(A) ROC curve for the clinical model; (B) ROC curve for the radiomics model; (C) ROC curve for the fusion model; (D) Top 20 primary features in the
radiomics model.
TABLE 3 Performance of the clinical model, radiomics model, and
fusion model.

Accuracy Precision Recall F1
Score

AUC

5-CV

clinical
model 0.834 0.868 0.897 0.882 0.892

Radiomics
model 0.811 0.824 0.923 0.871 0.854

Fusions
model 0.917 0.940 0.940 0.940 0.978

Test cohort

clinical
model 0.849 0.918 0.865 0.891 0.882

Radiomics
model 0.699 0.759 0.846 0.800 0.739

Fusions
model 0.863 0.904 0.904 0.904 0.925
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pancreatic lymphoma and pancreatic adenocarcinoma and

identified 60 texture features with significant differences (27).

Xudong Li and others analyzed MRI images of 119 pancreatic

tumor patients and found four texture features that could provide

information for tumor differentiation (28). These research results

offer promise for the development of new radiological biomarkers.

In our study, we extracted 306 radiomics features from

endoscopic ultrasound images of pancreatic tumors and

constructed radiomic classification models using four different
Frontiers in Endocrinology 07
machine learning algorithms to compare their performance. The

results showed that the model based on the KNN algorithm

performed optimally, hence it was chosen as the primary

radiomic model. Given the difficulty in interpreting the

association between individual ultrasound radiomics features and

potential pathological characteristics, we adopted the research

methodologies of Fei Yao (29) and Weichen Zhang (30),

integrating multiple ultrasonic radiomics features into a multi-

element parameter, RAD-prob, to simplify the complexity of

multi-feature analysis. The radiomics features used to construct

RAD-prob range from basic morphological characteristics to

advanced texture features, revealing the variability, heterogeneity,

and inconsistency of the lesions. For instance, Gray Level Co-

occurrence Matrix (GLCM) features such as S(1,1) Correlat and S

(5,5) Correlat demonstrate the correlation between pixels in

different directions; wavelet transform energy features like

WavEnLH_s-2 and WavEnHH_s-2 reveal high-frequency textures

and edge details of the image; first-order statistical features such as

Area and Kurtosis describe the size of the image region and the peak

characteristics of the gray level distribution; and inverse difference

moment features like 0,2) InvDfMom indicate the uniformity and

local similarity of the image texture. These comprehensive feature

analyses not only exhibit the physical and geometrical attributes of

pancreatic cancer but also highlight key biological markers in the

ultrasound images, providing valuable insights into the structure

and tissue characteristics of the lesion area, thereby supporting

clinical diagnosis and treatment decisions.

To date, no single radiological or laboratory test has been able to

reliably distinguish between malignant and nonmalignant

pancreatic tumors (31). The preliminary diagnosis of pancreatic
B C D

A

FIGURE 4

(A) The nomogram; (B) Calibration curve analysis of the nomogram in the training cohort; (C) Calibration curve analysis of the nomogram in the test
cohort; (D) Decision curve analysis of the nomogram.
TABLE 4 Performance of radiation models constructed by
different algorithms.

Accuracy Precision Recall F1
Score

AUC

5-CV

SVM 0.740 0.759 0.923 0.831 0.780

Random
Forest

0.734 0.776 0.873 0.819 0.780

XGBoost 0.752 0.801 0.855 0.827 0.798

KNN 0.811 0.824 0.923 0.871 0.854

Test cohort

SVM 0.753 0.793 0.885 0.836 0.639

Random
Forest

0.671 0.769 0.769 0.769 0.620

XGBoost 0.644 0.750 0.750 0.750 0.601

KNN 0.699 0.759 0.846 0.800 0.739
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tumors depends on a comprehensive analysis of clinical features,

laboratory tests, and radiological examinations rather than a single

parameter (32). Traditional diagnostic methods, which rely on

doctors interpreting test reports, are limited by the individual

experiences of the doctors, potentially leading to inconsistent

diagnoses (33). Artificial intelligence-based diagnostic models can

objectively assist in diagnosis by utilizing a variety of different

parameters (33, 34). Qian Lu and colleagues developed a

multimodal model that integrated CT features and clinical

characteristics, which performed better in predicting lymph node

metastasis in pancreatic cancer than single-modality models (35).

Wenjie Liang and colleagues developed and validated a nomogram

model that combines radiomics features and clinical characteristics

and showed excellent performance in differentiating the

pathological grade of pancreatic neuroendocrine tumors (36). In

our study, we also constructed a classification model that integrates

clinical and radiomics features. We first used the radiomics model

to calculate a new radiomics feature named RAD-prob and then

combined the RAD-prob with clinical features to construct a fusion

model through logistic regression. The performance of the fusion

model surpassed that of both the clinical and radiomics models. In

the training cohort, the combined model achieved an AUC of 0.978

(95% CI: 0.96–0.999) during 5-fold cross-validation. In the test

cohort, the AUC was 0.925 (95% CI: 0.86–0.98).

Our fusion model offers a promising tool to assist doctors in

making diagnostic decisions. To facilitate the clinical application of

the model, we developed a nomogram based on the model

parameters. This nomogram can quickly calculate predictive

probabilities for individual patients, which may lead to its

widespread use. Although the model developed in this study

achieved good predictive results, there is still room for further

optimization. In the future, methods such as ensemble learning and

deep learning could be employed to further enhance the model’s

predictive performance. Additionally, validation with multicenter

data is needed to assess the model’s performance in real-

world settings.
5 Conclusion

In summary, this study constructed three pancreatic tumor

classification models using clinical and ultrasound radiomics

features, each capable of differentiating between benign and

malignant pancreatic tumors. The fusion model, which includes

both clinical and ultrasound radiomics features, demonstrated

exceptional performance in predicting the benign or malignant

nature of pancreatic tumors. The nomogram of the fusion model, as

a visual and personalized tool, can assist doctors in accurately

identifying the type of pancreatic tumor.
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