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Serbia
Dirk-Jan Van Beek,
University Medical Center Utrecht,
Netherlands

*CORRESPONDENCE

Shanyu Qin

qinshanyu@gxmu.edu.cn

Haixing Jiang

gxjianghx@163.com

†These authors share first authorship

RECEIVED 08 February 2024
ACCEPTED 05 June 2024

PUBLISHED 17 June 2024

CITATION

Mo S, Huang C, Wang Y, Zhao H, Wu W,
Jiang H and Qin S (2024) Endoscopic
ultrasonography-based intratumoral and
peritumoral machine learning radiomics
analyses for distinguishing insulinomas from
non-functional pancreatic
neuroendocrine tumors.
Front. Endocrinol. 15:1383814.
doi: 10.3389/fendo.2024.1383814

COPYRIGHT

© 2024 Mo, Huang, Wang, Zhao, Wu, Jiang
and Qin. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 June 2024

DOI 10.3389/fendo.2024.1383814
Endoscopic ultrasonography-
based intratumoral and
peritumoral machine learning
radiomics analyses for
distinguishing insulinomas from
non-functional pancreatic
neuroendocrine tumors
Shuangyang Mo1,2†, Cheng Huang3†, Yingwei Wang1†,
Huaying Zhao1†, Wenhong Wu1, Haixing Jiang2*

and Shanyu Qin2*

1Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University,
Liuzhou, China, 2Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical
University, Nanning, China, 3Oncology Department, Liuzhou People’s Hospital Affiliated to Guangxi
Medical University, Liuzhou, China
Objectives: To develop and validate radiomics models utilizing endoscopic

ultrasonography (EUS) images to distinguish insulinomas from non-functional

pancreatic neuroendocrine tumors (NF-PNETs).

Methods: A total of 106 patients, comprising 61 with insulinomas and 45 with NF-

PNETs, were included in this study. The patients were randomly assigned to

either the training or test cohort. Radiomics features were extracted from both

the intratumoral and peritumoral regions, respectively. Six machine learning

algorithms were utilized to train intratumoral prediction models, using only the

nonzero coefficient features. The researchers identified the most effective

intratumoral radiomics model and subsequently employed it to develop

peritumoral and combined radiomics models. Finally, a predictive nomogram

for insulinomas was constructed and assessed.

Results: A total of 107 radiomics features were extracted based on EUS, and only

features with nonzero coefficients were retained. Among the six intratumoral

radiomics models, the light gradient boosting machine (LightGBM) model

demonstrated superior performance. Furthermore, a peritumoral radiomics

model was established and evaluated. The combined model, integrating both

the intratumoral and peritumoral radiomics features, exhibited a comparable

performance in the training cohort (AUC=0.876) and achieved the highest

accuracy in predicting outcomes in the test cohorts (AUC=0.835). The Delong

test, calibration curves, and decision curve analysis (DCA) were employed to

validate these findings. Insulinomas exhibited a significantly smaller diameter

compared to NF-PNETs. Finally, the nomogram, incorporating diameter and

radiomics signature, was constructed and assessed, which owned superior

performance in both the training (AUC=0.929) and test (AUC=0.913) cohorts.
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Conclusion: A novel and impactful radiomics model and nomogram were

developed and validated for the accurate differentiation of NF-PNETs and

insulinomas utilizing EUS images.
KEYWORDS
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Introduction

Pancreatic neuroendocrine tumors (PNETs) are rare tumors

that originate from neuroendocrine cells in the pancreatic islet

tissues, accounting for approximately 1-3% of all pancreatic

neoplasms (1, 2). They present an extreme degree of

heterogeneity in clinic pathological characteristics and prognosis

(3, 4) and are broadly classified as functional PNETs (F-PNETs)

and non-functional PNETs (NF-PNETs) depending on whether the

evidence of hormone-producing (5, 6). Compared to NF-PNETs, F-

PNETs have the capability to secrete various hormones or peptides

such as insulin, gastrin, vasoactive intestinal peptide (VIP),

glucagon, and somatostatin, resulting in distinct symptoms.

Among these, insulinomas are the most prevalent subtype of F-

PNETs, causing recurrent hypoglycemia as a consequence of

persistent endogenous hyperinsulinism (7, 8). Patients with

insulinomas often face challenges in diagnosis, as the diverse

clinical presentations, nonspecific biochemical tests, and lack of a

specific clinical diagnostic model can lead to misdiagnosis for

prolonged periods (9–12). Additionally, distinguishing insulinoma

from NF-PNETs in the early stages presents a further diagnostic

challenge (13).

PNETs exhibit a wide range of biological behaviors, from low-

grade malignancy to highly aggressive tumors (14). NF-PNETs,

which are the predominant type of PNETs, often remain

asymptomatic for extended periods and have been associated with

worse prognoses compared to F-PNETs (15, 16). Presently, there is

a lack of consensus and controversy regarding the most effective

treatment approach for both NF-PNETs and insulinomas.

However, guidelines from the European Neuroendocrine Tumor

Society and the National Comprehensive Cancer Network suggest

that asymptomatic NF-PNETs measuring less than 2cm may be

safely observed without active surgical intervention (17, 18). In

contrast, current guidelines generally advocate for surgical

intervention in the case of insulinomas, while somatostatin

analogs are increasingly being utilized for the treatment of well-

differentiated, low-grade F-PNETs (19, 20). Consequently, the

timely and precise diagnosis and prognostication of both NF-

PNETs and insulinomas are of paramount importance in guiding

treatment strategies.

The prevalence of PNETs has been on the rise in recent years,

primarily attributed to the progress and utilization of diverse
02
imaging techniques and modalities, including multidetector

computerized tomography (MDCT), magnetic resonance imaging

(MRI), and endoscopic ultrasonography (EUS) (21–24). The

identification and classification of NF-PNETs and F-PNETs

before surgery present a significant challenge, primarily relying on

hormonal symptoms. While F-PNETs can secrete hormones, some

patients may exhibit rare or mild endocrine symptoms before

metastasis (25, 26). We propose that using imaging modalities

could facilitate the identification of NF-PNETs and insulinomas,

thereby aiding in therapeutic decision-making. However, the

effectiveness of imaging modalities in improving the predictive

accuracy of NF-PNETs and insulinomas remains unreported

and unvalidated.

EUS is extensively utilized in diagnosing PNETs and is widely

acknowledged as one of the most precise imaging modalities for

pancreatic diseases owing to its capacity to generate high-resolution

images of pancreatic lesions (27). Moreover, EUS is considered the

preferred imaging modality in cases where alternative non-invasive

imaging techniques yield negative results, as recommended by the

consensus guidelines of the European Neuroendocrine Tumor

Society (ENETS) in 2023 (12). The EUS method has been found to

exhibit greater efficacy in detecting PNETs than CT and MRI,

particularly in the case of small lesions (28). However, the current

differentiation of pancreatic masses using EUS primarily relies on

macroscopic anatomical imaging characteristics, leading to

insufficient specificity and susceptibility to subjective interpretation

by endoscopists.

Integrating radiomics and machine learning strategies has

shown promising results in the differential diagnosis and

prognosis prediction of various cancers (29). Radiomics facilitates

extracting and analyzing numerous objective and internal image

features using high-throughput techniques (30). Previous studies

have successfully applied radiomics techniques to CT, MRI, and

ultrasonography (US) for the diagnosis and prognostication of

PNETs, highlighting their exceptional efficiency (31–33).

Furthermore, previous studies have provided evidence to support

a strong correlation between the radiomics features of the

peritumoral region and various tumor-related factors, including

diagnostic accuracy, pathological characteristics, and prognostic

indicators (34–36).

However, the efficacy of radiomics approaches based on EUS in

differentiating insulinomas from NF-PNETs is still uncertain,
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despite the recognition of EUS as a superior imaging technique.

Given existing knowledge, we employed various commonly used

machine learning algorithms to develop and verify a robust

radiomics model utilizing intratumoral and peritumoral

radiomics characteristics, to accurately distinguish insulinomas

from NF-PNETs.
Materials and methods

Study population

This retrospective study obtained approval from the

institutional ethics review board of the First Affiliated Hospital of

Guangxi Medical University (No. 2023-K346-01, 2023-12-29),

which granted a waiver for patient approval or signed informed

consent for the review of medical images and clinical information.

A total of 106 patients diagnosed with pancreatic tumors were

selected for this research, comprising 61 patients with F-PNETs (all

of which were insulinomas) and 45 patients with NF-PNETs who

underwent pancreatic surgery or EUS-FNA at our institution from

May 2012 to October 2023. The inclusion and exclusion criteria are

delineated as follows.

The patients included in the study met the following criteria (1):

they underwent a thorough preoperative contrast-enhanced CT and

EUS scan of the pancreas (2); they were confirmed with either

insulinomas or NF-PNET based on pathological examination and

immunohistochemistry of tissue samples following surgical

resection or EUS-FNA (3); complete and clear EUS images were

available before the patient’s preoperative or pathological biopsies;
Frontiers in Endocrinology 03
and (4) patients who had not received any chemotherapy or

radiotherapy before undergoing EUS. The patients excluded from

the study met the following criteria (1): inability to display the entire

lesion (2); significant motion artifacts or noticeable noise in the

images; and (3) the presence of other types of tumors. The patients

who were registered were randomly assigned to either a training

cohort or a test cohort, with a ratio of 7:3.

The process of enrolling the study population is illustrated in

Figure 1. This study involved a retrospective analysis of various

clinical features, including age, gender, location of the pancreatic

mass, echo characteristics, uniformity of the echo, maximum

diameter, shape, margin characteristics, the presence of

calcifications or cystic degeneration, and pathological diagnosis.

Finally, any features that showed significant differences between

patients with insulinomas and NF-PNETs were retained for the

further construction of the nomogram.
EUS image acquisition

The standard dynamic EUS procedure utilized the SU-9000 device

(FUJIFILM, Japan) and the EU-ME2 device (Olympus, Japan). All

electrocautery unit (ESU) image acquisition procedures were

consistently performed by a highly experienced EUS specialist with a

track record of over 12000 EUS practices. Meticulous scanning of the

entire pancreatic region resulted in high-quality images of the pancreatic

lesions. These images were consistently standardized with a window

width of 250Hounsfield units (HU) and a window level of 125HU. The

imaging records were obtained by retrieving data from our institutional

Picture Archiving and Communication System (PACS).
FIGURE 1

Flowchart for enrolling the study population.
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ROI delineation

The images were stored in the Digital Imaging and

Communications in Medicine (DICOM) format. Two specialists in

EUS, each with 4 and 6 years of experience, manually segmented the

intratumoral region of interest (ROI) using ITK-SNAP software

(version 3.8.1, available at http://www.itksnap.org). In cases where

conflicts arose between the two specialists, a dialog and consensus

approach were employed. Both specialists were unaware of the

pathological outcomes. The lesions were captured layer by layer

along the margins on conventional EUS images, excluding adjacent

normal tissue, vessels, bile ducts, and pancreatic ducts. The acquisition

of the peritumoral ROI was achieved by employing a conventional

morphological dilation technique using the ITK-SNAP software. This

process involved expanding the delineation of the intratumoral ROI

by 3 mm. Subsequently, three distinct ROI images were selected for

each EUS image, namely an intratumoral ROI, a peritumoral ROI, and

a combined ROI encompassing both the intratumoral and

peritumoral ROIs. A comprehensive illustration depicting the

procedure for acquiring the ROIs is presented in Figure 2.

Standardization techniques were implemented to preprocess

the images and data, ensuring the reproducibility of the findings.

The intraclass correlation coefficient (ICC) was employed to

evaluate the replicability between observers and within observers.

A cohort of 30 patients, consisting of 20 individuals with

insulinomas and 10 with NF-PNETs, was randomly selected for

inclusion. Following a one-week interval, the same EUS specialists

conducted intratumoral ROI segmentation again. A threshold of an

ICC value greater than 0.8 was established to indicate a significant

level of agreement.
Frontiers in Endocrinology 04
Radiomics feature extraction

The categorization of handcrafted features can be delineated

into three discrete groups, namely geometric, intensity, and textural.

Geometric features are concerned with the three-dimensional

morphological characteristics of tumors. Intensity features

encompass the statistical dispersion of voxel intensities within the

tumor in the first order. Conversely, textural features elucidate

patterns and higher-order spatial distributions of intensities. This

article utilized multiple methodologies, including the gray level co-

occurrence matrix (GLCM), gray level run length matrix (GLRLM),

gray level size zone matrix (GLSZM), and neighborhood gray-level

difference matrix (NGTDM), to extract texture features. The

extraction of radiomics features from the intratumoral and

peritumoral regions of interest (ROIs) was conducted separately.

The extraction and screening of radiomics features were performed

using PyRadiomics, an internal feature analysis program, which

facilitated the extraction of all handcrafted features. Additionally,

the radiomics features of the combined ROIs were obtained by

integrating the features extracted from both the intratumoral and

peritumoral ROIs. The processes of extracting radiomics features

followed the Image Biomarker Standardization Initiative

(IBSI) (37).
Radiomics feature selection

A Mann-Whitney U test was performed to screen features in

both the training and test cohorts. Only radiomics features with a

significance level of p<0.05 were retained for further analysis.
FIGURE 2

Comprehensive graph of the intratumoral and peritumoral ROIs. The red region indicates the “intratumoral ROI”; the green region indicates the
“peritumoral ROI”. ROI, region of interest.
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Spearman’s rank correlation coefficient was utilized to evaluate

the interrelationship between each feature, to ensure the reliability

of the features. Features with a correlation coefficient exceeding 0.9

between any two features were preserved. To enhance the feature

representation, a greedy recursive deletion approach was employed

to filter the features. This approach involved iteratively eliminating

the feature with the highest redundancy in the current set.

Subsequently, the least absolute shrinkage and selection operator

(LASSO) regression model was utilized to identify the features with

nonzero coefficients using the 10-fold cross-validation method. All

feature selection procedures were executed in the training cohort

and subsequently applied to the test cohort. The LASSO regression

modeling was conducted using the Python scikit-learn package.

Features exhibiting nonzero coefficients were retained for fitting

the regression model and amalgamated into a radiomics signature.

Each patient was then assigned a radiomics score by weighting them

with the linear combination of the retained features and their

corresponding model coefficients.
Construction of radiomics models

Various machine learning algorithms were utilized to develop

classification models for the optimal identification of insulinomas

and NF-PNETs. Following the application of LASSO feature filtering,

the selected intratumoral ROI radiomics features were inputted into

commonly employed machine learning models such as logistic

regression (LR), random forest (RF), extreme gradient boosting

(XGBoost), light gradient boosting machine (LightGBM), extra

tree, and multilayer perceptron (MLP) models to construct

intratumoral radiomics models. The diagnostic effectiveness of

various machine learning models was evaluated by assessing

metrics including the receiver operator characteristic curve (ROC),

area under the curve (AUC), accuracy, specificity, sensitivity, positive

predictive value (PPV), and negative predictive value (NPV).

Ultimately, the most optimal intratumoral radiomics model was

determined, and the selected machine learning algorithm, which

demonstrated satisfactory performance, was applied to establish

peritumoral and combined radiomics models.
Radiomics model assessment

An intratumoral radiomics model, peritumoral radiomics

model, and combined radiomics model were constructed using a

consistent machine learning algorithm. The diagnostic effectiveness

of these three radiomics models was assessed in both the training

and test cohorts through the construction of ROC curves.

Furthermore, a Delong test was employed to compare the

performance of these radiomics models in terms of the AUC.

The concordance between the predictions made by various

radiomics models and the observed outcomes was evaluated

utilizing calculating the calibration curve, which compared the

predictions of these models with the actual observations. The

calibration performance of these three radiomics models was

assessed through the construction of calibration curves, while the
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Hosmer-Lemeshow (H-L) analytical fit was employed to evaluate

the calibration ability of these radiomics models. Furthermore,

decision curve analysis (DCA) was utilized to assess the clinical

usefulness of these predictive models. Finally, the radiomics model

with the best performance was certified and defined as the

radiomics signature.
Nomogram establishment and assessment

Finally, A nomogram was developed in the training cohort to

assess the incremental predictive value of the integrated radiomics

signature alongside retained clinical features intuitively and

efficiently. Utilizing logistic regression analysis, the nomogram

was constructed by incorporating the radiomics signature with

the retained clinical features. The calibration curve was employed

to compare the consistency between the nomogram’s predictions

and actual observations. Calibration curves were constructed to

assess the calibration of the nomogram models using mean absolute

error and 1,000 bootstrap samples with the R CalibrationCurves

package. The DCA was employed to evaluate the net benefits of the

nomogram models at different high-risk thresholds. The predictive

accuracy of the nomogram model was further assessed using the

clinical impact curve (CIC). Finally, the performance of the

nomogram was determined by analyzing the ROC curves and

their corresponding AUC values.
Statistical analysis

The clinical parameters and radiomics features of the patients

were compared using appropriate statistical tests, namely the

independent sample t-test, Mann Whitney U test, or X2 test. A

threshold of a two-tailed p-value < 0.05 was established to

determine statistical significance. The prediction performance of

different models was evaluated using metrics such as AUC,

accuracy, sensitivity, specificity, PPV, and NPV. The AUC values

were compared between any two models using a Delong test to

assess their performance. The entire workflow for this study is

illustrated in Figure 3.
Results

Baseline population characteristics

In this retrospective study, a cohort of 106 patients (66 women,

40 men) was enrolled, with 74 patients in the training cohort and 32

patients in the test cohort. In the cohort of patients diagnosed with

insulinoma, 19 instances of pancreatic lesions were not identified

through contrast-enhanced CT imaging, resulting in a missed

diagnosis rate of 31.15% (19 out of 61 cases). Additionally, three

cases of NF-PNETs had undetected pancreatic lesions via contrast-

enhanced CT. Conversely, EUS successfully detected all pancreatic

lesions associated with insulinomas and NF-PNETs in

this investigation.
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The findings of baseline indicated that there were no significant

disparities observed in age, shape, margin characteristics, echo

characteristics, uniformity of echo, calcification, location of

masses, and the presence of cystic degeneration between patients

with insulinomas and NF-PNETs in both the training and test

cohorts. Nonetheless, it was noted that insulinomas exhibited a

significantly smaller diameter compared to NF-PNETs. The

findings suggest that insulinomas closely resemble NF-PNETs

and pose challenges in their classification based on macroscopic

features observed through EUS, except for diameter. Finally, the

diameter was the clinical feature that was ultimately preserved and

was utilized to construct the nomogram. Table 1 and

Supplementary Table 1 provide a comprehensive overview of the

clinical and radiological baseline characteristics.
Radiomics feature extraction and screening

We have successfully acquired a comprehensive collection of

seven categories and 107 radiomics features that were manually

derived. These features consist of 18 first-order features, 14 shape

features, and the remaining texture features. The specific definitions

for these handcrafted features have been previously documented in

articles (38). All the comprehensive series of intratumoral radiomics
Frontiers in Endocrinology 06
features (Figure 4A), peritumoral radiomics features (Figure 4B),

and combined radiomics features (Figure 4C), along with their

corresponding p values, are displayed in Figure 4. A total of four

intratumoral radiomics features with nonzero coefficients were

retained through the process of feature downsizing and LASSO

logistic regression. The coefficients and mean standard errors

(MSEs) resulting from the 10-fold validation are presented in

Figures 5A, B, while the retained intratumoral radiomics features

and their coefficients are displayed in Figure 5C. Similarly, six

peritumoral radiomics features (Figures 5D–F) and five combined

radiomics features (Figures 5G–I) with nonzero coefficients were

preserved and exhibited individually.
Intratumoral radiomics models
and performance

The ROC curves and AUCs of the six intratumoral radiomics

models, generated using the six widely used machine learning

algorithms, are depicted in Figures 6A, B for the training and test

cohorts. Moreover, comprehensive information can be found in

Table 2. Notably, the RF, ExtraTrees, and XGBoost models

exhibited a clear inclination toward overfitting. Additionally, it is

important to highlight that the AUCs of the LR and MLP models in
FIGURE 3

The workflow of this study.
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the test cohort surpassing those in the training cohort are both

inappropriate and lack objectivity. In contrast, the LightGBM

model demonstrated superior performance and exhibited stronger

consistency between the training (AUC=0.879, 95% CI 0.8019 -

0.9558) and test (AUC=0.750, 95% CI 0.5718 - 0.9282) cohorts.

Furthermore, in the training cohort, the LightGBM model

outperformed the LR and MLP models, establishing itself as the

most effective radiomics model. The LightGBM model

demonstrated an accuracy of 0.719, sensitivity of 0.722, specificity

of 0.714, PPV of 0.765, and NPV of 0.667 in the test cohort

(Table 2). Consequently, the LightGBM model was deemed the

most appropriate for subsequent analyses and was chosen as the

foundational model for constructing intratumoral, peritumoral, and
Frontiers in Endocrinology 07
combined radiomics models. The prediction accuracy of the

LightGBM model was further visualized through a confusion

matrix (Figures 6C, D).
Construction and assessment of the
peritumoral and combined
radiomics models

The performance of the peritumoral and combined radiomics

LightGBM models in predicting outcomes is presented in Table 2

for both the training and test cohorts. Figure 7 displays the ROC

curves for the intratumoral radiomics model, peritumoral radiomics
TABLE 1 Clinical and radiological characteristics in the training and test cohorts.

Variable Training cohort (N=74) Test cohort (N=32)

NF-PNETs Insulinomas P-value NF-PNETs Insulinomas P-value

Age 45.29 ± 13.23 43.86 ± 13.18 0.647 54.07 ± 10.90 52.78 ± 11.69 0.751

Maximum
diameter

33.88 ± 14.48 13.72 ± 5.04 <0.001 28.68 ± 10.92 13.74 ± 6.85 <0.001

Gender 1.000 0.002

0 18(58.06) 26(60.47) 5(35.71) 17(94.44)

1 13(41.94) 17(39.53) 9(64.29) 1(5.56)

Shape 0.609 0.216

0 12(38.71) 13(30.23) 6(42.86) 3(16.67)

1 19(61.29) 30(69.77) 8(57.14) 15(83.33)

Margin 0.648 0.819

0 4(12.90) 3(6.98) 2(14.29) 1(5.56)

1 27(87.10) 40(93.02) 12(85.71) 17(94.44)

Echo 0.163 1.000

0 2(6.45) 9(20.93) 2(14.29) 2(11.11)

1 29(93.55) 34(79.07) 12(85.71) 16(88.89)

Uniformity 0.105 0.267

0 21(67.74) 21(48.84) 6(42.86) 4(22.22)

1 10(32.26) 22(51.16) 8(57.14) 14(77.78)

Calcification 0.869 1.000

0 30(96.77) 43(100.00) 14(100.00) 18(100.00)

1 1(3.23) 0(0.00) 0(0.00) 0(0.00)

Cystic areas 0.086 1.000

0 26(83.87) 42(97.67) 14(100.00) 18(100.00)

1 5(16.13) 1(2.33) 0(0.00) 0(0.00)

Location 0.319 0.556

0 16(51.61) 16(37.21) 7(50.00) 6(33.33)

1 15(48.39) 27(62.79) 7(50.00) 12(66.67)
Gender: “0” means female, “1” means male; Shape: “0”means irregular shape, “1”means regular shape; Margin: “0” means unclear margin of lesion, “1” means clear margin of lesion; Echo: “0”
means means not hypoechoic of lesion, “1”means hypoechoic of lesion; uniformity: “0”means nonuniformity of echo; “1”means uniformity of echo; Calcification: “0”means no calcification, “1”
means calcification; Cystic areas: “0” means no cystic areas, “1” means cystic areas; Location: “0” means head and uncinate process of the pancreas, “1” means body and tail of the pancreas.
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model, and combined radiomics model in both the training

(Figure 7A) and test (Figure 7B) cohorts. Among the various

models examined, the combined radiomics model exhibited a

performance of AUC=0.876 (95% CI 0.7990 - 0.9527) in the

training cohort, which was consistent with both the intratumoral

and peritumoral models. However, it was observed that the

combined radiomics model achieved the highest level of

performance in the test cohort (AUC=0.835, 95% CI 0.6978 -

0.9729). Moreover, to objectively evaluate the efficacy of these

models, the Delong test was employed. In the training cohort, no

statistically significant difference in the AUC was observed among
Frontiers in Endocrinology 08
these three models (Figure 7C). Furthermore, the AUC of the

peritumoral radiomics model was found to be comparable to that

of the intratumoral radiomics model (peritumoral model vs.

intratumoral model: AUC=0.750 vs. 0.750, p=1.000) (Table 2,

Figure 7D) within the test cohort. This indicates that the

peritumoral model’s effectiveness is not inferior to that of the

intratumoral model. In contrast, the AUC of the combined model

demonstrated a statistically significant increase compared to that of

the intratumoral models in the test cohort (combined model vs.

intratumoral model: AUC=0.835 vs. 0.750, p=0.045) (Table 2,

Figure 7D). This finding suggests that incorporating both
A

B

C

FIGURE 4

Violin plot for differential analyses of intratumoral (A), peritumoral (B), and combined (C) radiomics features with their corresponding p values.
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intratumoral and peritumoral features may enhance diagnostic

effectiveness. Figure 8 displays the weight bars graph illustrating

the retained radiomics features in the intratumoral, peritumoral,

and combined radiomics models.

The calibration curves of the combined model exhibited

consistency between the predicted and observed insulinomas in

both the training and test cohorts. The results of the H-L test

demonstrated that all the intratumoral model, peritumoral model,

and combined model possessed superior predictive accuracy

(Table 3). The calibration curves for the training and test cohorts

are presented in Figures 9A, B, respectively.

Lastly, DCA was performed to evaluate the performance of each

model, and the findings are depicted in Figures 9C, D. The

combined model exhibited a remarkable net benefit for patient

intervention, as indicated by its prediction probability, in

comparison to hypothetical scenarios where no prediction model

was available, such as the treat-all or treat-none approaches.
Frontiers in Endocrinology 09
Additionally, the combined model consistently demonstrated

values similar to those of other models in both the training and

test cohorts. Consequently, these three radiomics models hold

promise in enhancing the clinical efficacy of predicting

insulinomas before pathological examination. The prediction

scores of the intratumoral, peritumoral, and combined models are

shown in Figure 10. Ultimately, the combined radiomics model was

validated as the radiomics signature and utilized in the creation of a

nomogram, based on its superior performance.
Nomogram construction and assessment

Additionally, a nomogram was developed using logistic

regression analysis of radiomics signature and diameter through

the R rms package (Figure 11A). Subsequently, a calibration curve

was employed to assess the predictive efficacy of the nomogram
A B

D E F

G IH

C

FIGURE 5

Radiomics feature selection with the LASSO regression model. (A) The LASSO model’s tuning parameter (l) was selected using 10-fold cross-
validation via the minimum criterion. The vertical lines illustrate the optimal value of the LASSO tuning parameter (l) for the intratumoral radiomics
features. (B) A LASSO coefficient profile plot with different log(l) values is displayed. The vertical dashed lines represent 9 intratumoral radiomics
features with nonzero coefficients selected with the optimal l value. (C) The bar graph of intratumoral radiomics features with their nonzero
coefficients. (D–F) The same workflow was used for peritumoral radiomics feature analysis. (G–I) The same workflow was used for the combined
radiomics features analysis. (“intra” means “intratumoral”; “peri3 mm” means “peritumoral region with dilation of 3 mm”).
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model. The calibration curve demonstrated minimal error between

the actual and predicted probabilities of insulinomas, with a mean

absolute error of 0.024, indicating the high accuracy of this

nomogram model in predicting insulinomas (Figure 11B). The

findings of the DCA demonstrated that the “Nomogram” curve

exhibited higher values compared to the “All” curve, “diameter”

curve, “Rad_Signature” curve, and “None” curve within the high-

risk threshold ranging from nearly 0 to 1.0 (Figure 11C). It

indicated that patients may experience a net benefit from utilizing

this nomogram model. Additionally, a CIC was constructed based

on the DCA curve to evaluate the clinical efficacy of the nomogram

model visually. The proximity of the”Number high risk” curve to

the “Number high risk with event” curve at a high-risk threshold

ranging from 0.2 to 1.0 suggests that this nomogram model exhibits

exceptional predictive capability (Figure 11D). These findings

further suggested that the diameter of pancreatic mass and

radiomics signature may significantly contribute to the prediction

of insulinomas.

ROC curves with AUC were utilized to assess the diagnostic

efficacy of this nomogram model in distinguishing insulinomas

from NF-PNETs based on the diameter of pancreatic mass and

radiomics signature. The analysis of ROC curves indicated AUC

values of 0.903 for diameter, 0.876 for radiomics signature, and
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0.929 (95% CI, 0.846–0.984) for the nomogram in the training

cohort (Figures 12A, B). Furthermore, the AUCs for the diameter

and nomogram were 0.901 and 0.913(95% CI, 0.794–0.992) in the

test cohort, respectively (Figures 12C, D).
Discussion

This study utilized EUS-based radiomics features obtained from

intratumoral and peritumoral regions, along with the

implementation of six machine learning algorithms, to develop

predictive models for discerning insulinomas and NF-PNETs. The

results of our investigation demonstrated that the integration of

radiomics data from both intratumoral and peritumoral regions

yielded the most accurate prediction performance. These findings

suggest that peritumoral regions may contain supplementary

information that enhances the identification of insulinomas and

NF-PNETs. Consistently, prior research has demonstrated that the

integration of peritumoral and intratumoral data using a

nomogram model, which incorporates deep learning contrast-

enhanced ultrasound and clinical characteristics, has exhibited

notable proficiency in the identification of preoperative

aggressiveness in PNETs (33). Moreover, the effectiveness of
A B

DC

FIGURE 6

The ROC curves of different intratumoral radiomics models based on six machine learning algorithms for predicting NF-PNETs and insulinomas.
(A) The ROC curves of different intratumoral radiomics models in the training cohort. (B) The ROC curves of different intratumoral radiomics models
in the test cohort. (C) The confusion matrix of the LightGBM-based intratumoral radiomics model in the training cohort. (D) The confusion matrix of
the LightGBM-based intratumoral radiomics model in the test cohort.
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employing radiomics, machine learning, and deep learning

techniques based on EUS imaging for the prediction of

gastrointestinal stromal tumors and pancreatic ductal

adenocarcinoma has been substantiated in previous studies (30,

39, 40). However, to the best of our knowledge, we were the first to

report on the remarkable predictive capabilities of EUS imaging-

based intratumoral and/or peritumoral radiomics models for

identifying NF-PNETs and insulinomas.

The spectrum of PNETs encompasses a broad range of

biological and clinical characteristics. The majority of PNETs,

compris ing approximately 80%, are NF-PNETs (41) .

Furthermore, NF-PNETs, which often originate from the head of

the pancreas, demonstrate a higher propensity for aggressiveness

due to elevated tumor T-stage, lymph node invasion, and liver

metastases. Consequently, patients afflicted with NF-PNETs

experience notably inferior overall survival rates compared to
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their functional counterparts (42). Insulinomas, on the other

hand, represent the most prevalent F-PNETs and predominantly

manifest as clinically benign, with malignancy observed in only

approximately 10% of cases (43, 44). Recurrent hypoglycemia,

resulting from abnormal endogenous hyperinsulinism, is a

characteristic manifestation of insulinomas. While the excessive

secretion of insulin is essential for diagnosing insulinomas, delayed

or inaccurate identification of hypoglycemia and other common

presentations often result in severe consequences and mortality

associated with insulinomas (8). In fact, patients with insulinomas

frequently endure misdiagnosis as neurological disorders over

extended periods due to the diverse clinical symptoms,

nonspecific biochemical tests, and low-specificity clinical

prediction models (8, 45). Currently, the 72-hour fasting test is

the established diagnostic procedure for insulinomas (12).

Nevertheless, many patients decline to undergo this test due to an
TABLE 2 Diagnostic performance of different models for predicting F-PNETs in training and test cohorts.

Model Cohort AUC(95% CI) Accuracy Sensitivity Specificity PPV NPV

Intratumoral
model (LR)

Training
0.857(0.7688
- 0.9447)

0.811 0.977 0.581 0.764 0.947

Test
0.881(0.7646
- 0.9973)

0.781 0.722 0.857 0.867 0.706

Intratumoral
model (RF)

Training
0.998(0.9956
- 1.0000)

0.905 0.837 1.000 1.000 0.816

Test
0.853(0.7237
- 0.9826)

0.750 0.889 0.571 0.727 0.800

Intratumoral
model (ExtraTrees)

Training
1.000(1.0000
- 1.0000)

0.419 0.000 1.000 0.000 0.419

Test
0.798

(0.6320- 0.9633)
0.750 0.722 0.786 0.812 0.687

Intratumoral
model (XGBoost)

Training
0.998(0.9949
- 1.0000)

0.973 0.977 0.968 0.977 0.968

Test
0.635(0.4181
- 0.8517)

0.688 0.833 0.500 0.682 0.700

Intratumoral
model (MLP)

Training
0.866(0.7842
- 0.9473)

0.811 0.977 0.581 0.764 0.947

Test
0.889(0.7776
- 1.0000)

0.781 0.611 1.000 1.000 0.667

Intratumoral
model (LightGBM*)

Training
0.879(0.8019
- 0.9558)

0.797 0.744 0.871 0.889 0.711

Test
0.750(0.5718
- 0.9282)

0.719 0.722 0.714 0.765 0.667

Peritumoral
model (LightGBM*)

Training
0.856(0.7805
- 0.9024)

0.770 0.674 0.903 0.906 0.667

Test
0.750(0.5768
- 0.9232)

0.625 0.667 0.571 0.667 0.571

Combined
model (LightGBM*)

Training
0.876(0.7990
- 0.9527)

0.784 0.674 0.935 0.935 0.674

Test
0.835(0.6978
- 0.9729)

0.688 0.611 0.786 0.786 0.611
*Represents models were constructed based on LightGBM.
LR, logistic regression; RF, random forest; LightGBM, light gradient boosting machine; MLP, multilayer perceptron; XGBoost, extreme gradient boosting; CI, credibility interval.
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inability to endure the discomfort associated with hunger, thereby

impeding the accurate diagnosis of insulinomas (46). Furthermore,

the early-stage differentiation between insulinomas and NF-PNET

poses a significant challenge (13). Therefore, it is imperative to

investigate innovative approaches for accurately discerning NF-

PNETs and insulinomas.

Numerous previous studies have highlighted the heightened

sensitivity of EUS in the diagnosis of PNETs and other small

lesions within the pancreas, particularly those measuring less than

2cm (47). A meta-analysis encompassing ten prior studies involving a

total of 261 participants revealed that EUS exhibited a commendable

average predictive accuracy of 90% (with a range of 77-100%) in the

diagnosis of PNETs (48). Notably, preoperative EUS imaging for

functional PNETs can effectively evaluate the correlation and

proximity of the lesion to the main pancreatic duct, thereby

playing a crucial role in determining the appropriate surgical

approach (49). A considerable number of patients diagnosed with

F-PNETs, which frequently occur in conjunction with MEN1,

commonly exhibit the presence of multiple small pancreatic lesions.

Two-thirds of insulinomas are smaller than 2 cm and 30% are smaller
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than 1 cm (50). Numerous studies in the literature have demonstrated

the superiority of EUS over CT andMRI in detecting small pancreatic

lesions (27, 47). Additionally, EUS allows for detailed evaluation of

the relationship between lesions and surrounding bile ducts, arteries,

and veins before surgery, thereby influencing surgical decision-

making (49). Due to the inherent limitations of conventional CT

and MRI techniques in effectively detecting these pancreatic minute

lesions, the utilization of EUS and contrast-enhanced EUS is highly

recommended (28). In our investigation, similar to prior research,

certain pancreatic lesions were not detected by contrast-enhanced CT

imaging, while EUS demonstrated superior performance.

Insulinomas, on the other hand, typically manifest as

nonmalignant, solitary tumors that are small in size, measuring less

than 2cm (51, 52). Our research findings align with previous studies,

as they demonstrate that the average maximum diameter of F-PNETs

is less than 2cm, signifying a significant disparity when compared to

NF-PNETs.

PNETs are often characterized by low-intensity echoes, well-

defined borders, regular round shapes, vascularization, and uniform

internal echo patterns (53). Interestingly, our findings also
A B

DC

FIGURE 7

The ROC curves of the intratumoral radiomics model based on LightGBM (abbreviated “intra_ LightGBM”), the peritumoral radiomics model based
on LightGBM (abbreviated “peri_ LightGBM”), and the combined radiomics model based on LightGBM (abbreviated “intra- and peri_ LightGBM”) in
the training (A) and test (B) cohorts. The results of the Delong test in the training (C) and test (D) cohorts. (* indicates P < 0.05).
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demonstrated that insulinomas and NF-PNETs exhibit comparable

features in terms of shape, margin, and uniformity of intertumoral

echo in this study, suggesting the challenge of distinguishing

between them. Radiomics facilitates the extraction of

multidimensional data from medical images, surpassing human

visual assessment. The efficacy of predictive models for various

tumor types can be enhanced by radiomics, leading to increased

reliability and objectivity in diagnosis (54, 55). Particularly

noteworthy is a multicenter study that has demonstrated the

superior predictive capacity of non-contrast MRI radiomics and

combined models in distinguishing Grade 1 and 2/3 NF-PNETs,

surpassing the performance of models based on clinical and
A

B

C

FIGURE 8

The weight bars graph of the retained radiomics features in intratumoral (A), peritumoral (B), and combined (C) radiomics models.
TABLE 3 The results of Hosmer-Lemeshow test.

Model P-value

Training
cohort

Test cohort

Intratumoral radiomics
model (LightGBM)

0.519 0.258

Peritumoral radiomics
model (LightGBM)

0.553 0.095

Combined radiomics
model (LightGBM)

0.170 0.149
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radiological features (56). Moreover, Gu D’s study demonstrated

that radiomic signatures derived from CT imaging had a greater

probability of accurately predicting the histologic grading of PNETs

(32). Similarly, our findings indicate that the intratumoral

radiomics model based on EUS showed effective discrimination

between NF-PNETs and F-PNETs, potentially enhancing the use of

EUS for diagnosing PNETs.

The current body of radiomics literature on PNETs primarily

focuses on the intratumoral regions while neglecting the peritumoral

region (56–59). Correspondingly, previous studies have

demonstrated the significant predictive capabilities of peritumoral

radiomics models about pathological outcomes, lymph node

metastasis, and recurrence risk stratification. These findings suggest

that the peritumoral region of various tumors, including intrahepatic

cholangiocarcinoma, cervical cancer, and breast cancer, may contain

additional valuable predictive and diagnostic information (60–62).

However, the efficacy of EUS-based peritumoral radiomics
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methodologies in facilitating the differentiation between NF-PNETs

and insulinomas remains uncertain.

From our standpoint, the peritumoral and intratumoral regions

may exhibit synergistic effects in discerning NF-PNETs and

insulinomas. Therefore, a composite model that incorporates

radiomics characteristics from both peritumoral and intratumoral

regions was formulated and verified. Ultimately, this combined

radiomics model demonstrated consistent performance when

compared to intratumoral and peritumoral models in the training

cohort, respectively. Interestingly, this combined radiomics model

demonstrated the highest area under the curve (AUC=0.835, 95%

CI 0.6978-0.9729) in the test cohort, indicating its optimal

performance. These results, supported by the DeLong test and H-

L test, suggest that the combined radiomics model significantly

enhances the predictive efficiency of NF-PNETs and insulinomas.

In conclusion, the peritumoral region, particularly the tumor-

adjacent parenchyma surrounding the tumor lesions, offers
A B

DC

FIGURE 9

Calibration curves for the intratumoral radiomics model based on LightGBM (abbreviated “intra_ LightGBM”), peritumoral radiomics model based on
LightGBM (abbreviated “peri_ LightGBM”), and combined radiomics model (abbreviated “combined_ LightGBM”) in the training (A) and test (B)
cohorts. The DCA curves for the intratumoral, peritumoral, and combined radiomics models based on LightGBM in the training (C) and test
(D) cohorts.
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valuable predictive information for NF-PNETs and insulinomas.

Regrettably, there is a scarcity of research examining the variances

in histological attributes within the peritumoral region between NF-

PNETs and insulinomas.
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To our best knowledge, our study is the first to document the

significant predictive potential of EUS imaging-based intratumoral

and/or peritumoral radiomics models for distinguishing between

NF-PNETs and F-PNETs, especially insulinomas. These results
A B

D

E F

C

FIGURE 10

LightGBM-based prediction scores of the intratumoral (A, B), peritumoral (C, D), and combined (E, F) radiomics models in the training and test
cohorts. (“label=0” means “NF-PNETs”; “label=1” means “insulinomas”).
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suggest promising opportunities for improving the predictive

capabilities of EUS in predicting NF-PNETs and insulinomas.

However, it is important to acknowledge the limitations of this

study, including the retrospective nature of the analysis conducted

at a single center, which may introduce selection bias. Additionally,

the prevalence of insulinomas among the subjects in our study

exceeded that of NF-PNETs, a finding that diverges from the

conclusions drawn in prior research. Moreover, bias is inherent in

the image segmentation procedure as all boundary definitions were

derived from manual segmentation (63–65). Specifically, the
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retrospective analysis with a small sample size, conducted within

a single center, may introduce potential selection bias. Therefore, it

is imperative for future research on EUS-based radiomics for

PNETs to incorporate multiple centers, large sample sizes,

prospective designs, and multimodal approaches. Additionally,

there is a notable advantage in developing radiomics prediction

models based on EUS to accurately predict pathological grading,

genetic markers, and epigenetic signatures, such as ATRX/DAXX

and ALT, in PNETs (66). Furthermore, the utilization of deep

learning techniques and investigation into the underlying biological
A

B

D

C

FIGURE 11

(A) The nomogram predicting insulinomas based on diameter and radiomics signature. The nomogram is used by summing all points identified on
the scale for each variable. The total points projected on the bottom scales indicate the probabilities of insulinomas. (“Rad_Signature” means
“radiomics signature”). (B) The calibration curves for the nomogram with the mean absolute error = 0.024. (C) Decision curve analysis (DCA) of the
nomogram and each strategy (the “All” means diagnosis-all strategy; the”None” means diagnosis-none strategy). (D) The clinical impact curve (CIC)
of the nomogram.
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alterations of peritumor imaging features could effectively address

bias and improve the interpretability of the models.
Conclusion

In summary, a robust radiomics model and nomogram utilizing

EUS were developed and verified, integrating the diameter of

pancreatic lesions and radiomics characteristics within and

surrounding the tumor. These models demonstrated high accuracy

in distinguishing NF-PNETs and insulinomas. These findings offer

promising prospects for enhancing the clinical utility of EUS in

predicting NF-PNETs and insulinomas, thereby providing valuable

insights for further research and application in this domain.
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