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Exploratory metabolomic
analysis for characterizing
the metabolic profile of the
urinary bladder under
estrogen deprivation
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of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
Background: Estrogen homeostasis is crucial for bladder function, and estrogen

deprivation resulting from menopause, ovariectomy or ovarian dysfunction may

lead to various bladder dysfunctions. However, the specific mechanisms are not

fully understood.

Methods: We simulated estrogen deprivation using a rat ovariectomy model and

supplemented estrogen through subcutaneous injections. The metabolic

characteristics of bladder tissue were analyzed using non-targeted metabolomics,

followed by bioinformatics analysis to preliminarily reveal the association between

estrogen deprivation and bladder function.

Results: We successfully established a rat model with estrogen deprivation and,

through multivariate analysis and validation, identified several promising biomarkers

represented by 3, 5-tetradecadiencarnitine, lysoPC (15:0), and cortisol. Furthermore,

we explored estrogen deprivation-related metabolic changes in the bladder

primarily characterized by amino acid metabolism imbalance.

Conclusion: This study, for the first time, depicts the metabolic landscape of

bladder resulting from estrogen deprivation, providing an important

experimental basis for future research on bladder dysfunctions caused

by menopause.
KEYWORDS

menopause, estrogen deprivation, bladder dysfunction, metabolomics, biomarkers,
amino acid metabolism
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1 Introduction

Recent research has highlighted the critical role of estrogen

homeostasis in bladder function. For instance, studies have

identified significant gender disparities in the incidence of lower

urinary tract dysfunction (LUTD). Female patients exhibit notably

higher prevalence rates of interstitial cystitis/bladder pain syndrome

(IC/BPS) (1), recurrent urinary tract infections (rUTIs) (2), and stress

urinary incontinence (SUI) (3) compared to male patients. Moreover,

over half of menopausal women experience the genitourinary

syndrome of menopause (GSM), which encompasses urgency,

dysuria, and recurrent urinary tract infections (rUTIs) (4).

Research indicates that vaginal estrogen therapy significantly

prevents rUTIs in peri- and post-menopausal women (5).

Furthermore, our findings suggest a potential link between the

downregulation of the sphingosine-1-phosphate pathway and the

mechanism of dysuria in perimenopausal women (6). However, there

remains a significant knowledge gap regarding how estrogen impedes

the underlying mechanisms of different bladder disorders.

In recent years, there has been a growing focus on alleviating the

symptoms of GSM or LUTD resulting from estrogen deprivation.

Platelet-rich plasma (PRP) (7), selective androgen receptor

modulators (SARMs) (8), and even testosterone (9) have

demonstrated varying degrees of efficacy. Nonetheless, there is a

dearth of studies mapping the macroscopic molecular effects of

estrogen deprivation on bladder tissue from an omics perspective.

In the past decade, the technology of omics has become increasingly

mature, and omics have shown irreplaceable value in revealing

disease mechanisms (10–12). Simultaneously, we have amassed

extensive expertise in omics research (13–15). We posit that

leveraging omics as a bridge to establish the correlation between

estrogen and bladder function holds substantial promise.

In summary, we employed metabolomics to portray the

metabolic profile of estrogen-deprived bladder. In this study,

estrogen deprivation was simulated using the conventional

ovariectomized rat model, and subcutaneous estrogen injections

were administered to counteract the estrogen reduction resulting

from ovariectomy. Subsequently, non-targeted metabolomics was

employed to evaluate the metabolic characteristics of the urinary

bladder. A comprehensive bioinformatics analysis was under-taken

to investigate the potential mechanisms by which estrogen

deprivation influences urinary bladder function. This research

aims to establish the foundation for future investigations into

the mechanisms through which estrogen modulates bladder

function and for the development of innovative clinical

intervention strategies.
2 Methods

2.1 Animal model

The experimental animals for this study were procured from the

Experimental Animal Center of the Peking University Health

Science Center. The care and treatment of the experimental
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animals were conducted in accordance with the guidelines

provided by the Committee for the Purpose of Control and

Supervision of Experiments on Animals as well as the World

Medical Association Declaration of Helsinki on Ethical Principles

for Medical Research involving experimental animals. The

experimental protocols were approved by the ethics committee on

experimental animals (No. LA2018092).

Twenty-four 12-week-old female specific pathogen-free

Sprague Dawley rats were randomly assigned to three groups:

sham surgery group (sham), ovariectomized group (OVX), and

ovariectomized with estrogen treatment group (OVX + E). The

animals were housed under controlled conditions including

temperature (22–26°C), humidity (50–60%), and a 12-hour light/

12-hour dark cycle. The animals were provided with non-soy feed

and access to water ad libitum. The surgical procedures were

performed following one week of acclimatization. The sham

group underwent a skin incision and suturing, while the OVX

and OVX + E group underwent ovariectomy. Starting from the 3rd

day post-surgery, vaginal exfoliated cells of the rats were monitored

daily for 7 consecutive days. Fourteen days after the surgery, all rats

were subcutaneously administered specific drugs between 9 am and

10 am daily. The OVX + E group rats were treated with 17 b-
Estradiol (25mg·kg−1·D−1; Sigma, St. Louis, Mo, USA), dissolved in

ethanol and diluted with sterile sesame oil (10 mg/0.1 mL, 0.25 mL/

kg; GLBIO, Montclair, CA, USA). The other two groups received

the same dose of sterile sesame oil.
2.2 Weighing and storage of
bladder samples

After 28 days of experimentation, all rats were anesthetized by

intraperitoneal injection of 1% sodium pentobarbital (80mg/kg;

Sigma, St Louis, MO, USA) and sacrificed. Blood was collected from

the heart, centrifuged at 4°C, and the supernatant was stored at -80°

C. Cardiac perfusion with cold 0.9% saline was performed before

harvesting the bladder tissues. The harvested bladder samples were

rinsed with 0.9% saline on ice, weighed, and stored at -80°C.
2.3 Radioimmunoassay test

Serum estrogen levels were determined by radioimmunoassay

using the rat E2 ELISA Kit (RE1649–48T, Bioroyee, Beijing, China)

according to the instructions, with a lower limit of detection of

3 pg/ml. Samples were incubated, separated, and centrifuged

for detection.
2.4 Hematoxylin-eosin staining

Vaginal exfoliated cells were obtained by rotating a cotton swab

soaked in 0.9% saline in the rats’ vagina, which were then dried,

stained with hematoxylin and eosin, dehydrated with alcohol,

cleared with xylene, and finally sealed with resin.
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2.5 Bladder sample preparation
in metabolomics

Accurately weigh 20 ± 1 mg of bladder tissue on ice and mix it

with methanol (500 µ L) containing 5 µg/ml 2-chloro-l-

phenylalanine as the internal standard. The mixture was ground

for 90 seconds with a high-throughput tissue grinder (60Hz;

Tissuelyser-24, Jingxin, Shanghai, China). The samples were

centrifuged at 12000rpm at 4 °C for 15 minutes. Finally, 100 µL

supernatant was obtained for metabolomics analysis.
2.6 Metabolomics measurement

The UHPLC-Q-TOF method was utilized for metabolomics

detection of bladder tissue (10). Using Agilent 1290 II UPLC-QTOF

5600 PLUS (Sciex) liquid chromatography-mass spectrometry

(Agilent, Lexington, MA, USA), the chromatographic column was

ACQUITY UPLC HSS T3 columns (1.8 m m. 2.1 mm × 100 mm,

Waters, Dublin, Ireland), analyzed in the electric spray ionization

(ESI) mode. The conditions and settings for the liquid

chromatography-mass spectrometry analysis were as follows:

curtain gas = 35, ion spray voltage = 5500 V (positive ion mode),

ion spray voltage = -4500V (negative ionmode), temperature = 450°C,

ion source gas 1 = 50, ion source gas 2 = 50.
2.7 Metabolomics data processing

The raw data was processed using Agilent MassHunter

workstation software (version B.01.04; Agilent, Lexington, MA,

USA). Isotope interference was eliminated, and the intensity

threshold was set to 300 to eliminate noise. Metabolite

identification was conducted by comparing with the METLIN
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open - s ou r c e da t a b a s e ( h t t p s : / /me t l i n . s c r i p p s . e du /

landing_page.php?pgcontent=mainPage, access date: 10

October 2021).
2.8 Bioinformatics analysis

MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/; Visited on

October 12, 2021) was utilized for data preprocessing and

bioinformatics analysis in this study (16). The group probability

quotient normalization method was employed to normalize the

data (17), with the sham group being the reference group. Log

transformation (base 10) and the Pareto method (mean-centered

and divided by the square root of the standard deviation of each

variable) were used for data normalization. Various analytical

methods, including Debiased Sparse Partial Correlation (DSPC)

network (18), were applied for information mining. The above

research process is summarized in Figure 1.
3 Results

3.1 Establishment of estrogen deprivation
animal models

In order to simulate the state of estrogen deprivation, we

constructed an ovariectomy rat model. The OVX group of rats

that underwent ovariectomy showed significant differences in

serum estrogen, vaginal exfoliated cells, bladder weight, and body

weight compared to the other two groups. The cyclic morphological

characteristics of vaginal exfoliated cells in the Sham group and

OVX + E group rats disappeared in the OVX group rats

(Figure 2A). At the same time, the serum estrogen level of the

OVX group rats was significantly lower than the other two groups
FIGURE 1

Research flowchart.
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(p < 0.001, Figure 2B), and the body weight of the OVX group rats

increased significantly compared to the other two groups (p < 0.05,

Figure 2C), meanwhile the bladder weight increased significantly

compared to the other two groups (p < 0.001, Figure 2D).
3.2 Characteristics of bladder metabolites
associated with estrogen deprivation

Metabolomics detected 190 different metabolites in total from

three groups of bladder tissues (Supplementary Table S1), mainly

divided into eight major categories: amino acids, bile acids,

carbohydrates, carnitine, fatty acyls, glycerophospholipids,

nucleotides, organic acids, and others, which basically cover

common bladder metabolites. Among them, amino acids account

for close to 1/3 (Figure 3A). The metabolites and samples were

subjected to calibration to approximately meet the normal

distribution (Supplementary Figures S1A, B) for the analysis of

the calibrated data.
3.3 Overall analysis of bladder differential
metabolites related to estrogen deprivation

Using 0.05 as the false discovery rate (FDR) cutoff value, differences

in metabolites among the three groups caused by estrogen deprivation

were identified through one-way analysis of variance (ANOVA) (with
Frontiers in Endocrinology 04
Tukey’s Honest Significant Difference (HSD) and Fisher’s Least

Significant Difference (LSD) tests as post hoc tests). A total of 24

differential metabolites were identified, ranked by FDR, the top 10

being: 3, 5-tetradecadiencarnitine, lysoPC (15:0), C17-carnitine,

tetradecanoylcarnitine, 2-hydroxybutyric acid, l-tyrosine, l-leucine,

cortisol, coumarin, and gam-ma-glutamyltyrosine (Figures 3B-L,

Supplementary Table S2). The estrogen treatment did not show a

restorative effect on the changes in C17-carnitine caused by

ovariectomy, so it can be excluded. Further multi-class Significance

Analysis of Metabolomics (SAM) was conducted based on the above

results (with Delta value (FDR control) set at 4.8, Supplementary Figure

S2A), the results indicated that 3, 5-tetradecadiencarnitine, lysoPC

(15:0), C17-carnitine, and cortisol are the four most important

differential metabolites (Figure 3M, Supplementary Table S3).

Different metabolites have different correlations, which help to assess

interference between metabolic pathways (Supplementary Figure S2B,

Supplementary Table S4). Pearson correlation analysis of the three

groups of samples showed that the OVX group is easier to distinguish

from the Sham group and the OVX + E group, while it is more difficult

to distinguish between the latter two groups, suggesting that the effect

of ovariectomy can be reversed by estrogen supplementation

(Figure 4A, Supplementary Table S5). The Hierarchical Clustering

Dendrogram displayed the same trend (Figure 4B), while the

Hierarchical Clustering heatmap based on the top 30 differential

metabolites selected by ANOVA demonstrated three different

patterns of differential expression between the metabolic group, with

the Down class showing downregulation in the OVX group and
B C D

A

FIGURE 2

Establishment of estrogen deprivation animal Models. (A) The morphological characteristics of vaginal exfoliated cells, the left image shows the sham
group and OVX + E group, the right image shows the OVX group. (B) Serum estrogen concentration, n = 8 per group. (C) Body weight, n = 8 per
group. (D) Wet weight of bladder, n = 8 per group. Statistical analysis was performed using one-way ANOVA (Tukey honestly significant difference
post hoc test) *p < 0.05, ***p < 0.001.
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upregulation in the other two groups, the Up class showing

upregulation in the OVX group and downregulation in the other

two groups, and the Mix class showing atypical inter-group differences

(Figure 4C). Principal Component Analysis (PCA), Partial Least

Squares Discriminant Analysis (PLS-DA), and sparse PLS-DA (sPLS-

DA) were employed to conduct dimensionality reduction analysis on

the metabolomic data. The unsupervised method (PCA) results

indicated that principal component I accounted for 25.5% and

principal component II for 13.4% (Supplementary Figure S3A),

making it difficult to distinguish between the three groups of
Frontiers in Endocrinology 05
samples (Figure 5A). The other two supervised methods provided

valuable evidence for differential metabolites. In the case of PLS-DA,

principal component I accounted for 10.1% and principal component

II for 14.5%, as depicted in Supplementary Figure S3B. These results

illustrate significant differentiation among the three sample groups,

particularly highlighting the distinctiveness of the OVX + E group in

comparison to the other two, as shown in Figure 5B. Figure 5C shows

the classification performance of sPLS-DA. Using a PLS-DA VIP score

threshold of 2, five highly significant differential metabolites were

identified: 3, 5-tetradecadiencarnitine, C17-carnitine, cholic acid,
B

C D E

F G H

I J K

L M

A

FIGURE 3

Overview of bladder metabolomics related to estrogen deprivation. (A) Metabolite classification statistics waffle pie chart. (B) Volcano diagram of
differential metabolites. (C-L) Bar chart of the expression levels of the top ten differential metabolites calculated using the ANOVA method. (M) SAM
analysis of differential metabolites.
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glycocholic acid, and pyroglutamine (Figure 5D, Supplementary Table

S6). The 5-fold Cross validation (CV) of the PLS-DAmodel yielded R2

of 0.92, Q2 of 0.61, and Accuracy of 0.88 (Supplementary Table S7,

Figure 5E), indicating the strong predictive performance of the PLS-

DA model. Additionally, permutation test results con-firmed the

model’s robustness (Figure 5F). Similarly, the sPLS-DA exhibited

superior discrimination among the three sample groups compared to

PLS-DA, with principal component I contributing 14.2% and principal

component II 7.6% (Supplementary Figure S3C). Notably, the loading

figure highlighted lysoPC (15:0) as the most significant differential

metabolite, outperforming others (Figure 5G), and the 5-fold CV

results demonstrated the optimal performance achieved by two

components for the final sPLS-DA model (Figure 5H). Moreover,
Frontiers in Endocrinology 06
feature extraction using the random forest model resulted in an

out-of-bag (OOB) error of 0.17 for the three sample groups

(Supplementary Figure S3D). Assessing the contribution of features

to classification accuracy (Mean Decrease accuracy) identified 3, 5-

tetradecadiencarnitine, lysoPC (15:0), and C17-carnitine as the top

three features (Figure 5I, Supplementary Table S8).
3.4 Subgroup analysis of
diverse metabolites

In order to accurately screen and reduce the dimensions of the

bladder metabolism characteristics associated with estrogen
B

C

A

FIGURE 4

Correlation analysis of samples and differential metabolites. (A) Pearson correlation analysis heatmap of samples. (B) Hierarchical clustering tree
diagram of samples. (C) Hierarchical clustering heatmap of samples and metabolites.
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deprivation identified in our multi-component analysis, we

comprehensively used the methods of t-test, PCA, PLS-DA and

Orthogonal PLS-DA (OPLS-DA), Empirical Bayesian Analysis of

Metabolomics (EBAM), and Random Forest to perform inter-group

analysis between the OVX group and the sham group, as well as

between the OVX group and the OVX + E group. The distribution be-

fore and after data correction is presented in Supplementary Figure S4.

With a Fold Change (FC) threshold set at 2 and an FDR set at 0.05,

inter-group t-tests for metabolites were con-ducted. Compared to the

sham group, the up-regulated metabolites in the OVX group were cis-

5-tetradecenoylcarnitine, and the down-regulated metabolites were

N6-acetyl-L-lysine, lysoPC (15:0), and 3,5-tetradecadiencarnitine. In

comparison to the OVX + E group, the up-regulated metabolite in the

OVX group was 2-hydroxybutyric acid, while the down-regulated

metabolites were 4-guanidinobutanoic acid, N6-acetyl-l-lysine,

tartaric acid, glycocholic acid, cortisol, and lysoPC (15:0)

(Figures 6A, B, Supplementary Table S9). The hierarchical clustering

heat map based on the top 30 different metabolites clearly showed the
Frontiers in Endocrinology 07
expression trends of different metabolites among different group

(Figures 6C, D). Three methods, PCA, PLS-DA, and OPLS-DA,

were employed to perform dimensionality reduction analysis on

inter-group data (Figures 6E-N). Firstly, the unsupervised method

(PCA) maintained a certain degree of differentiation between the Sham

and OVX group (Figure 6E). Principal component I reached 30.1%,

principal component II reached 17.4%, accumulating to 47.5%

(Supplementary Figures S5A, B), but the differentiation between the

OVX and OVX + E group was insufficient (Figure 6F), with principal

component I at 26.2% and principal component II at 15%,

accumulating to 41.2% (Supplementary Figures S5C, D). The

supervised methods (PLS-DA and OPLS-DA) demonstrated

excellent intergroup differentiation (Figures 6G-J), but the

permutation test results indicated over-fitting of the PLS-DA model

(Supplementary Figures S5E, F). The cross-validation results indicated

that the R2X for the OPLS-DA model of OVX versus sham group was

0.17, R2Y was 0.79, and Q2 was 0.58 (Supplementary Figure S5G). The

permutation test yielded an R2Y of 0.99 (p = 0.007) and Q2 of 0.68 (p =
B C

D E F

G H I

A

FIGURE 5

Overview of Dimension Reduction Analysis. (A) 2D PCA scatter plot. (B) 2D PLS-DA scatter plot. (C) 2D s- PLS-DA scatter plot. (D) VIP score of PLS-
DA model. (E) 5-fold CV detection of PLS-DA model. (F) Permutation test of PLS-DA model. (G) Loading Figure of sPLS-DA Model. (H) Classification
Error Rate of sPLS-DA Model. (I) VIP score of sPLS-DA model.
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0.002) (Supplementary Figure S5H), indicating a good fit for the OPLS-

DAmodel. Metabolites with VIP scores exceeding 2 (lysoPC (15:0) and

3,5-tetradecadiencarnitine) also demonstrated significant importance

in the S-plot (Figures 6K, L, Supplementary Table S10). The cross-

validation results indicated that the R2X for the OPLS-DA model of

OVX versus OVX + E group was 0.15, R2Y was 0.87, and Q2 was 0.64

(Supplementary Figures S5I). The permutation test yielded an R2Y of

0.99 (p < 0.001) and Q2 of 0.86 (p < 0.001) (Supplementary Figure S5J),

confirming a perfect fit for the OPLS-DA model. Among the
Frontiers in Endocrinology 08
metabolites with VIP scores exceeding 2 (lysoPC (15:0), fumaric

acid, l-tyrosine, and cortisol), except for fumaric acid, the other three

also showed significant importance in the S-plot (Figures 6M, N,

Supplementary Table S11). Additionally, from the perspective of

machine learning, we carried out supplementary screening of

potential different metabolites using a representative random forest

tree(RF) model to evaluate inter-group differences. The classification

error rate graph is shown in Figures S5K, L. The VIP plot, based on

features ranked by their contributions to classification accuracy,
B

C D E

F

G H I J

K L M N

A

FIGURE 6

Overview of subgroup dimensionality reduction analysis. (A) Volcano map of differential metabolites between the sham group and OVX group.
(B) Volcano map of differential metabolites between the OVX group and OVX + E group. (C) Hierarchical clustering heatmap based on TOP30
differential metabolites between sham group and OVX group. (D) Hierarchical clustering heatmap based on TOP30 differential metabolites between
OVX group and OVX + E group. (E) Scatter plot of PCA between the sham group and OVX group. (F) Scatter plot of PCA between the OVX group
and OVX + E group. (G, H) PLS-DA scatter plot for subgroup comparison. (I, J) OPLS-DA scatter plot for subgroup comparison. (K-N) VIP scores and
S-plot plot for subgroup analysis of OPLS-DA model.
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indicated that 3,5-tetradecadiencarnitine contributed the most to the

RF model between the sham and OVX group, while fumaric acid and

lysoPC (15:0) contributed the most to the RF model between the OVX

and OVX + E group (Figures 7A, B). Lastly, we applied EBAM and

SAM evaluation methods (Figures 7C-F). EBAM results indicated

that the most valuable different metabolites between the sham and

OVX group were 3,5-tetradecadiencarnitine, lysoPC (15:0),

tetradecanoylcarnitine, and 2-hydroxybutyric acid, while the different
Frontiers in Endocrinology 09
metabolites between the OVX and OVX + E group were lysoPC (15:0),

l-tyrosine, fumaric acid, cortisol, l-valine, coumarin, and 2-

hydroxybutyric acid (Supplementary Table S12). SAM analysis

yielded results consistent with EBAM, showing that the most

valuable different metabolites between the sham and OVX group

were 3,5-tetradecadiencarnitine and lysoPC (15:0), while between the

OVX and OVX + E group, they were lysoPC (15:0), cortisol, and

glycocholic acid (Supplementary Table S13).
B

C D

E F

A

FIGURE 7

Screening differential metabolites using RF, EBAM, and SAM methods. (A) VIP patterns based on RF model between the sham group and OVX group.
(B) VIP patterns based on RF model between the OVX group and OVX + E group. (C, D) Volcano plots for subgroup comparison based on EBAM
method. (E, F) Screening of differential metabolites between subgroups based on SAM method.
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3.5 Exploration of metabolite
expression patterns

We employed the pattern search method to explore the metabolite

expression patterns related to estrogen deprivation. The metabolite

expression pattern associated with OVX is shown in Figure 8A. The

positive correlation coefficients of 3, 5-tetradecadiencarnitine with

lysoPC (15:0) exceed 0.9, while the negative correlation coefficient of

tetradecanoylcarnitine with 2-hydroxybutyric acid also exceeds -0.77

(Supplementary Table S14). The metabolite expression pattern related

to estrogen supplementation is shown in Figure 8B, where the positive

correlation coefficients of lysoPC (15:0), fumaric acid, and cortisol

exceed 0.8, and the negative correlation coefficients of l-tyrosine, l-

valine, coumarin, and 2-hydroxybutyric acid also exceed -0.77

(Supplementary Table S15). Lastly, to obtain the metabolite

expression pattern most relevant to estrogen, in the order of estrogen

content from low to high, three groups were studied—OVX group,

sham group, and OVX + E group. The metabolites most significantly

positively correlated with this pattern were lysoPC (15:0) and cortisol,
Frontiers in Endocrinology 10
while the metabolites most significantly negatively correlated with this

pattern were l-leucine and 2-hydroxybutyric acid (Figure 8C,

Supplementary Table S16). Given the close association between

lysoPC (15:0) and estrogen, we further explored the metabolite

expression pattern related to lysoPC (15:0), and the results show that

the strongest correlation is between 3, 5-tetradecadiencarnitine and

lysoPC (15:0), with a correlation coefficient of 0.89. Additionally, the

expression pattern of three branched-chain amino acids, l-leucine, l-

isoleucine, and l-valine, exhibited negative correlation coefficients with

lysoPC (15:0) reaching -0.8. Furthermore, the expression pattern of

lysoPC (14:0) is negatively correlated with that of lysoPC (15:0)

(Figure 8D, Supplementary Table S17).
3.6 Validation of typical biomarkers

The application of classical univariate ROC curve analysis

entails the generation of ROC curves, calculation of AUC or

partial AUC with their corresponding 95% confidence intervals,
B

C D

A

FIGURE 8

Expression patterns of metabolites. (A) Metabolite expression patterns associated with ovariectomy. (B) Metabolite expression patterns related to
estrogen supplementation. (C) Metabolite expression patterns associated with increased estrogen concentration. (D) Metabolite expression patterns
associated with LysoPC (15:0).
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identification of optimal cutoffs for specific features, and the

development of performance tables for sensitivity, specificity, and

confidence intervals at different cutoff points. Notably, whether

comparing the sham and OVX group or the OVX and OVX + E

group, the AUC value for lysoPC (15:0) is consistently 1

(Figures 9A, B, Supplementary Table S18). Furthermore, the

multivariate ROC curve-based exploratory analysis (based on
Frontiers in Endocrinology 11
PLS-DA) demonstrates highly effective diagnostic performance in

distinguishing between the sham and OVX group, yielding an AUC

of 1 (Figure 9C). The misclassification plot highlights a complete

differentiation between the sham and OVX group, with no

misclassified samples (Supplementary Figure S6A). Additionally,

the ROC prediction accuracy for models constructed with five or

more features consistently maintains a 100% success rate
B

C D

E F

A

FIGURE 9

Screening of typical biomarkers. (A) Content bar charts of LysoPC (15:0) in different subgroups. (B) ROC curve of LysoPC (15:0). (C) Multivariate ROC
curve based exploratory analysis between the sham and OVX group. (D) Average importance ranking of multivariate models for biomarkers between
the sham and OVX group. (E) Multivariate ROC curve based exploratory analysis between the OVX and OVX + E group. (F) Average importance
ranking of multivariate models for biomarkers between the OVX and OVX + E group.
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(Supplementary Figure S6B). The top three features of highest

average importance in this multi-variate model are 3,5-

tetradecadiencarnitine, lysoPC (15:0), and cortisol (Figure 9D,

Supplementary Table S19). However, the diagnostic efficiency of

this method slightly decreases when comparing the OVX and OVX

+E group, with an AUC value of 0.98 (Figure 9E). The

misclassification plot illustrates that a sample denoted as O-5

from the OVX group has been misclassified as belonging to the

sham group (Supplementary Figure S6C). Notably, the ROC

prediction accuracy for models built with five features is 89.7%,

and with an increase in the number of features to 50, the maximum

prediction accuracy reaches 96.7% (Supplementary Figure S6D).

The top three features of highest average importance in this

multivariate model are lysoPC (15:0), cortisol, and glycocholic

acid (Figure 9F, Supplementary Table S20). In summary,

lysoPC (15:0) and cortisol serve as relatively effective

diagnostic biomarkers.
3.7 Comprehensive analysis of
differential metabolites

The selected differential metabolites were comprehensively

analyzed in combination with the above analysis results. From a

classification perspective, the proportion of amino acids and

peptides exceeded 50%, while the proportions of fatty acids and

conjugates, as well as fatty esters, exceeded one quarter. The

remaining major categories included flavonoids, monosaccharides,

TCA acids, and steroids (Figure 10A). Regarding the organ

distribution of differential metabolites, the prostate, mitochondria,

and bladder-specific metabolites occupied the top three positions

(Figure 10B). The KEGG enrichment analysis results indicated that

the most significant five pathways included aminoacyl-tRNA

biosynthesis, valine leucine and isoleucine biosynthesis,

phenylalanine tyrosine and tryptophan biosynthesis, valine

leucine and isoleucine degradation, and phenylalanine

metabolism (Figure 10C, Supplementary Table S21). We

summarized the rat-specific metabolic pathways, and the results

indicated that the most meaningful metabolic pathways were

phenylalanine, tyrosine, and tryptophan biosynthesis, and

phenylalanine metabolism (Figure 10D, Supplementary Table

S22). Lastly, based on the differential metabolites, the Gene-

Metabolite Interaction Network explored the interactions between

function-ally related metabolites and genes, showing a close

association between SLC gene family and differential metabolites

(Figure 10E). The Metabolite-Metabolite Interaction Network

results indicated potential functional relationships among a series

of differential metabolites, including three branched-chain amino

acids (L-leucine, L-valine, L-isoleucine), two aromatic amino acids

(L-phenylalanine, L-tyrosine), and hydrocortisone (Figure 10F).
4 Discussion

The modeling effect of the ovariectomy rat model is stable, and

this model has irreplaceable value for studying the effect of estrogen
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deprivation. The increase in body weight in the ovariectomized rat

is consistent with previous studies, at the mechanistic level,

estrogen’s inhibitory effect on the increase in body weight in the

ovariectomy model may be related to the regulation of physical

activity, fat distribution, energy expenditure, and leptin sensitivity

(19, 20). Differences have been observed in the changes in bladder

weight in previous models of ovariectomized rats and rabbits, which

may be related to varying proportions of muscle atrophy and

collagen fiber replacement (21–24). Although this study did not

deeply investigate the bladder function, the susceptibility to OAB

and UTI caused by the ovariectomy animal model has been widely

confirmed (7, 25–27). It is well-known that estrogen receptors are

widely distributed in the bladder (28), and obviously, estrogen can

to some extent regulate bladder function. The bladder metabolic

characteristics related to estrogen deprivation depicted by the

ovariectomy model in female rats reflects the overall metabolic

trend of the bladder. Based on the above findings, it is certainly a

challenging task to depict the possible association between

metabolites and bladder functional changes.

Our study combined various statistical analysis methods and

identified a series of valuable differential metabolites. Among the

numerous candidate metabolites, 3, 5-tetradecadiencarnitine, lysoPC

(15:0), and cortisol are considered the most promising biomarkers. 3,

5-tetradecadiencarnitine is a long-chain acylcarnitine compound

mainly located in the extracellular space and near the membranes.

The primary function of most long-chain acylcarnitines is to ensure

the transport of long-chain fatty acids into the mitochondria (29).

The current research found that ovariectomy significantly decreased

the levels of 3, 5-tetradecadiencarnitine and that this decrease could

be restored by estrogen supplementation. Similarly, Guo et al. (30)

found that the levels of acylcarnitines in the intestines of

ovariectomized mice were significantly lower than those in the

sham group, which may be related to the changes in intestinal flora

induced by estrogen. Overall, there is limited research on 3, 5-

tetradecadiencarnitine, and its involvement in the development of

diseases has been rarely reported. However, some studies have found

that 3,5-tetradecadiencarnitine is a good biomarker for various

metabolic disorders such as diabetes, cardiovascular diseases, and

obesity (31, 32). Further research is needed to explore whether the

decrease of 3, 5-tetradecadiencarnitine in the bladder under estrogen

deprivation is mediated by changes in fatty acid transport and

mitochondrial energy metabolism. Although there is no unified

conclusion on the effects of menopause on the levels and rhythms

of cortisol (33–35), this study is the first to discover that estrogen

deprivation can lead to a decrease in the cortisol concentration of

bladder tissue. Recent studies have found that plasma cortisol is

involved in regulating the day-night micturition rhythm of the

bladder (36). However, there is still no research that can elucidate

how cortisol in the bladder exerts its effects. Considering the

important role of cortisol itself in substance metabolism and

immune regulation (37), the correlation between bladder tissue

cortisol levels and bladder dysfunction may be related to changes

in immune function and substance metabolism patterns. LysoPC

(15:0) is a shorthand for lysophosphatidylcholine (15:0) and is a

saturated form of lysoPC. Elevated levels of lysoPC in body fluids

have been identified as good biomarkers in inflammatory and
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immune-related diseases such as allergic asthma, rheumatoid

arthritis, and osteoarthritis (38–42). LysoPC exists in numerous

subtypes, each exhibiting distinct effects in various diseases. For

example, lysoPC (16:0) is elevated in the bone marrow of

rheumatoid arthritis patients and mediates pain symptoms in the

rheumatoid arthritis animal model (43). LysoPC (18:1) and lysoPC

(16:0) can induce mechanical and cold hypersensitivity, respectively

(44, 45), while lysoPC (14:0) can lower blood pressure and renal

blood flow in rats (46). Surprisingly, there is currently a lack of
Frontiers in Endocrinology 13
research on the correlation between lysoPC and bladder function.

Exploring the mechanisms through which lysoPC (15:0) regulates

bladder function in the context of estrogen deprivation is an area

worthy of scientific exploration.

Regardless of the classification of differential metabolites or the

results of KEGG pathway analysis, they all suggest that the

imbalance of amino acid metabolism caused by estrogen

deprivation may be the main mediator of bladder dysfunction. In

this context, aminoacyl-tRNA is involved in amino acid
B C

D E
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FIGURE 10

Comprehensive Analysis of Differential Metabolites. (A) Classification pie chart of differential metabolites. (B) Organ enrichment analysis of differential
metabolites. (C) KEGG enrichment analysis of differential metabolites. (D) Enrichment analysis of rat specific metabolite pathways. (E) Gene-
Metabolite Interaction Network based on differential metabolites. (F) Metabolite-Metabolite Interaction Network based on differential metabolites.
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biosynthesis pathways, and the amino acids of particular interest

include two types: branched-chain amino acids (Valine, leucine and

isoleucine) and aromatic amino acids (Phenylalanine, tyrosine and

tryptophan). In the current study, the levels of branched-chain

amino acids in the bladders of ovariectomized rats were higher

compared to the control group, and estrogen supplementation was

able to suppress these changes. Although branched-chain amino

acids are often considered as good nutritional supplements, in

recent decades, they have been implicated in exerting negative

effects in metabolic disorders such as obesity and diabetes. For

example, in obesity and diabetes, the levels of blood branched-chain

amino acids show an upward trend (47, 48), and after obesity and

metabolic disorders are corrected, the levels of plasma branched-

chain amino acids decrease accordingly (49, 50). Controlling the

intake of branched-chain amino acids helps improve metabolic

disorders in rodents and prolong lifespan, while an increase in their

intake exacerbates adverse outcomes associated with metabolic

imbalance (51, 52). Therefore, an increase in the levels of

branched-chain amino acids in populations with metabolic

disorders may mediate the occurrence of adverse outcomes. The

population deprived of estrogen itself faces metabolic disorders such

as obesity and abnormal glucose tolerance, and the increase of

branched-chain amino acids in the bladder is likely closely related

to the metabolic dysfunction of the bladder. Similarly, aromatic

amino acids are also associated with the burden of metabolic

diseases such as diabetes and cardiovascular diseases, and in a

large-scale study involving more than 26,000 participants, it was

found that the concentrations of tyrosine and isoleucine in the

blood samples of postmenopausal women were higher than those of

premenopausal women (53). For female IC/BPS patients, the

increase of phenylalanine in the urine is considered to be a good

biomarker (54). The correlation between aromatic amino acids,

represented by phenylalanine, and bladder dysfunction caused by

estrogen deprivation, is still a topic worthy of exploration. The

organ distribution of differential metabolites is mainly located in the

prostate, mitochondria, and bladder. We speculate that the

enrichment of prostate-specific metabolites is mainly related to

the imbalance of estrogen-androgen balance caused by the decrease

in estrogen, while the regulatory effect of estrogen on the structure

and function of mitochondria has been found in multiple diseases

(55, 56). Whether the regulatory effect of estrogen on bladder

function is related to mitochondria is another research direction

that deserves attention.

The current study is an exploratory study of the bladder

metabolic characteristics related to estrogen deprivation.

Although certain positive results have been obtained, there are

still inevitable flaws. Firstly, despite the support of ample research

evidence, this study did not further verify the changes in bladder

function due to estrogen deprivation, such as detrusor contraction

function, epithelial anti-infection ability, and aging indicators.

Secondly, the positive results obtained in this study lack

supporting evidence from human studies. Finally, no further

phenotype and mechanism exploration have been conducted on

the promising metabolites selected in this study.
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The current research simulated the metabolic effects of estrogen

deprivation on the bladder using the classic ovariectomized model.

This study is the first to demonstrate the metabolic map of

the bladder under estrogen deprivation, highlighting the

metabolic characteristics associated with amino acid metabolic

disorder. Additionally, the study identified promising biomarkers,

including 3,5-tetratecadiencarnitine, lysoPC (15:0), and cortisol.

Furthermore, it provides a solid theoretical foundation for

precise intervention measures in bladder dysfunction resulting

from menopause.
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