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The expression of BDNF in both neuronal and non-neuronal cells is influenced by

various stimuli, including prenatal developmental factors and postnatal

conditions such as estrogens, dietary habits, and lifestyle factors like obesity,

blood pressure, and aging. Central BDNF plays a crucial role in modulating how

target tissues respond to these stimuli, influencing the pathogenesis of

hypertension, mitigating obesity, and protecting neurons from aging. Thus,

BDNF serves as a dynamic mediator of environmental influences, reflecting an

individual's unique history of exposure. Estrogens, on the other hand, regulate

various processes to maintain overall physiological well-being. Through nuclear

estrogen receptors (ERa, ERb) and the membrane estrogen receptor (GPER1),

estrogens modulate transcriptional processes and signaling events that regulate

the expression of target genes, such as ERa, components of the renin-

angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are

instrumental in maintaining the set point for blood pressure and energy

balance. BDNF and estrogens work cooperatively to prevent obesity by

favoring lipolysis, and counteractively regulate blood pressure to adapt to the

environment. Estrogen deficiency leads to menopause in women with low

central BDNF level. This review delves into the complex mechanisms involving

BDNF and estrogen, especially in the context of hypertension and obesity,

particularly among postmenopausal women. The insights gained aim to inform

the development of comprehensive therapeutic strategies for these prevalent

syndromes affecting approximately 68% of adults.
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1 Introduction

Brain-derived neurotrophic factor (BDNF) is highly expressed

in the brain and moderately expressed in the heart, lungs, and

kidneys. Numerous investigations confirm that BDNF has extensive

roles by binding to its specific receptor, tropomyosin-related kinase

receptor B (TrkB). This binding leads to the autophosphorylation of

tyrosine residues in TrkB, initiating multiple signaling cascades,

including rat sarcoma (RAS)-mitogen-activated protein kinases

(MAPK) pathway, the phosphatidylinositol 3-kinase (PI3K)-Akt

pathway, and the phospholipase C (PLC)-Ca2+ pathway (1–3). The

MAPK pathway promotes neuronal differentiation and growth, the

PI3K-Akt pathway is essential for cell survival, and PLCg activation
leads to the production of inositol 1,4,5 trisphosphate (IP3)

and diacylglycerol (DAG), which subsequently activate

Ca2+/calmodulin-dependent protein kinases and protein kinase C

(PKC) pathways respectively (4). Physiologically, BDNF is well-

known for its essential role in various neuronal processes during

prenatal development, growth, maintenance, and the plasticity of

the nervous system. Moreover, it also exerts non-neuronal effects on

normal physiology and has been implicated in the pathogenesis of

obesity and hypertension (5).

Estrogens, primarily produced in the follicular granulosa cells in

premenopausal women and the stromal cells of adipose tissue in

postmenopausal women, exert their effects by binding to specific

receptors—the nuclear estrogen receptors (ERa, ERb) and the

membrane estrogen receptor (GPER1). These receptors activate

transcriptional processes either as coregulators or through signaling

pathways involving G protein activation and the cross-activation of

MAPK, PI3K-Akt, and PKC, ultimately regulating gene expression

and/or enzyme activity (6–8). Genes regulated by estrogen, known

as estrogen-responsive genes, include BDNF (9), renin (10),

estrogen receptor a (ERa) (11), angiotensinogen (12), hormone-

sensitive lipase (HSL), proadipogenic genes such as peroxisome

proliferator-activated receptor g (PPARg), steroid receptor

coactivator-1 (SRC-1), and CREB-binding protein (CBP) (13, 14),

as well as adipogenic genes like fatty acid synthase (FASN) (15).

Estrogens are vital for both reproductive and non-reproductive

functions (16), significantly influencing sexually dimorphic traits

and renin expression through ERa (10). Dysregulation or deficiency

of estrogen, particularly in postmenopausal women, can lead to

conditions such as hypertension and obesity, common symptoms

associated with menopause (17, 18).

BDNF and estrogens demonstrate multifaceted interactions that

influence a range of physiological processes (4, 9, 19). At the cellular

level, estrogens promote BDNF expression through the ERa-
mediated classic transcriptional pathway in regions such as the

hippocampus, amygdala, frontal cortex, dentate gyrus and

hypothalamus, subsequently activating MAPKs, PI3K, and PKC

pathways (20–22). However, this induction varies across different

areas (21), with some studies reporting a decrease in the

hippocampus (22, 23). In adipose tissue, the ratio of Bdnf/TrkB

(tropomyosin receptor kinase B) expression is higher in female mice

than in male mice (24). In addition, estrogens and BDNF may

converge to promote the expression of neuropeptide Y (NPY) in

hippocampal neurons through the aforementioned pathways (20).
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BDNF/TrkB signaling activation is essential for ligand-independent

ERa activation (25) and is required for the long-term genomic

actions of 17b-estradiol on dendritic spine plasticity (26). At the

physiological level, their interdependent relationship is supported

by evidence showing the fluctuation of BDNF levels during the

ovarian cycle in women (19, 27) and in animal models (28).

Conversely, reductions in estrogen and BDNF levels have been

reported in patients with Parkinson's disease, Alzheimer's disease

(AD) (21), postmenopausal women (19), ovariectomized (OVX)

mouse models (29, 30), and ER-deficient mouse models (31).

Estrogen deficiency is linked to obesity in over 43% of

menopausal women (32), characterized by a central reduction of

BDNF levels, while plasma BDNF remains unaffected (33, 34). It is

also associated with hypertension in 19% of premenopausal women,

44% of perimenopausal women, and 75% of postmenopausal

women aged 65 to 74 (35). Additionally, lower plasma BDNF

levels are associated with significantly poorer memory

performance (36). Although plasma BDNF is believed to

influence blood pressure regulation, studies have produced

conflicting results: some report elevated BDNF levels in cases of

hypertension (1), while others indicate reduced levels (37).

Physiologically, BDNF is recognized as an anti-obesity

molecule, while estrogens promote lipolysis and help prevent

obesity. Furthermore, BDNF can contribute to increased blood

pressure, whereas estrogens aid in maintaining blood pressure

within a healthy range. Both BDNF and estrogens play critical

roles in the development of hypertension and obesity, particularly

in the postmenopausal context. These conditions are significant

global public health concerns, affecting approximately 68% of the

adults (1, 17, 38). This review examines recent advances in

understanding the interaction between BDNF and estrogen in the

context of hypertension and obesity. It aims to identify effective

therapeutic strategies that leverage BDNF and estrogen, focusing on

the timing and selection of appropriate diets or medications.
2 BDNF is a key mediator in activity-
dependent processes, playing a
crucial role from embryogenesis
through aging

BDNF is expressed in various tissues, including both CNS and

non-CNS organs such as the liver, lungs, kidneys, fat pads, and

reproductive tissues. As a target-derived factor, BDNF plays diverse

roles in numerous physiological processes, influencing blood

pressure, body mass, learning, memory, cognitive development (5),

and notably, appetite and metabolic control (39–42). It also has

significant contributions to the cardiovascular health (1, 18, 39, 43).

BDNF expression begins as early as the 11th to 12th day of

embryogenesis in rats and mice, coinciding with prenatal

programming, and increases with the onset of neurogenesis and

heightened neuronal activity during development (44). Additionally,

BDNF expression in target organs and tissues can be enhanced by

exposure to various substances, including alcohol (45, 46), cocaine

(47–49), exercise (50), high-fat diet (51, 52), low-level of ozone (O3)
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(53), lead (54), cigarette or cannabis smoke (55, 56), and drugs like

valproate (57) in rodents or humans. Conversely, prenatal BDNF

expression is downregulated by factors such as viral infection (50) or

other stressors, including depression and estrogen deficiency (54).

Importantly, BDNF plays a critical role in transmitting drug-induced

phenotypes to subsequent generations, as observed in women with

exposures to alcohol (10, 11), cocaine (12, 13), exercise (14, 15) and

high-fat diet (16, 17).

Postnatally, central expression of BDNF significantly increases,

influenced by various factors, including estrogens (9), high salt

intake (58), angiotensin II or aldosterone (1, 59), exercise (60, 61),

intestinal microbial colonization (62), chlorpyrifos (63), cocaine

addiction (64), and moderate alcohol consumption (65). This

activity-dependent increase in BDNF levels likely results from the

stimulation of N-Methyl-D-aspartate ionotropic glutamate

receptors (NMDARs), leading to intracellular Ca2+ influx. This

influx activates Ca2+/cAMP-responsive element binding protein

(CREB), which binds to the BDNF promoter to initiate

transcription (66). The cumulative effect of BDNF is observed

with stimuli that lead to persistent and specific changes,

particularly in the central nervous system. This heightened

sensitivity, shaped by dietary habits and life experiences, enhances

environmental adaptation, as seen in the appropriate increase in

blood pressure (1, 59, 67). These factors influencing BDNF

regulation and their underlying expression mechanisms are

summarized in Table 1.

The regulatory effect of estrogens on BDNF is particularly

evident in case of estrogen deficiency. Both amenorrheic

individuals and postmenopausal women exhibit significantly

lower plasma BDNF levels compared to fertile females, and

hormone therapy effectively restores BDNF levels in these

patients (90). Additionally, the administration of estradiol

increases BDNF levels in ovariectomized animals across all ages

(70). These findings further underscore the interaction between

estrogens and BDNF, particularly in postmenopausal women and

animal models.

Enhancing central BDNF levels through the peripheral

administration of specific drugs offers a promising strategy for

delaying age-related neurodegenerative diseases (91) and

ameliorating many of the symptoms discussed above.

Alternatively, long-term exercise training enhances brain function

and helps prevent neurological disorders by stimulating brain

plasticity through the induction of BDNF expression (92, 93).

This expression is essential for certain forms of hippocampal-

dependent information storage and memory (94). The benefits of

exercise training can persist for an extended period, as evidenced by

spatial learning and memory tests conducted in both rodents and

humans (94, 95).

Therefore, plasma or serum BDNF serves as an endocrine

molecule and is proposed as a biomarker for various diseases,

including hepatic encephalopathy (96), depression (61, 97),

Alzheimer's disease (98), mood disorders (99), schizophrenia

(100), neuropsychiatric disorders (101), obesity (102), psoriasis

(103), cardiometabolic problems (104), and glaucoma (105),

among others. Additionally, BDNF may serve as a useful

biomarker for assessing impaired memory and general cognitive
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function in aging women (106), as well as for prenatal hypertensive

anxiety and depression in both rats and post-partum women (107).

However, studies have shown that a chronic reduction of BDNF

does not exacerbate the development of neurodegenerative diseases

like a Alzheimer's in mouse models (108). Interestingly, BDNF levels

in the hippocampus of postmortem brain samples from AD patients

are significantly higher compared to age-matched non-demented

controls (98). These conflicting data may reflect the complexities of

the aging brain, which can be both a consequence and a causative

factor to pathological development. Furthermore, the original source

of circulating BDNF remains largely unclear (109).
3 The role of BDNF and estrogen in
body mass regulation

The identification of BDNF as a key gene linked to obesity

highlights its crucial role in metabolic regulation (110), affecting

both the CNS and peripheral organs (111). This association is

particularly evident in individuals with WAGR syndrome (Wilms'

tumor, aniridia, genitourinary anomalies, and intellectual

disability), where those with heterozygous BDNF deletions exhibit

approximately half the serum BDNF levels and a higher incidence

of childhood-onset obesity, compared to those with an intact BDNF

sequence (112). Additionally, central BDNF knockdown leads to

hyperphagia and obesity (39, 113), while the knockout of Trek B in

adipocytes reduces HDF-induced obesity in female conditional

knockout mice, but this effect is not observed in males (24).

Similarly, global ERa knockout (114) leads to the development

of metabolic syndrome characteristics in animal models, including

weight gain, increased visceral adiposity, hyperphagia,

hyperglycemia, and impaired energy expenditure through the

PI3K pathway (115). In contrast to the BDNF’s central effects,

estrogens act in the arcuate nucleus (ARC) to suppress food intake

via ERa in pro-opiomelanocortin (POMC) neurons and NPY

neurons (116, 117). In the ventromedial nucleus of the

hypothalamus (VMN), estrogens influence obesity primarily by

enhancing energy expenditure, mediated by VMN nitric oxide

(NO) and g-aminobutyric acid (GABA) neurons, involving both

ERa and GPER. The role of ERb, however, varies depending on the

experimental model used (114, 118, 119). Additionally, in the

nucleus of the NTS, estrogens inhibit food intake by sensitizing

satiety signals induced by cholecystokinin (CCK) through the

activation of ERa (120). Overall, estrogens contribute to

maintaining a healthy lifestyle by promoting balanced nutrition

and well-being in both sexes (121–123).
3.1 Maternal HFD induces prenatal central
BDNF deficiency and offspring obesity

Maternal eating habits play a significant role in influencing

offspring health, highlighting the critical role of BDNF in energy

balance (124). An optimal fatty acid profile in a mother's diet is

essential for the well-being of both mother and fetus. Clinical and

experimental evidence suggests that an over-nutritious maternal
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TABLE 1 Representative references for prenatal and postnatal stimuli influencing BDNF expression and the underlying mechanisms.

Animal or
cell model

Stress factor(s) Brain region(s)/tissue Mechanisms References

Obese mice Maternal obesity Fetuses, placenta miRNA-210↑-BDNF↓(f)/proBDNF (m) Prince et al., 2016 (68)

Obese rats Maternal HFD/obesity
± resveratrol

Placenta, fetal brain Restores BDNF, BP↑ Hsu, et al., 2020 (69)

OVX rats OVX Brain areas E2→BDNF↑ Kiss et al., 2012 (70)

Neurons Estrogen cerebral cortex and the
olfactory bulb

ERE-Like Motif in the BDNF Gene Sohrabji et al., 1995 (9)

Female rats Estrogen, stress hippocampus Estrogen→BDNF↓ Cavus and Duman 2003 (22)

Maternal Exercise and
LP treated dams

Maternal low protein;
physical activity

Placenta; dam
hypothalamus; hippocampus

Ex→BDNF↑;
LP→ BDNF↑

Fragoso et al., 2021 (71)

SD rats BDNF overexpressed, BP↑ PVN, Astrocytes in the
mediobasal hypothalamus

NMDAR↑ and GABAAR↓; IKKb/
NF-kB↓

Thorsdottir et al., 2021 (18);
Zhang et al., 2017 (72)

SD rats 10 nM E2 Hippocampal slices GPER1 activation →BDNF↑, ERa and
ERb independent

Briz V et al., 2015 (73)

BDNF overexpressed Target
overexpressed BDNF

PVN b1-adrenergic receptor↓; BP↑ Thorsdottir et al., 2019 (74)

SHR Rat Exercise, calorie
restriction (CR)

hippocampus Ex→BDNF↑;
CR→BDNF↑

Kishi et al., 2015 (75)

SHR rats exercise BDNF in quadriceps↓, LV, DG
and brain areas, endothelial↑

BDNF‐TrkB‐signaling in DG↑
(hippocampus); eNOS↑; SA↑; proBDNF↓

Wang, et al., 2019 (76);
Monnier et al., 2017 (77)

SHR and WKY Hypertension;
exercise

Aortic endothelial BDNF Hypertension→BDNF↓
Exercise→BDNF↑

Exogenous BDNF dialates aortic rings

Prigent-Tessier et al.,
2013 (78)

Human Exercise in the heat plasma BDNF↑; 18y↑>32y↑ Roh et al., 2017 (79)

Clinic data Stroke, exercise, DM,
alcohol, smoking

Plasma BDNF Exercise→BDNF↑;
Other factors→BDNF↓

Chaturvedi et al., 2020 (80)

Chronic mild
stress mice

Valsartan and stress hippocampus Valsartan restores BDNF level Ping et al., 2014 (81)

Clinic survey Pregnant women Placenta BDNF NC: BDNF differentially in placenta;
PE not

Sahay et al., 2020 (82)

Inflammation
(cell model)

PGE2 astrocytes BDNF release↑ Hutchinson et al., 2009 (83)

Inflammation
(cell model)

TNF-alpha astrocytes BDNF release↑ Giralt et al., 2010 (84)

Inflammation LPS, 8-ceramide microglia BDNF maturation↑; BDNF release↑ via
AA2R-PKA/PLC

Gomes et al., 2013 (85).

Pain high-frequency stimulation
(HFS; 100 Hz, 10 V)

Microglia in spinal dorsal horn BDNF release↑ Zhou et al., 2019 (86).

chronic migraine nitroglycerin microglia BDNF release↑via Ras/p38 Long et al., 2020 (87)

Human test, animal
model, cultured cells

caffeine, glutamate CNS, stratum radiatum antagonism of adenosine and GABAA
receptors, IRS, PI3K/Akt

Lao-Peregrıń et al., 2017 (88)

Oxidative stress
(cell model)

6-hydroxydopamine astrocytes BDNF release↑ Datta et al., 2018 (89)
F
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AA2R, Adenosine A2; ACEI, angiotensin converting enzyme inhibitor; Arc, hypothalamic arcuate nucleus; ATRB, angiotensin receptor blocker; CAPS1, Ca2+-dependent activator protein for
secretion; DG, dentate gyrus; DM, diabetes mellitus; eNOS, endothelial nitric oxide synthase; Ex, Exercise; HS, High salt; IRS, insulin receptor substrate 2; LP, low protein; LPS,
lipopolysaccharides; LV, left ventricle; MMSE, mini-mental state examination; NC, normotensive control; PE, preeclampsia; PVN, paraventricular nucleus; RVLM, Rostral Ventrolateral
Medulla; SD, Sprague-Dawley rats; SHR, spontaneously hypertensive rats; SNA, sympathetic nerve activity; SON, supraoptic nucleus: WKY, Wistar Kyoto rats
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HFD environment can lead to extensive molecular and cellular

changes in the offspring's brain through epigenetic modifications.

These changes may include downregulation of BDNF, mutations in

the BDNF gene and/or its receptor, and alterations in downstream

signaling pathways in the brain, all of which can contribute to

neurodevelopmental disorders in the offspring (52). Additionally,

maternal HFD impacts the epigenetic programming of appetite and

energy homeostasis in the fetus, playing a crucial role in the

development of childhood obesity (125). This evidence aligns

with the phenotype associated with central BDNF knockdown

(Kd) (39, 113), and reduced hypothalamic BDNF expression has

been observed in leptin-receptor-deficient db/db obese mice (126).

HFDs induce the expression of neuropeptide Y (NPY) and

agouti-related protein (AgRP) in orexigenic neurons, while

downregulating pro-opiomelanocortin (POMC) and cocaine- and

a mphetamine-regulated transcript (CART) in anorexigenic

neurons. These changes occur in various hypothalamic nuclei,

including the ventromedial nucleus (VMN), dorsomedial

hypothalamus (DMH), lateral hypothalamus (LH), and

paraventricular nucleus (PVN) in adults. BDNF and its receptor

TrkB are expressed in these regions, with BDNF being most

abundant in the VMN under normal dietary conditions. Maribel

Rios (126) has elucidated the feeding circuits within these

hypothalamic nuclei, demonstrating that HFD-induced changes

in these circuits can disrupt appetite regulation and energy

balance, potentially leading to obesity.
3.2 Hypothalamic BDNF decreases food
intake and increases energy expenditure

Postnatal animal models demonstrate that hypothalamic BDNF

suppresses food intake by acting on both orexigenic and

anorexigenic neurons (39, 113). Consistently, genetically

engineered rodents with CNS BDNF knockdown develop

hyperphagia and obesity (113, 127, 128). Similarly, individuals

with Rett syndrome, characterized by a deficiency in central

BDNF, are reported to have a higher risk of obesity (129).

The cellular mechanism involves central BDNF activating the

sympathetic nervous system via the Ca2+-CREB signaling pathway

(1, 59, 130, 131). The cumulative effect of central BDNF activity

reduces appetite by increasing the expression of anorexigenic

molecules and decreasing the expression of orexigenic molecules

in the hypothalamus (39). Additionally, it enhances energy

expenditure by boosting sympathetic nerve activity (130),

ultimately leading to a reduction in body mass.
3.3 Central estrogens decrease appetite,
increase energy expenditure and promote
weight loss

Estrogen is primarily produced in the ovaries in females, but it is

also produced by the adrenal glands and adipose tissue in both males

and females (132). Additionally, the CNS can produce estrogens, as it

contains all the necessary enzymes for this process. Forebrain-specific
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knockout of aromatase, the rate-limiting enzyme for neuronal

estrogen production, leads to a significant reduction in synaptic

density and related functions in mice (133). As adipocyte enlarge,

the expression of aromatase in these cells increases, resulting in

elevated estrogen levels (16, 121, 134), particularly in postmenopausal

women, where this contribution constitutes a substantial portion of

endogenous estrogens (134).

Regardless of their sources, estrogens predominantly exert a

catabolic effect by interacting with anorexigenic and orexigenic

neurons in the hypothalamic arcuate nucleus (ARC). The arcuate

nucleus plays a critical role in long-term energy balance, integrating

signals from a variety of hormones, including estrogens and leptin

(135, 136). Estrogens activate POMC neurons in the ARC, which in

turn inhibit NPY/AgRP neurons, leading to reduced food intake

(137). Estrogens modulate POMC neuron activity and inhibit

AgRP/NPY neuron activity in the ARC through genomic

pathways, Gq-coupled membrane ERa (137), and ERa-
independen t mechan i sms (138) . They enhance the

phosphorylation of protein kinase B, activating a key neuronal

signal pathway (139), including protein kinase C, protein kinase A,

phosphatidylinositol 3-kinase, and mitogen-activated protein

kinase (117, 140, 141). Additionally, estrogens increase POMC

neuronal activity and reprogram synaptic plasticity in the arcuate

nucleus via a signal transducer and activator of transcription 3

(STAT3)-dependent mechanism, ultimately reducing feeding.

Notably, this signaling pathway operates independently of leptin

(142). A comprehensive summary of the neuronal circuit and

estrogenic signaling pathways can be found in the work of

Mahboobifard et al. (141). The ventromedial nucleus of the

hypothalamus (VMH) is a key site where both E2 and BDNF act

on energy expenditure, primarily receiving projections from AgRP/

NPY and CART/POMC neurons in the ARC (143, 144). Estrogen

centrally inhibits AMP-activated protein kinase (AMPK) selectively

in the VMH through ERa, enhancing sympathetic nervous system-

brown adipose tissue (SNS-BAT) signaling and promoting

thermogenesis in brown adipose tissue (BAT) (145). This results

in increased glucose transport and uptake, aerobic glycolysis, and

mitochondrial function, ultimately boosting ATP product, energy

expenditure, and weight loss. Moreover, estrogens can also activate

the Gq-coupled membrane estrogen receptor (Gq-mER) in NPY/

AgRP neurons, which enhances the GABAergic postsynaptic

response, however, ERa activation by E2 attenuates this effect.

This highlights a functional dichotomy in the central estrogenic

regulation of energy homeostasis, contrasting the rapid membrane-

initiated signaling via ERa with that of Gq-mER in CNS neurons.

(116). Additionally, estradiol administration has been shown to

attenuate skeletal sympathetic nerve activity responses to exercise in

postmenopausal women (146), indicating suggesting that estrogen

may regulate sympathet ic act iv i ty in a spec ific and

conditional manner.

In addition, estrogens inhibit food intake by enhancing

cholecystokinin (CCK)-induced satiety, which involves increased

activity of NTS neurons through binding to ERa. This interaction

regulates target gene expression, including the upregulation of c-fos

(147–149) and postsynaptic density 95 (PSD-95) (139). Additionally,

estrogens amplify other appetite-reducing signals, such as apolipoprotein
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A-IV (apo A-IV) (150) and glucagon-like peptide 1 (GLP-1) (151)

within the NTS to further reduce food intake. Furthermore, BDNF/TrkB

signaling in the NTS serves as a downstream mediator of estrogen's

effects on energy intake, specific knockdown of BDNF in the NTS

diminishes the feeding response to estrogens (152).
3.4 The role of adipocytic BDNF in the
peripheral regulation of fat mass

The peripheral effects of BDNF on cellular functions and the

associated signaling pathways related to metabolism have been

demonstrated (24, 153) and thoroughly reviewed by Iu and Chan

(24, 111). In contrast to the lower BDNF levels in the CNS observed

in HFD-induced obese mice, these mice exhibit higher levels in

inguinal white adipocyte tissue (iWAT) and epididymal white

adipose tissue (eWAT) compared to controls, with this increase

being macrophage-dependent (154). Adipocyte-specific TrkB

knockout mice show resistance to HFD-induced obesity in

females (24). Conversely, fat pads in systemic BDNF knockdown

mice still respond to HFD stimulation by secreting more leptin than

controls (155). Moreover, BDNF knockout leads to obesity (39),

indicating that adipocytic BDNF is essential for the central-

peripheral BDNF regulatory loop, which integrates central

appetite signals and adipokine levels (155). Without adipocytic

BDNF, the obese phenotype resulting from central BDNF

deficiency cannot manifest, thus, the presence of adipocyte BDNF

is necessary for expressing obesity due to central BDNF deficiency.
3.5 Peripheral effects of estrogen on
body mass

Fat pads serve as the primary extragonadal sites for estrogen

production, acting locally in a paracrine fashion or being released

into circulation, particularly in postmenopausal women, men, obese

individuals, and other cases (121). Peripherally, estrogens exert

various metabolic effects, including increasing mtDNA polymerase

Polg1 levels and mitochondrial content in WAT through ERa,
thereby enhancing energy expenditure (156). They also improve

insulin sensitivity by promoting energy sensing and glucose uptake

via the Akt-AMP-activated protein kinase (AMPK) pathway in

skeletal muscles (157). Additionally, estrogens reduce the

expression of hepatic lipogenic genes, such as FASN, acetyl CoA

carboxylase (ACC), and stearoyl CoA desaturase 1(SCD-1), through

the STAT3 signaling pathway in the liver (158, 159). Furthermore,

estrogens strongly inhibit key adipogenic genes, such as PPARg,
CBP, and adipsin, as well as leptin production, while increasing

hormone-sensitive lipase expression and reducing adipocyte size

(15, 160). Notably, estrogens significantly influence body fat

distribution, favoring the accumulation of metabolically healthy

subcutaneous fat in females while promoting visceral fat

accumulation in males or OVX females (15, 15, 161, 162). The

actions of estrogens in adipose tissue also extend to influence
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adipocyte differentiation (163) and reducing inflammation (164).

Through ERa activation, estrogens provide protection against

adiposity, insulin resistance, and type II diabetes while

simultaneously increasing energy expenditure (165, 166). In this

context, ERb has a counteractive effect against ERa (166).

Similar to central estrogen, peripheral estrogens can also

correct the abnormal appetite and metabolism resulting from

central BDNF deficiency. This correction involves the

transcriptional regulation of metabolic enzymes, including the

downregulation of fatty acid synthase (167) and the upregulation

of hormone-sensitive lipase (168). In summary, estrogens

integrate brain and body metabolism, encompassing the effects

of BDNF on metabolic processes, enabling the peripheral

metabolic state to reflect the brain's bioenergetic status (141).
3.6 The collaborative effect of estrogen
and BDNF on energy expenditure and
body weight

In animal models, estrous rats undergoing sham surgery and

ovariectomized rats cyclically treated with estradiol exhibit

increased sensitivity to lower doses of centrally administered

BDNF, leading to reduced food intake compared to male rats and

oil-treated ovariectomized rats (131). This finding suggests a

cooperative effect between estrogen and BDNF in regulating food

intake. Although a tri-molecular cascade model—estrogen-BDNF-

NPY/AgRP—has been established in the hippocampus and dentate

gyrus, its direct evidence in the hypothalamus, particularly in the

arcuate nucleus (ARC) and ventromedial hypothalamus (VMH),

remains limited (20). Given that the estrogenic effect on BDNF

expression is highly location-specific, research is needed to elucidate

their relationship (21, 22, 73). The following paragraphs will focus

on detailing their interaction, supported by direct evidence from the

nuclei in the hypothalamus and brainstem, including the ARC,

ventromedial hypothalamus (VMH), and nucleus tractus

solitarius (NTS).

The ARC is a key site for the actions of steroids, BDNF, and

leptin action, mediating leptin's effects through the antagonistic

activity of POMC and AgRP/NPY neurons (135, 169, 170). These

microcircuits play crucial roles in energy homeostasis: AgRP/NPY

neurons signal hunger and stimulates food intake, while POMC

neurons signal satiety and reduces food intake (171, 172). leptin acts

as a monitor of energy balance within the system (173). Estrogens

activate POMC neurons and inhibit AgRP/NPY neuron activity

through ERa-dependent genomic and membrane-coupled

pathways (137), as well as ERE-independent signaling (117, 138,

140). In contrast, the ARC expresses little to no TrkB in neurons

that produce cocaine– and amphetamine–regulated transcript

(CART) or NPY, suggesting that BDNF likely serves as a

downstream effector of melanocortin-4 receptor (MC4R)

signaling to decrease the NPY/AgRP neuron activity (173). MC4R

is activated by a-melanocyte-stimulating hormone (a-MSH), a

posttranslational product of POMC, which increases BDNF
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expression through the classic cAMP-Protein kinase A-cAMP

responsive element binding protein (CREB) pathway and the

ERK-ribosomal p90 S6 kinase (RSK)-cFos pathway in the rat

hypothalamus (174). These evidence supports a model of

estrogen-BDNF interplay in the ARC, independent of genomic

estrogen effects on BDNF expression (9). This model posits that

estrogen, acting in concert with POMC/ a-MSH, MC4R, BDNF,

and NPY, modulates food intake regulation (173). Additionally,

rapid, non-genomic estrogen signaling and acute BDNF signaling

have been shown to promote dendritic spine formation and

stabilization, supporting synapse and circuit plasticity while

synergistically inhibiting appetite (26).

The VMH is crucial for regulating satiety, with BDNF

primarily expressed there through its promoters II (175).The

VMH-specific expression of BDNF and Trek B is essential for

the suppression of appetite (175). Mutation in BDNF promoters II

or Trek B deficiency in the VMH produce phenotypes similar

those observed in leptin-deficient (Ob/Ob) mice (170),

establishing BDNF as an integral component of central

mechanisms mediating satiety (113). BDNF neurons in the

VMH are activated by ARC POMC neurons (176, 177), which

are also activated by estrogens in the ARC. This activation occurs

through the inhibition of the small conductance of the calcium-

activated potassium (SK) channel (178), as well as through ERa
dependent signaling and c-Fos mediating cascades (116, 117).

Moreover, both estrogen and BDNF work together to maintain

mGluR5 function, regulating the firing rate, intrinsic excitability,

and excitatory and inhibitory transmission in VMH neurons,

thereby facilitating glycemic control and lipid metabolism (179).

Their cooperation may dependent on ERa (180) and GPER1

signaling (181). However, VMH BDNF primarily exerts its

anorexigenic effects through Trek B signaling, interacting

indirectly with the leptin pathway (182), while estrogens mainly

enhance sympathetically driven thermogenesis (118, 180).

In the NTS, estrogens increase BDNF expression by binding to

ERa, but not ERb, thereby initiating estrogen's genomic effect (20).

Similarly to the role of BDNF in the ARC, BDNF/TrkB acts

downstream of estrogen-ERa signaling; knocking down BDNF or

administering a selective TrkB antagonist in the NTS prevents the

anorexic effect of estrogen (152). This suggests that estrogens enhance

BDNF's satiating potency, involving CCK-CCKR1 in leptin receptor-

positive neurons in the NTS (183, 184). Estrogens also increase the

expression of apo A-IV, a satiation factor from the gut and brain,

through cytosolic ERa (150). They interact with apo A-IV via the cell

membrane-bound ERa-PI3K/Akt signaling pathway to reduce food

intake (26, 139, 185), while ERb appears to have no effect on these

pathways (186). Currently, there is no evidence indicating that BDNF

is involved in the apo A-IV-mERa-PI3K/Akt pathway.
Non-CNS BDNF may increase in response to the loss of central

BDNF induced by HFD (154). Similarly, extragonadal estrogen

levels rise in enlarged fat pads due to increased 11b-HSD1 activity,

which is triggered by central BDNF deficiency (39, 128, 187) and

also observed in postmenopausal women (121). This suggests that

peripheral estrogen and BDNF may compensate for the lack of
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central BDNF; however, this compensation may lead to a high

equilibrium body weight (188). Notably, leptin exhibits

antidepressant-like effects (189). Peripheral estrogen exerts

autocrine and paracrine effects that contribute to increased body

mass, alongside elevated BDNF and leptin levels, in the context of

central BDNF deficiency— an occurrence referred to as "obesity

protecting obesity" (132, 188). In contrast, under normal BDNF

levels, estrogen finely tunes lipogenesis in various tissues,

supporting a healthy metabolism (165).
3.7 Leptin: a key intersection of BDNF
and estrogens

Under most circumstances, body energy levels are primarily

sensed through circulating leptin levels (190). The presence of ER,

leptin receptor, and BDNF/TrkB in POMC neurons within the ARC

indicates that leptin significantly influences the interplay between

BDNF and estrogens in regulating energy homeostasis (191, 192).

Hypothalamic BDNF downregulates leptin production in adipocytes

via sympathoneural b-adrenergic signaling (193). In contrast, central

BDNF knockdown leads to obesity and elevated leptin expression in

adipocyte (39). This increase in fat raises both estrogen levels (121)

and adipokine levels, including leptin (128, 194). In normal cycling

women, leptin levels positively and strongly correlate with estrogen

levels, and increases further with larger fat depots (195).

Leptin reduces appetite by binding to the leptin receptor,

particularly ObRb, in the arcuate (ARC), VMH, and DMH nuclei

of the hypothalamus, triggering signal pathways like STAT, PI3K,

and ERK (196). Centrally, leptin augments POMC neuron activity

via BDNF-expressing neurons in the hypothalamic ARC, a process

known as the leptin–BDNF pathway, which alters the sympathetic

architecture of adipose tissue through a top (ARC)-down (PVN)

neural mechanism (141, 170). Estrogens sensitize the anorexigenic

effect of leptin by increasing the expression of the leptin receptor

through genomic pathways and by potentiating leptin-induced

pSTAT3 activation in the hypothalamus (197). Furthermore,

leptin promotes local estrogen production in adipocytes by

upregulating the aromatase expression and activity via STAT3

and ERK signaling pathways (198).

Estrogen deficiency, seen in ovariectomized (OVX) mice (70)

and postmenopausal women (141), along with central BDNF

knockdown (39), leads to increased fat accumulation and elevated

leptin level. Adipocyte-specific deletion of BDNF/TrkB results in

resistance to HFD-induced obesity, particularly in females (24),

indicating that adipocytic BDNF is essential for the adipocytic

response to central BDNF signaling and the production of

adipocytokines, including leptin. Additionally, activation of

mERa/mERb can reduce body weight gain and fat accumulation

in ovariectomized (199) and leptin-deficient obese mice through the

PI3K pathway (200), suggesting that mER signaling can regulate

energy balance independently of leptin signaling. Thus, part of the

protective effects of estrogen and BDNF on energy homeostasis

involves leptin (201), which may support the effects of their
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deficiency. It is possible that estrogen facilitates, or mimics some

leptin actions (190), indicating that their interplay in regulating

energy homeostasis is complex and warrants further combined

studies rather than isolated examinations.

The collaborative influence of BDNF and estrogen on body

mass regulation is illustrated in Figure 1.
3.8 Evidence for the interplay Between
BDNF and estrogen in the liver and
skeleton muscle

Peripheral organs such as muscles and the liver play vital roles

in the central-peripheral circulation alongside fat pads. The

functions of hepatic and muscle BDNF are extensively reviewed

by Lu and Chan (111). Muscle-specific BDNF is essential for the

regulatory loop that maintains energy balance; muscle-specific

BDNF knockout (MBKO) mice exhibit impaired mitofission and

mitophagy, leading to exacerbated body weight gain, reduced

energy expenditure, and poor metabolic flexibility (202).

Similarly, BDNF deficiency in the liver impairs metabolic

regulation, resulting in hepatic steatosis and obesity (127). The

deficiencies of BDNF in both liver and skeletal muscles contribute

to obesity, highlighting a complex interaction among these organs

that extends beyond the scope of this review.
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4 The interaction between BDNF and
estrogen in the development
of hypertension

4.1 BDNF enhances response to recurrent,
sustained, or new stressors following
blood pressure stimuli

Blood pressure is directly regulated by the renin-angiotensin

system (RAS) and its counteracting system. The activity of RAS is

influenced by a diverse of plasma signals released from organs or

tissues, such as the CNS, kidneys, lungs, liver, and adipose tissue, all of

which are enriched with BDNF (1, 203). Changes in the levels of

individual RAS components, such as angiotensinogen (AGT) or renin,

may not directly correlate with blood pressure (unpublished data).

However, the CNS effectively encodes these signals by modulating

central BDNF expression, which facilitates neuroplasticity (1). The

reconfigured neural network allows the brain to adaptively respond to

recurring, sustained, or novel stressors.

The role of BDNF in responding to hypertensive stimuli during

prenatal embryogenesis and postnatal adaptation has been

thoroughly reviewed by Manti et al. (204) and Johnson et al (1).

Table 2 summarizes key animal models and clinical studies that

highlight the causative factors of brain’s hypertensive response

through BDNF-related pathways.
FIGURE 1

Collaborative interaction between BDNF and estrogen in the regulation of body mass. Schematic of the collaborative interaction between BDNF and
estrogen through 1. Mutual activity enhancement: estrogen directly upregulates BDNF expression via the ERa-dependent genomic pathway, while
BDNF is essential for estrogen’s effects through ERa-independent non-genomic pathways. 2. Regulation of VMH function: Both BDNF and estrogen
enhance energy expenditure through the VMH-SNA-BAT pathway. 3. Regulation of NTS function: With the modulation of leptin released from fat
pads, both BDNF and estrogen potentiate anorexic effects and suppress orexic effects to increase energy expenditure and reduce appetite. 4.
Regulation of ARC function: BDNF and estrogen collaborate in the ARC to upregulate POMC and CART expression while downregulating NPY and
AgRP expression, thus regulating appetite. Additionally, estrogen and BDNF mutually enhance their expression in fat pads. For more details, please
refer to the relevant sections in the text. AgRP, agouti-related peptide; ARC, arcuate nucleus; BAT, brown adipocyte tissue; CART, cocaine- and
amphetamine-regulated transcript; CNS, central nerve system; HFD, high fat diet; NPY, neuropeptide Y; NTS, Nucleus Solitarius; OVX, ovariectomy;
POMC, Pro-opiomelanocortin; SNA, sympathetic nerve activity; VMH, ventromedial nucleus; WAT, white adipocyte tissue. + increase; − decrease.
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4.2 Slow pressor-induced hypertension:
animal models demonstrating the gradual
cumulation of BDNF effects on enhanced
hypertensive responses

Pressor agents, such as high salt/AngII, are commonly used to

study hypertension development in animal models. These agents

increase BDNF levels in the hypothalamic paraventricular nucleus

(PVN), enhancing neuronal activity in this region. This heightened

activity stimulates the release of vasopressin (VP), activates

downstream signaling pathways that raise BP (59, 207), and

increases expression of RAS components (1, 59, 207).

In models employing low-dose salt and AngII induction, a

method known as subpressor priming, animals display a

progressively heightened hypertensive response (1, 59). This

priming, achieved with low dose of salt (59), Ang II (214) or

aldosterone (215), sensitizes animals to Ang II-induced

hypertension by increasing BDNF levels in the PVN. This suggests

that BDNF serves as a critical hub for multiple pathways, enhancing

RAS sensitivity and exacerbating the development of hypertension.

Johnson et al. (1) illustrate the central circuitry of BDNF, detailing its
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signaling pathways and physiological effects, including its impact on

sympathetic tone and RAS component expression.

However, the roles of BDNF in RAS sensitization by other

factors, such as inflammatory agents (216) and predator scent

stress (217), remains an enigma. The observed decline in plasma

and serum BDNF levels with age in humans (218), along with rising

blood pressure, suggests the involvement of additional factors,

including sex hormones (219). Notably, microinjection of 1 nmol/L

BDNF into the subfornical organ (SFO) of anesthetized rats has been

shown to decrease blood pressure (220), indicating that this effect

may be context-dependent rather than solely attributable to BDNF.
4.3 Central maintenance of estrogen in
regulating blood pressure

The impact of estrogens on hypertension is evident in the

observed sex dimorphism, where adult men generally exhibit higher

blood pressure. This distinction is further illuminated by examining

blood pressure changes in women from adolescence through puberty

and into postmenopause, highlighting the role of estrogen.
TABLE 2 Representative references on the adaptive expression of BDNF in response to hypertensive stimuli including high salt, Ang II, and high fat.

Animal or cell model Stress factor(s) Brain region (s) Mechanisms References

Subpressor doses priming
(mouse model)

ANG II; aldosterone;
high salt

PVN and RVLM BDNF↑; p38 MAPK, and
cAMP-CREB

Clayton SC, et al., 2014 (59)

High salt mouse model Na+, Cl- VP Neurons BDNF↑-TrkB-KCC2↓-
VP MNCs

Choe et al., 2015 (58); Prager-
Khoutorsky, et al., 2017 (205)

High salt mouse model amlodipine
and irbesartan

cerebral vessels BDNF↑-stroke↓ Hasegawa et al., 2016 (206)

SD rats BDNF
overexpressed, BP↑

PVN, Astrocytes in the
mediobasal hypothalamus

NMDAR↑ and GABAAR↓;
IKKb/NF-kB↓

Thorsdottir et al., 2021 (18);
Zhang et al., 2017 (72).

BDNF SON Kd High salt (HS) SON HS-SON BDNF↑-VP↑, but
not MAP;

Balapattabi et al., 2018 (207)

Conditional CNS knockout Ang II, nervous
system BDNF (+/-)

CNS BDNF↓-RAS↓-BP↓; BM↑;
resistant to AngII-induced HT

Zhang et al., 2019 (39)

Complete BDNF knockout Bdnf+/− rats BM↑, hepatic ALAT↓, liver
regeneration &steatosis↑, IL-6↑

BDNF-liver regeneration↓, BM↓
(similar to CNS BDNF Kd)

Grezlak et al., 2023 (127)

High salt +NPY Arc
targeting overexpression

NPY+/-HS ARC HS- NPY↓-BDNF↑-VP↑-MAP Zhang et al., 2022 (208)

Central Ang II-induced mice Ang II Central BDNF and BP BDNF↑-SNA↑-BP↑ Becker et al., 2017 (209)

Clinic survey trans fat intake Plasma BDNF Low BDNF correlates
with hypertension

Harlyjoy et al., 2023 (37)

Clinic survey (dimorphism) Obesity, age platelet and plasma BDNF BDNF↓ with BW, Age; platelet
BDNF Man>Woman

Lommatzsch et al., 2005 (210)

Clinical trial on antihypertensive
medication, MMSE

ACEI, ATRB Plasma BDNF; SBP SBP↓, plasma BDNF (P = 0.09)
(3-month treatment)

Demir et al., 2016 (211)

AD (cell culture) Amyloid-b hippocampal neurons Impaired BDNF transportation Seifert et al., 2016 (212)

AD (cell culture) Amyloid-b 42 neuroblastoma cell line BDNF release↑ Merlo et al., 2018 (213)
ACEI, angiotensin converting enzyme inhibitor; AD, Alzheimer's disease; Arc, hypothalamic arcuate nucleus; ATRB, angiotensin receptor blocker; BM, body mass; BP, blood pressure; CNS,
central nervous system; HS, high salt; HT, hypertension; Kd, knock down; MMSE, mini-mental state examination; RAS, renin-angiotensin-system; HS, High salt; PVN, paraventricular nucleus;
RVLM, Rostral Ventrolateral Medulla; SA, sympathetic activity; SD, Sprague-Dawley rats; SON, supraoptic nucleus; VP, Vasopressin.
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Additionally, fluctuations in blood pressure throughout the menstrual

cycle underscore estrogen's regulatory influence (219).

Estrogenic signals are required for the baseline expression of

certain RAS components, such as renin (10, 221), angiotensin-

converting enzyme 2 (ACE2) (222) and angiotensinogen (12, 221).

Furthermore, endogenous estrogens help sustain normal blood

pressure in premenopausal women, who typically have lower

blood pressure compared to age-matched men (223). One

mechanism for this effect is the vasodilation induced by nitric

oxide (NO) and hydrogen sulfide (H2S), both produced by

estrogens through ERa, ERb and GPER-dependent pathways

(223, 224). This evidence suggests that estrogens are essential for

maintaining blood pressure, rather than merely reducing it.

Unlike BDNF, which potentiates the blood pressure response,

estrogens act centrally to counteract these stimuli, contributing to

stable blood pressure regulation. This stability is partly due to their

transcriptional effects, which inhibit RAS components in an ERa-
dependent manner (225). For example, low levels of RAS

components are observed in female mice compared to their male

counterparts (219) and OVX females (203). This subtle difference

likely stems from prenatal fetal programming, and is further

amplified by estrogen's effects during puberty, leading to the

observed sexual dimorphism in blood pressure between males

and females (219). This dimorphism tends to diminish with

menopause and aging (219, 226).

Estrogen reduces blood pressure centrally by inhibiting RAS

components in the subfornical organ (SFO) and other areas of the

lamina terminalis (LT), which are vital for long-term blood pressure and

hydroelectrolyte balance in the brain (227). Specifically, estrogens

reduce the expression of central RAS components, such as the AT1

receptor and ACE1, in the LT (227). Conversely, central knockdown of

ERa negates the protective effect on Ang II-induced hypertension,

resulting in a significant increase in AT1, ACE1 and renin, along with a

decrease in angiotensinogen (225). Additionally, maternal hypertension

sensitizes ovariectomized rats to Ang II-induced hypertension in a sex-

specific manner, linked to elevated RAS components in the LT and

paraventricular nucleus (PVN). Administration of estradiol through the

SFO can partially reverse this prenatal sensitization (228). Notably,

BDNF knockdown in the SFO also decreases blood pressure by

downregulating RAS components (39), indicating that BDNF and

estrogen may antagonize each other in the regulation of blood

pressure through their impact on RAS components.

In addition to regulating central RAS components, estrogens play

a crucial role in modulating neuronal activity in the rostral

ventrolateral medulla (RVLM), a key regulatory center for heart

rate, blood vessel constriction, and blood pressure. In the Goldblatt

two-kidney one-clip (2K-1C) male rat model of renovascular

hypertension, microinjection of 17b-estradiol into the RVLM

significantly reduced mean arterial pressure and renal sympathetic

nerve activity in control rats compared to experimental rats. This

effect is primarily mediated by ERa rather than ERb (229).

Furthermore, GPER may also influence blood pressure regulation,

as microinjection of the G protein-coupled estrogen receptor (GPER)

agonist G-1 into the RVLM resulted in a marked increase in mean

arterial pressure and renal sympathetic nerve activity in experimental

rats (229). These findings suggest a counteractive relationship
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between the genomic and non-genomic estrogen effects in the

RVLM, mediated through ERa and GPER (229).

In addition to modulating RAS and sympathetic nerve activity,

estrogens play a role in regulating various factors related to hypertension,

including vasodilation and fluid balance, allowing for adaptation to

environmental changes. For a more comprehensive discussion, please

refer to the review by Ashraf and Vongpatanasin (230).
4.4 Comparison of BDNF and estrogen in
the regulation of RAS activity

Serum BDNF levels influence blood flow and are linked to

angiogenesis through TrkB signaling (231). However, it is unclear

whether elevated BDNF directly causes increased blood pressure or

if changes in blood pressure influence BDNF levels. For example,

exogenous BDNF induces vasodilation in aortic rings, while

hypertension suppresses BDNF expression in aortic endothelial

cells (78).

Estrogens regulate blood pressure by modulating RAS activity

through both genomic and non-genomic effects. In contrast to

BDNF, which generally increases most RAS components in both

the CNS and peripheral organs, except for renin in the kidney (39),

estrogens selectively upregulate angiotensinogen levels while

downregulating renin levels, angiotensin-converting enzyme

(ACE1) activity, AT1 receptor density, and aldosterone production.

Consequently, estrogens reduce RAS activity by downregulating most

of the RAS components (232). Notably, the transcriptional effects of

estrogen on RAS components in peripheral organs are tissue specific.

For example, estrogens rapidly and significantly induce

angiotensinogen expression in the liver but not in the cardiac atria

(221). Additionally, estrogens potentiate vasodilation through eNOS

pathway, and attenuate vasoconstriction via GPER signal (233).

These patterns suggest that estrogen finely and cooperatively

regulates blood pressure by integrating signals from the central

nervous system to the peripheral tissues, much like how it shapes

fat distribution for a healthy physique.

Overall, central BDNF amplifies the response to hypertensive stimuli

by enhancing neuronal plasticity and increasing sympathetic nerve

activity. In contrast, estrogens play a key role in establishing the blood

pressure setpoint as part of metabolic homeostasis (132) and counteract

BDNF-induced deviations through transcriptional regulation of RAS

components and by reducing sympathetic nerve activity. The outcome

of their interaction can vary significantly depending on factors such as

the specific reagents used, cell types involved, and life stages of

individuals, such as premenopause, perimenopause and postmenopause.
4.5 Leptin enhances the sensitivity of
central RAS activity

Estrogen increases the synthesis and secretion of leptin from

adipocytes through ERa signaling, but not ERb (13). Leptin, in

turn, sensitizes the body to hypertensive stimuli by enhancing

central RAS activity and promoting the release of proinflammatory

cytokines (234), while also innervating BDNF neurons in the
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paraventricular nucleus of the hypothalamus (170). Thus, instead of

acting as a collaborative factor with estrogen in energy homeostasis,

leptin functions as a counterpart for estrogens in blood pressure

regulation. However, leptin resistance is also reported to contribute to

hypertension in Bardet-Biedl syndrome mouse models (235),

suggesting that obesity paradox may be at play (236), or leptin's

effects can vary depending on different physiological backgrounds.

These pathways (Figure 2) illustrate the communication

between peripheral fat pads and the hypothalamus, clarifying the

roles of both central and peripheral BDNF in the relationship

between obesity and hypertension. This model may also account

for the sensitization of angiotensin II-induced hypertension in adult

offspring that were primed by maternal high-fat diet (237).

The interaction between BDNF and estrogen, along with the

role of leptin, is illustrated in Figure 2.
4.6 Evidence of BDNF and estrogen
interaction in body fluid balance

The amount of body fluids fluctuates during normal reproductive

cycles, in sync with varying levels of ovarian hormones. Estrogen
Frontiers in Endocrinology 11
treatment enhances fluid retention by lowering the threshold for

arginine vasopressin (AVP) release and increasing plasma renin

activity (238). Studies have demonstrated that water deprivation for

24 hours, 2 days, and 4 days, as well as salt loading for 7 days, result in

a significant increase in BDNF gene transcripts in the SFO in rats

(239), suggesting the BDNF’s involvement in the regulation of body

fluids. However, there is limited direct information available on the

specific interaction between BDNF and estrogen in this context.
5 Postmenopausal syndrome, a clinic
model of estrogen and
BDNF deficiency

Estrogen deficiency is a key factor in the onset of menopause.

Postmenopausal women experience a decline in plasma estrogen

levels, leading to menopausal symptoms, including metabolic

changes (110). Both postmenopausal women and amenorrheic

individuals exhibit significantly lower plasma BDNF levels

compared to fertile females (19, 240), underscoring the complex

interplay between BDNF and estrogen highlighted in this review.
FIGURE 2

Antagonistic interaction between BDNF and estrogen in the regulation of blood pressure. Schematic of the antagonistic interaction between BDNF
and estrogen in the regulation of blood pressure (BP). BDNF increases blood pressure through 1. SFO-PNN-VP Pathway: by activating this pathway,
BDNF increases VP release to elevate BP; 2. SFO-PVN-RVLM Pathway, via this pathway, BDNF enhances SNA to increase BP; 3. RAS component
expression, BDNF systemically upregulates the RAS components to elevate BP. The expression of BDNF is activity-dependent and influenced by
factors such as high salt intake, Ang II, and a high-fat diet. Estrogens maintain baseline blood pressure by transcriptionally regulating RAS
components in the liver, kidneys, lungs, CNS, and fat pads. Additionally, Estrogens enhance the generation of H2S and NO for vasodilation through
ERa, ERb, and mGluRs pathways. Estrogens play an integrative role across various organs and tissues, fine-tuning blood pressure regulation,
including modulating the effects of BDNF. ACE1, angiotensin converting enzyme 1; AGT, angiotensinogen; AngII, angiotensin II; CNS, central nerve
system; ERa/b, estrogen receptor a/b; GPER, G-protein coupled ER; HFD, high fat diet; H2S, hydrogen sulfide; NO, nitric oxide; PVN, paraventricular
nucleus; RAS, renin-angiotensin-system; RVLM, Rostral Ventrolateral Medulla; SAN, sympathetic activity; VP, vasopressin.
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Postmenopausal women often experience weight gain,

particularly in the form of visceral obesity (162, 241). The weight

gain and the accumulation of abdominal fat are likely due to

estrogen deficiency, as hormone replacement therapy (HRT) can

alleviate these symptoms in postmenopausal women (242, 243).

Estrogen deficiency results in a reduction in estrogen-dependent

BDNF (9) and ERa (11) expression in target tissues, thereby further

weakening estrogenic signals. Ultimately, estrogen deficiency results

in a loss of fine-tuned fat accumulation, leaving postmenopausal

women with more visceral fat, which becomes the primary source of

leptin, adipokine (162, 194, 243), RAS components (244, 245) and

even estrogen (134) in postmenopausal women.

Increased visceral fat mass leads to higher synthesis of leptin,

which upregulates BDNF in hypothalamic neurons (182). Leptin

stimulates lipolysis while inhibiting lipogenesis (246) and enhances

thermogenesis in BAT (246). Additionally, it restores sympathetic

innervation of WAT (194), acting as a substitute for estrogen by

suppressing appetite, increasing energy expenditure and reducing

body weight and adiposity. Moreover, leptin modulates the

neuroendocrine axes, autonomic nervous system, neural plasticity,

and memory, thereby partially replicating the effects of estrogen and

BDNF (194).
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However, alongside aging factors, the elevation of leptin

increases sympathetic nerve activity (247) and RAS activity in

postmenopausal women and OVX animal models (234, 248),

contributing to postmenopausal hypertension. Additionally,

elevated levels of adipokines such as IL-1 and IL-6 from enlarged

visceral fat pads may promote vascular inflammation, endothelial

dysfunction, and increased vascular resistance, further exacerbating

hypertension (194, 249, 250). These factors can also trigger the

immune system, leaving postmenopausal women vulnerable to

chronic inflammatory syndromes (85, 194). These processes are

illustrated in Figure 3.

Given that central BDNF knockdown leads to resistance to Ang

II-induced hypertension (39), while central ERa knockdown results

in heightened sensitivity to Ang II-induced hypertension (225),

BDNF and estrogen function as physiological antagonists.

Specifically, central BDNF contributes to an elevated blood

pressure in response to environmental stimuli (1, 67), whereas

estrogen’s central effect is to maintain blood pressure within the set

point range (251). Reduced signaling from both BDNF and estrogen

can impair an individuals' ability to regulate blood pressure in

response to environmental changes, potentially leading to

hypertension, especially in postmenopausal women.
FIGURE 3

The impact of BDNF and estrogen deficiency in postmenopausal women: focus on blood pressure and obesity. In the context of BDNF and estrogen
deficiency, the central effects of BDNF and estrogen, along with their regulation of RAS activity and mutual interactions, are diminished, leading to
elevated blood pressure (hypertension) and increased fat mass (obesity). Visceral fat produces more estrogens through the upregulation of estrogen-
converting enzymes 17b-hydroxysteroid dehydrogenase (HSD17B7) (134), and synthesizes more leptin with adiposity, which may help inhibit food
intake and regulate blood pressure. However, fat pads release proinflammatory agents, contributing to immune and metabolic disorders. iWAT, beige
adipose tissue; CNS, central nerve system; E, estrogen; ERa, estrogen receptor a; HFD, high fat diet; HRT, hormone replace treatment; IL,
interleukins; RAS, renin-angiotensin-system; RVLM, Rostral Ventrolateral Medulla; SNA, sympathetic activity.
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Although the role of hormone replacement therapy (HRT) with

estrogen or/and progesterone remains debated, it is widely used in

clinical practice (176). Additional strategies, such as

phytoestrogens, combined estrogen and progesterone treatments,

and non-hormonal options, have also been proposed (252). These

approaches boost plasma estrogen and BDNF levels (19, 240)

provided the individual is suitable for such treatments. For safety

reasons, lifestyle modifications like regular exercise (79, 80), coffee

consumption (88) and a healthy diet, known to increase plasma

BDNF and estrogen levels, are highly recommended. Conversely,

high-fat diets (253), smoking, and alcohol, which are known to

decrease BDNF levels (80), should be approached with caution as

they may exacerbate postmenopausal syndromes.
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