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Background: Thyroid nodules, increasingly prevalent globally, pose a risk of

malignant transformation. Early screening is crucial for management, yet current

models focus mainly on ultrasound features. This study explores machine

learning for screening using demographic and biochemical indicators.

Methods: Analyzing data from 6,102 individuals and 61 variables, we identified 17

key variables to construct models using six machine learning classifiers: Logistic

Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and

LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score,

specificity, kappa statistic, and AUC, with internal and external validations

assessing generalizability. Shapley values determined feature importance, and

Decision Curve Analysis evaluated clinical benefits.

Results: Random Forest showed the highest internal validation accuracy (78.3%)

and AUC (89.1%). LightGBM demonstrated robust external validation

performance. Key factors included age, gender, and urinary iodine levels, with

significant clinical benefits at various thresholds. Clinical benefits were observed

across various risk thresholds, particularly in ensemble models.
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Conclusion: Machine learning, particularly ensemble methods, accurately

predicts thyroid nodule presence using demographic and biochemical data.

This cost-effective strategy offers valuable insights for thyroid health

management, aiding in early detection and potentially improving clinical

outcomes. These findings enhance our understanding of the key predictors of

thyroid nodules and underscore the potential of machine learning in public

health applications for early disease screening and prevention.
KEYWORDS

thyroid nodule, machine learning, early screening, urine iodine, ensemble
learning methods
1 Introduction

Thyroid nodules, as a common clinical condition, have seen a

significant increase in detection rates with the widespread use of

high-resolution imaging technologies such as ultrasound.

Epidemiological studies indicate that the prevalence of thyroid

nodules is continuously rising worldwide, with an adult

prevalence rate of 33% to 68% (1, 2). Approximately 10%-15% of

thyroid nodules may become malignant and develop into thyroid

cancer (3). Between 2000 and 2018, the age-standardized incidence

rate of cancer in Chinese women increased significantly by 2.6% per

year, with thyroid cancer being a major contributing factor (AAPC

= 15.7%). By 2022, thyroid cancer had become the third most

common new cancer case among all cancers (4). However, due to

improvements in early screening and diagnosis, the detection rate of

early thyroid nodules is high, leading to a relatively good overall

prognosis for thyroid cancer (5).

With the rapid advancement of computational technology,

machine learning has emerged as a key technique for handling

large datasets and parsing high-dimensional information,

overcoming the limitations of traditional statistical methods in

processing such data. The core advantage of machine learning

over traditional statistics lies in its ability to autonomously

explore and learn complex patterns hidden within data, a process

that does not depend on predefined model assumptions. By

iteratively learning from and optimizing with a large volume of

data, machine learning improves the model’s generalization

capability for unseen data, making it effectively adaptable to

complex real-world problems. Machine learning has already been

efficiently applied in medical auxiliary diagnosis for various

diseases, including the discrimination and prediction of thyroid

nodules and thyroid cancer: Peng et al. (6) developed the ThyNet

model, which, through training on ultrasound images, achieved an

AUC value of 0.922 for the diagnosis of thyroid tumors on the ROC

curve, significantly higher than the 0.839 achieved by radiologists,

and the assistance strategy based on this method significantly

enhanced the diagnostic capability of radiologists. Jin et al. (7)
02
constructed the Thy-Wise model using demographic data, thyroid

function indicators, and thyroid ultrasound features. This model

effectively improves the diagnostic accuracy and specificity for

assessing thyroid nodules compared to the earlier ACR TI-RADS,

and reduces unnecessary thyroid fine needle aspiration biopsies.

Yao et al. (8) developed a multimodal deep learning model,

DeepThy-Net, based on over 23,000 thyroid ultrasound images

and clinical indicators from multiple centers. This model

demonstrated good clinical applicability in predicting various

types of cervical lymph node metastasis in papillary thyroid

carcinoma (AUC 0.870–0.905). Additionally, the team

constructed a diagnostic model for Bethesda IV thyroid nodules

based on the Transformer architecture, which also showed

significant diagnostic value (9).

Due to the high prevalence of thyroid nodules and the potential

of some nodules to develop into thyroid cancer, early screening and

risk assessment of thyroid nodules are essential for devising

appropriate management strategies. Although models built on

ultrasound images have shown strong capabilities in identifying

thyroid nodules, the human and material costs associated with

widespread screening are high and may lead to overdiagnosis and

overtreatment. In contrast, utilizing demographic data and routine

clinical indicators as features for machine learning models offers the

advantages of convenient data collection, good retrospective

capabilities, and no additional examination costs. Therefore, the

primary objective of this study is to construct a suitable and highly

accurate machine learning model based on these indicators to

predict the occurrence of thyroid nodules, thereby addressing a

current gap in research.
2 Materials and methods

2.1 Study data

The data for this study were sourced from the Health

Management Center of Xiangya Hospital Second Affiliated to
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Central South University in Changsha, China, covering 6,102

participants (Figure 1), with an age range of 18 to 70 years old,

all without a history of thyroid surgery, collected from January 2022

to December 2023. To protect privacy, no sensitive data were

included in the collected information. The dataset contains 61

variables, including demographic data, routine biochemical

indices, and thyroid ultrasound data, with the data collection

span for each sample maintained within one month. To ensure

data integrity, samples with more than 20% missing data in clinical

indicators (a total of 10) or incomplete thyroid ultrasound data (a

total of 211 cases) were excluded. The remaining data with missing

values were imputed using the Multiple Imputation by Chained

Equations (MICE) method, with detailed imputation information

available in Supplementary Figure 1. The external validation cohort

consisted of 832 patients collected from 2022 to 2023 by the Xinqiao

Hospital in Chongqing, China, whose thyroid ultrasound data were
Frontiers in Endocrinology 03
complete, and clinical information was consistent with the training

and testing sets. The assessment of thyroid nodules followed the

Chinese-Thyroid Imaging Reporting and Data System (C-TIRADS)

(10), where TIRADS 1 indicates no thyroid nodules, and TIRADS 2

and above are considered to have thyroid nodules. Thyroid

ultrasound examinations at all participating centers were

performed by two attending physicians using high-resolution

ultrasound equipment with a 5–15 MHz linear array transducer

according to a standard protocol, and in case of disagreement, a

third expert physician reviewed to ensure the accuracy of the results.
2.2 Data processing

The feature selection process is an extremely important step in

the construction of machine learning models, as it identifies the

most relevant subset of features that significantly enhance

classification accuracy and reduces the model’s overfitting. We

ultimately included 17 variables for model construction, with the

detailed feature selection process available in Supplementary

Table 1. The choice of these variables depended on the following

factors: firstly, the indicators have been proven to have a clear

association with thyroid function. Secondly, the inclusion of

supplemental variables aims to enhance feature diversity and

ensure as many potential variables related to thyroid nodules are

covered as possible, utilizing the Boruta method (11) to select

features deemed important or tentative. The Boruta method is a

feature selection technique based on random forests, designed to

identify all relevant features associated with the response variable. It

creates “shadow features” by duplicating each feature in the dataset

and shuffling these duplicated features’ values to disrupt their

original association with the response variable. Then, Boruta uses

this extended dataset, containing both original and shadow features,

to train a random forest model and assess the importance of each

feature. By comparing the importance of the original features with

the maximum importance of their corresponding shadow features,

Boruta determines whether the original features are significantly

important. This process is repeated through multiple iterations,

removing features considered “unimportant” after each round until

a preset number of iterations is reached. Boruta’s mechanism

ensures a comprehensive and thorough feature selection process,

helping to capture and provide all features possibly relevant to the

response variable. We used the create Data Partition function from

the caret package to divide the dataset into training and testing sets,

with the testing set comprising 80% of all data. For models sensitive

to variable scales, we normalized numerical variables in the dataset

before constructing the model and performed one-hot encoding for

categorical variables in all models.

In the field of machine learning, class imbalance is a common

phenomenon where the number of samples in one class significantly

exceeds those in other classes. This imbalance has a notable impact

on the training of machine learning models, and the extent of the

impact depends on the relative proportions of sample sizes between

classes. Therefore, we employ the Synthetic Minority Over-sampling

Technique for Nominal and Continuous data (SMOTE-NC) (12)
FIGURE 1

Data processing flowchart. MICE, multiple imputation by chained
equations; SMOTE-NC, synthetic minority over-sampling technique
for nominal continuous.
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technique to address imbalanced data. SMOTE-NC is an extension of

the Synthetic Minority Over-sampling Technique (SMOTE)

characterized by its ability to handle both categorical and

continuous features. By oversampling the minority class samples

and generating synthetic samples through interpolation of existing

samples, the SMOTE-NC algorithm achieves a balance in the number

of samples within an imbalanced dataset while ensuring that the

synthetic samples realistically reflect the characteristics of the original

data distribution.
2.3 Model construction and evaluation

We selected six common classifiers (13–17) for constructing the

machine learning model to predict thyroid nodules: Logistic

Regression (LR), Support Vector Machine (SVM), Multilayer

Perceptron (MLP), Random Forest (RF), eXtreme Gradient

Boosting (XGBoost), and Light Gradient Boosting Machine

(LightGBM) models. Before establishing each final machine

learning model, we used Bayesian optimization to tune the

hyperparameters of the machine learning models. Each parameter
Frontiers in Endocrinology 04
combination was subjected to ten-fold cross-validation, selecting the

hyperparameter set with the best performance (using the smallest log

loss as the benchmark for this study). Subsequently, through

comprehensive retraining on the entire training set, the final

machine learning model was determined. All optimal parameters

and detailed information about the equipment and model building

environment can be found in Supplementary Table 2.

Following the construction of our machine learning models, we

evaluated them by constructing Receiver Operating Characteristic

(ROC) curves and comprehensively assessing key performance

metrics on both the test set and external validation set, including

Accuracy, Precision, Recall, F1 Score, Specificity, Kappa statistic,

and the Area Under the Curve (AUC). Furthermore, we employed

the DeLong test to statistically compare the performance of all

models between the internal validation set and external validation

set, assessing the models’ generalizability and stability. Additionally,

Decision Curve Analysis (DCA) (18) was utilized to observe the net

benefit of different models at various threshold settings for the

prediction of thyroid nodules, thereby further guiding the

optimization of clinical decision-making. This suite of evaluation

methodologies ensures the rigor of our study and the practical
TABLE 1 Characteristics of study population.

Variables
Absence of thyroid nodules (N=2931) Presence of thyroid nodules (N=2960)

P-value
Mean/N SD/Proportion Mean/N SD/Proportion

Age (year) 45.7 11.0 50.6 11.2 <0.001

Gender <0.001

Male 1857 63.4% 1604 54.2%

Female 1074 36.6% 1356 45.8%

UI (mg/L) 165.9 110.6 158.4 111.3 0.01

Height (cm) 165.1 8.0 163.8 8.1 <0.001

Weight (kg) 66.5 11.8 65.4 11.8 <0.001

ALT (U/L) 24.7 14.8 23.0 13.3 <0.001

Alb (g/L) 44.4 2.4 43.9 2.3 <0.001

AGR 1.7 0.2 1.6 0.2 <0.001

RBC (×10^12/L) 4.9 0.5 4.8 0.5 <0.001

HGB (g/L) 148.3 14.6 146.0 14.1 <0.001

FBS (mmol/L) 5.0 0.8 5.1 0.8 0.004

TG (mmol/L) 1.8 1.4 1.7 1.2 <0.001

HDLc (mmol/L) 1.3 0.3 1.4 0.3 <0.001

FT4 (ng/dL) 1.3 0.1 1.3 0.1 0.048

TGAB (ng/dL) 44.3 112.2 48.0 120.7 0.212

Cr (mmol/L) 71.1 15.1 69.6 15.0 <0.001

UA (mmol/L) 348.6 86.1 337.4 81.6 <0.001
UI, Urine Iodine; ALT, Alanine Aminotransferase; Alb, Albumin; AGR, Albumin/Globulin Ratio; RBC, Red Blood Cells; HGB, Hemoglobin; FBS, Fasting Blood Sugar; TG, Triglycerides; HDLc,
High-Density Lipoprotein Cholesterol; FT4, Free Thyroxine; TGAB, Thyroglobulin Antibodies; Cr, Creatinine; UA, Uric Acid. Data are represented as mean (SD) or number (proportion), and
the p-values are calculated using the Welch Two Sample t-test or Fisher’s exact test.
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utility of our models, providing a scientific basis for the diagnosis of

thyroid nodules.
3 Results

3.1 Characteristics and distribution
of participants

This study ultimately included 5,891 participants, of which 3,461

were males and 2,430 were females. Among the participants, 2,960

individuals were diagnosed with thyroid nodules. Their average age was

50.6 ± 11.2 years, while the average age of participants without thyroid

nodules was 45.7 ± 11.0 years. All included variables are presented as

mean (SD) or N (Proportion), and the differences between numeric

variables in the two groups were analyzed using the two-sample t-test;

the Chi-square test was used to examine the distribution differences of

categorical variables (Table 1), and the density distribution of all

numeric variables can be seen in Figure 2. Information on the

baseline situation of the external validation dataset can be found in

Supplementary Table 3.
Frontiers in Endocrinology 05
3.2 Model performance

We evaluated the performance of machine learning by

constructing ROC curves for various models (Figure 3) and

calculating different metrics (Table 2). In the validation on

internal datasets, we found that the Random Forest model had

the highest accuracy rate, reaching 78.3%, and possessed the highest

AUC value of 89.1%. XGBoost closely followed the Random Forest

model in terms of prediction accuracy, with an accuracy rate of

78.0% and an AUC curve also reaching 87.8%, suggesting that the

XGBoost model is also a superior prediction model. When the

models were applied to external validation data, according to the

results of the Delong test, the AUCs of the SVM, Random Forest

model, and XGBoost model showed a significant decline compared

to the internal test data, while the AUC of LightGBM showed a

downward trend but without significant difference, indicating that

the LightGBM model still maintains good robustness in external

validation. By constructing DCA curves (Figure 4), we found that at

lower high-risk thresholds, all models had a net benefit for

treatment decisions that was higher than taking no action. When

the threshold was in the medium range of 0.2–0.8, most models
FIGURE 2

Density distribution curves of all variables. UI, Urine Iodine; ALT, Alanine Aminotransferase; Alb, Albumin; AGR, Albumin/Globulin Ratio; RBC, Red
Blood Cells; HGB, Hemoglobin; FBS, Fasting Blood Sugar; TG, Triglycerides; HDLc, High-Density Lipoprotein Cholesterol; FT4, Free Thyroxine;
TGAB, Thyroglobulin Antibodies; Cr, Creatinine; UA, Uric Acid.
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(SVM, LightGBM, XGBoost, Random Forest) showed a higher net

benefit, providing valuable information for doctors and assisting

them in making decisions. At higher thresholds, the net benefit

curves of the SVM, LightGBM, XGBoost, and Random Forest

models varied significantly, indicating unstable benefits brought

by the models. From the results of feature importance analysis

(Figure 5), it is not difficult to see that age, gender, and urine iodine

levels play an important role in most models.
4 Discussion

In this study, through feature engineering of 61 common

clinical indicators, we identified 17 key feature variables covering
Frontiers in Endocrinology 06
demographic data, blood biochemical indicators, and urine routine

test results. We further developed and evaluated six different

machine learning models to compare their performance in

identifying thyroid nodules. Except for logistic regression and

multilayer perceptron models, the accuracy of the other models in

internal validation exceeded 76%, with the Random Forest model

performing the best followed by the XGBoost model. However, in

external validation, according to the results of the Delong test, the

LightGBM model showed no significant difference in AUC value

compared to internal validation and demonstrated higher

robustness with an accuracy rate of 72.72%. The accuracy of the

aforementioned three models in external validation all reached over

70%, likely due to their use of ensemble learning methods. These

methods can effectively reduce the risk of overfitting while
FIGURE 3

ROC curves of all models. LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; LR, logistic regression; MLP, Multilayer
Perceptron; SVM, support vector machine; RF, random forest.
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increasing the accuracy and stability of predictions. Moreover, their

automatic capture of complex relationships between features and

efficient handling of large datasets further enhance the model’s

performance in binary classification tasks.

The analysis of SHAP values for the model clearly highlights the

importance of age, gender, and urinary iodine as indicators for

identifying thyroid nodules. Existing research has shown that

compared to younger individuals and males, older individuals

and females are at a higher risk of developing thyroid nodules

(19, 20). As age increases, the colloid content in thyroid tissue

decreases while the interstitial tissue increases (21). Additionally,

serum TSH levels gradually rise. This increase in concentration is
Frontiers in Endocrinology 07
believed to be related to a decline in the biological activity of TSH,

rather than being directly associated with thyroid disease (22).

Changes in thyroid hormones and tissue structure may be

potential factors leading to the occurrence of thyroid nodules.

The incidence of thyroid nodules in women is related to their

levels of estrogen and progesterone. Fluctuations in these hormone

levels during menopause and reproductive years may promote the

growth of thyroid nodules (23). Urinary iodine, an indicator of the

body’s iodine metabolism status, is often associated with factors

affecting glucose and lipid metabolism (24) as well as thyroid

function disorders (25, 26). Studies have indicated a nonlinear U-

shaped relationship between urinary iodine and the risk of thyroid
FIGURE 4

DCA curves of all models. LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; LR, logistic regression; MLP, multilayer
perceptron; SVM, support vector machine; RF, random forest.
TABLE 2 Assessment of all machine learning models.

Models Dataset Accuracy Precision Recall F1 Score Specificity Kappa AUC P-value

LR
Test data 0.5667 0.2487 0.6901 0.3657 0.5394 0.1357 0.6391

0.188
Valid data 0.5889 0.2930 0.7683 0.4242 0.5449 0.1943 0.6712

MLP
Test data 0.5854 0.6379 0.5791 0.6071 0.5932 0.1704 0.6233

0.22
Valid data 0.6010 0.6419 0.6079 0.6244 0.5926 0.1995 0.6537

SVM
Test data 0.7604 0.7597 0.7623 0.7610 0.7585 0.6811 0.8788

< 0.001
Valid data 0.6947 0.6744 0.7178 0.6954 0.6729 0.5937 0.7946

RF
Test data 0.7825 0.8003 0.7741 0.7870 0.7915 0.5649 0.8906

< 0.001
Valid data 0.7175 0.7372 0.7221 0.7296 0.7125 0.4340 0.8322

XGBoost
Test data 0.7799 0.7902 0.7757 0.7829 0.7843 0.5599 0.8775

< 0.001
Valid data 0.7188 0.7326 0.7258 0.7292 0.7111 0.4367 0.8199

LightGBM
Test data 0.7664 0.7665 0.7678 0.7671 0.5327 0.7649 0.8485

0.08
Valid data 0.7272 0.7488 0.7302 0.7394 0.7238 0.4532 0.7986
LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine. The p-
value in the table indicates whether there is a significant statistical difference between the AUCs of the ROC curves of the same machine learning model on the internal test set and the external
validation set, with a p-value of less than 0.05 considered indicative of a difference.
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nodules, which also exhibits gender differences: the risk of thyroid

nodules in males decreases with increasing levels of urinary iodine,

whereas the opposite is observed in females (27, 28). Most

supporting evidence comes from cross-sectional studies, and

further cohort studies or other research capable of explaining

causal relationships are needed to verify the relationship between

them. In previous models predicting thyroid nodules based on

imaging features, the inclusion of thyroid function indicators does

not seem to significantly improve the predictive accuracy of

machine learning models. Our study’s calculation of Shapley

values also confirms this point; however, unlike previous studies,

we included urinary iodine as an indicator and highlighted its

importance in model construction. This suggests that urinary iodine

may play a role akin to a weathervane in the formation of thyroid

nodules, warranting further research and exploration.
Frontiers in Endocrinology 08
In the current field of machine learning research, most studies

focus on distinguishing between benign and malignant thyroid

nodules, with relatively less exploration into the presence or absence

of thyroid nodules. These studies typically rely on detailed

questionnaires and image feature recognition technologies, which

may not be the most critical approach for applications aimed at

screening for the presence of thyroid nodules in the so-called “healthy”

population. In fact, for this population, our main concern is not the

benign or malignant nature of the nodules but their presence, to

decide whether further physical examination is needed. Unlike

existing research, this paper proposes a new machine learning

model that relies solely on common clinical biochemical indicators

and demographic information. These data are not only easily

obtainable but also relatively low-cost for screening thyroid nodules.

Furthermore, by focusing on the presence or absence of thyroid
A B

D

E F

C

FIGURE 5

Feature importance analysis of all models. (A) logistic regression; (B) support vector machine; (C) multilayer perceptron; (D) random forest;
(E) extreme gradient boosting; (F) light gradient boosting machine. UI, Urine Iodine; ALT, Alanine Aminotransferase; Alb, Albumin; AGR, Albumin/
Globulin Ratio; RBC, Red Blood Cells; HGB, Hemoglobin; FBS, Fasting Blood Sugar; TG, Triglycerides; HDLc, High-Density Lipoprotein Cholesterol;
FT4, Free Thyroxine; Cr, Creatinine; UA, Uric Acid.
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nodules rather than their benignity or malignancy, this study fills a gap

in existing research. This approach not only provides a low-cost,

efficient solution for the preliminary screening of thyroid nodules but

also highlights the potential application of machine learning in the

field of public health, especially in early disease identification

and prevention.

Despite the valuable insights provided by this study, there are

several limitations that need to be acknowledged. First, given the

cross-sectional design of this study, we assessed the importance of

variables by calculating their importance in the model, yet this

approach cannot reveal the causal relationships between variables

and thyroid nodules. Further basic research and randomized

controlled trials are needed to elucidate these relationships. Second,

as a multicenter study, although we standardized the criteria for

patient inclusion and the assessment methods for thyroid nodules,

the diagnostic outcomes rely on ultrasound examinations, and the use

of different operators and ultrasound equipment brands may

influence the diagnostic results. Moreover, this study collected

demographic data and common clinical examination indicators,

but failed to include some factors that may be related to the

development of thyroid nodules, such as serum iodine levels,

smoking, and drinking habits. Despite these limitations, our study

achieved an accuracy of 78% in internal validation and approximately

72% in external validation using the Random Forest model. Future

research will focus on collecting these missing features and improving

the accuracy of thyroid nodule discrimination through optimizing

machine learning models.
5 Conclusion

In conclusion, this study effectively harnessed machine learning

to predict the presence of thyroid nodules by meticulously selecting

17 key variables from common clinical indicators. Through the

development and evaluation of various machine learning models, it

was determined that ensemble learning methods, particularly

Random Forest and XGBoost, excel in internal validation with high

accuracy and robustness, while the LightGBM model demonstrated

superior adaptability in external validation. Notably, the analysis

underscored the significance of age, gender, and urinary iodine levels

as pivotal factors in the identification of thyroid nodules, highlighting

the potential of machine learning in filling a critical research gap by

focusing on easily accessible clinical data for early screening. This

approach not only promises a cost-effective and efficient strategy for

preliminary thyroid nodule screening but also opens avenues for

public health applications in early disease detection and prevention.
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