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Machine learning to predict the
occurrence of thyroid nodules:
towards a quantitative approach
for judicious utilization of
thyroid ultrasonography
Qijun Liang1, Zhenhong Qi1 and Yike Li2*

1Health Management Center, Foshan Hospital of Traditional Chinese Medicine, Foshan,
Guangdong, China, 2Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University
Medical Center, Nashville, TN, United States
Introduction: Ultrasound is instrumental in the early detection of thyroid

nodules, which is crucial for appropriate management and favorable

outcomes. However, there is a lack of clinical guidelines for the judicious use

of thyroid ultrasonography in routine screening. Machine learning (ML) has been

increasingly used on big data to predict clinical outcomes. This study aims to

leverage the ML approach in assessing the risk of thyroid nodules based on

common clinical features.

Methods: Data were sourced from a Chinese cohort undergoing routine

physical examinations including thyroid ultrasonography between 2013 and

2023. Models were established to predict the 3-year risk of thyroid nodules

based on patients’ baseline characteristics and laboratory tests. Four ML

algorithms, including logistic regression, random forest, extreme gradient

boosting, and light gradient boosting machine, were trained and tested using

fivefold cross-validation. The importance of each feature was measured by the

permutation score. A nomogram was established to facilitate risk assessment in

the clinical settings.

Results: The final dataset comprised 4,386 eligible subjects. Thyroid nodules

were detected in 54.8% (n=2,404) individuals within the 3-year observation

period. All ML models significantly outperformed the baseline regression

model, successfully predicting the occurrence of thyroid nodules in

approximately two-thirds of individuals. Age, high-density lipoprotein, fasting

blood glucose and creatinine levels exhibited the highest impact on the outcome

in these models. The nomogram showed consistency and validity, providing

greater net benefits for clinical decision-making than other strategies.
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Conclusion: This study demonstrates the viability of an ML-based approach in

predicting the occurrence of thyroid nodules. The findings highlight the potential

of ML models in identifying high-risk individuals for personalized screening,

thereby guiding the judicious use of ultrasound in this context.
KEYWORDS

machine learning, thyroid nodule, ultrasonography, precision medicine, artificial
intelligence, nomograms, logistic models, random forest
Introduction

Thyroid nodules are a prevalent condition detectable in up to 67%

of individuals (1–4). Although the majority of cases involve benign and

asymptomatic lesions that necessitate no intervention, approximately

5-15% of them are malignant or indicative of thyroid diseases, such as

hyper- and hypo-thyroidism (5–7). These thyroid conditions, especially

cancers, often exhibit a favorable prognosis when identified early. Early

detection allows for timely and tailored treatment strategies, thereby

increasing the likelihood of a successful outcome (8–10).

Ultrasound has become a widely utilized method for thyroid

examination by virtue of its non-invasive nature, fair cost-

effectiveness, and broad accessibility. Equipped with linear probes

that deliver high-resolution detail of the thyroid gland, ultrasound

exhibits a remarkable sensitivity in detecting early-stage lesions as

small as a few millimeters (10, 11). Additionally, ultrasound can

unveil patterns of vascularity, characterize the nature of the mass,

aid in the assessment of adjacent tissues, and offer real-time

guidance for biopsy. As a result, thyroid ultrasonography has

emerged as the primary tool for thyroid imaging, playing a

pivotal role in the global assessment of thyroid diseases (12).

Although broadly regarded as a preferred means of assessing the

thyroid, the clinical indication for thyroid ultrasonography varies

considerably across the global healthcare system. In some countries

like China, thyroid ultrasonography is routinely included in regular

health examinations. However, the excessive use of ultrasound may

place additional strain on medical resources and substantially

increase healthcare costs (13–15). Conversely, in regions where

initial thyroid assessment relies primarily on palpation, ultrasound

is typically not indicated until a thyroid mass grows into a palpable

size or causes symptoms (7, 10). Therefore, a considerable number

of thyroid nodules remain unrevealed at early stages, potentially

delaying diagnosis and treatment and causing suboptimal outcomes

(16, 17). In this regard, the judicious utilization of ultrasound for

thyroid examination has gained increasing attention from

healthcare professionals (18, 19). Nevertheless, there is still a lack

of clinical guidelines providing recommendations for the

appropriate circumstances in which ultrasound should be

prescribed for screening thyroid nodules.

Machine learning (ML) is a subset of artificial intelligence

empowering computers to learn from historical data and predict
02
outcomes for new data based on acquired knowledge. With the

advent of the big data era, ML has been increasingly applied to

perform predictive modeling in medicine (20–22). ML models

exhibit promising performance, often matching or surpassing

human judgement across diverse tasks such as disease detection,

diagnosis, and risk prediction (23, 24). One notable advantage of

ML over traditional statistics is its ability to function effectively with

minimal assumptions about data characteristics. This makes ML

particularly valuable in situations where data lack a controlled arm

or involve intricate nonlinear interactions among predictor

variables (25).

The objective of this study is to establish an effective method for

assessing the risk of thyroid nodules. The development of thyroid

nodules is associated with a mixed combination of biological,

lifestyle, and environmental factors, such as age and metabolism

(2, 26–28). In this study, electronic health record data,

encompassing demographics, anthropometrics, and common

laboratory tests, were collected from a large single-center cohort

undergoing routine physical examinations including thyroid

ultrasonography. ML models were constructed to predict thyroid

nodules based on commonly accessible clinical features. The

findings from this study not only suggest a clinically feasible

approach that can guide the judicious use of thyroid

ultrasonography, but also provide insight into the important

factors associated with the occurrence of thyroid nodules.
Materials and methods

Study cohort

This study was conducted in full accordance with Good Clinical

Practice and Declaration of Helsinki. Ethical approval was granted

by the Ethics Committees at Foshan Hospital of Traditional

Chinese Medicine (document number: KY-2022-151). Data were

retrospectively collected from adults who received routine health

examinations at the Health Management Center of this tertiary

hospital between 2013 and 2023. Thyroid ultrasound, which was

included in a comprehensive health examination package designed

for early detection of health issues, was performed at patients’

discretion regardless of clinical indications. Individuals were
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excluded from the analysis if they (1): had a history of known

thyroid diseases such as hyperthyroidism, hypothyroidism,

subacute thyroiditis, and Hashimoto thyroiditis; or (2) had a

history of thyroid therapy, including any medication, surgery, or

radiotherapy; or (3) were pregnant or lactating; or (4) had any

missing data at baseline. Patients were scheduled to follow up

annually after their initial visits and observed until December

31st, 2023.
Data acquisition

Candidate independent variables included patients’ baseline

characteristics (sex, age, body mass index, waist circumference,

and mean arterial pressure) and laboratory test results (fasting

blood glucose [FBG], triglycerides, total cholesterol, low-density

lipoprotein cholesterol [LDL-C], high-density lipoprotein

cholesterol [HDL-C], uric acid, alanine transaminase, aspartate

aminotransferase, g-glutamyl transpeptidase, and creatinine).

These variables were selected by availability and potential

association with the development of thyroid nodules (29, 30). All

predictor variables were obtained at baseline during the initial visit.

The dependent variable was the presence or absence of thyroid

nodules assessed through ultrasound at each visit. Thyroid nodules

were considered present if any discrete lesions within the thyroid

gland appeared radiologically distinct from the surrounding

parenchyma. These nodules could exhibit solid, spongiform,

cystic, or mixed components. Ultrasound examinations were

conducted on patients in a supine position by senior

sonographers with over 10 years of experience, using a B-mode

high-resolution tomographic ultrasound system (Esaote, Genova,

Italy). All images were reviewed by at least one independent clinical

expert before final reports were generated.
Data preprocessing

Logarithmic transformation was applied to continuous

variables that exhibited skewed distribution. Time to event was

coded as the number of years between the initial visit and the onset

of thyroid nodules or the last follow-up visit, whichever occurred

earlier. The ground truth label was determined based on the

presence or absence of thyroid nodules by the end of a 3-year

observation period. Subjects exhibiting thyroid nodules at baseline

or in less than 3 years from the initial visit were labeled as nodule-

positive, while those who remained disease-free or only exhibited

nodules after 3 years were labeled as nodule-negative. Individuals

who were lost to follow-up or had missing ultrasound data were

discarded. A fivefold cross-validation method was applied to train

and test the ML models. Specifically, the dataset was split randomly

into a training set (80%) and a test set (20%). This process was

repeated 5 times, resulting in 5 distinct test sets. During training, a

random selection of 20% data from the training set was employed

for model validation. Data were split in a stratified fashion to ensure

consistent class distribution in each subset as the entire dataset.
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Model development

Models underwent training and testing in a binary classification

task to assess the 3-year risk of thyroid nodules based on baseline

features. Four ML algorithms were employed, including logistic

regression, random forest, extreme gradient boosting (XGBoost),

and light gradient boosting machine (LightGBM). Specifically,

random forest is a classic ensemble method that combines the

outputs of multiple parallel decision trees for making predictions

(31). XGBoost comprises a group of decision trees that are weak

prediction learners connected in a sequential fashion. This gradient

boosting structure allows a new learner to concentrate on areas

where the existing learners are performing poorly, thereby reducing

the error in the entire model. The LightGBM has a similar structure

to the XGBoost but uses a different strategy to split the data. These

ML models represent the state-of-the-art ML techniques that show

remarkable outcomes in a variety of tasks (32–35). Logistic

regression served as a baseline model to allow unbiased

performance assessment for these ML models.

A grid search was performed to determine the optimal

hyperparameters for each algorithm. Each ML algorithm with the

best hyperparameters was trained to achieve convergence on the

training set. The cutoff threshold of each model was determined at

the top left corner of the receiver operating characteristic curve (i.e.,

the maximum sum of sensitivity and specificity) from the validation

set and applied unchangeably to the test set. All training and testing

sessions were done in a Python 3.8 environment using scikit-learn

v1.02, an open-source package for ML.
Feature importance

The importance of each predictor variable in a model was

quantified by the permutation score on the test set. This score is

defined as the decrease in model performance [measured by the

area under the receiver operating characteristic curve (AUROC)]

when all values of a given variable are randomly shuffled.

Essentially, this procedure breaks the relationship between the

feature and the outcome, and the extent of performance

reduction indicates the reliance of the model on that particular

feature. This process was iterated 50 times for each variable in a

model to obtain an average score.
Statistical analysis

Descriptive statistics were applied to characterize the baseline

features of this cohort. The performance of each ML model was

evaluated based on a range of metrics, including accuracy, recall,

specificity, precision, F1 score, AUROC, and area under the

precision-recall curve. Results were averaged over 5 cross-

validation folds and are presented as means with 95% confidence

intervals. Cochrane’s Q test was employed to evaluate differences in

predictive performance among the models, with statistical

significance determined at an alpha threshold of 0.05.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1385836
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liang et al. 10.3389/fendo.2024.1385836
To facilitate clinical application, a nomogram visually depicting

the risk of thyroid nodules was developed using the simpleNomo

package in Python (36). A calibration curve was utilized to measure

the consistency between the predicted risks and the actual

outcomes. The clinical benefit of the nomogram was evaluated by

decision curve analysis (37, 38). All statistical analyses were

conducted using Python 3.8 and Excel (Microsoft Corporation,

Redmond, WA).
Results

Cohort characteristics

The final dataset comprised 4,386 individuals who met the

inclusion criteria for the study (Figure 1). Subjects were

predominantly male (58.8%) and generally in middle age (38.2

years) during their initial visits (Table 1). A total of 54.8%

individuals (n = 2,404) exhibited thyroid nodules, either at baseline

(n = 1,841) or within the 3-year observation period (n = 563).
Model performance

The optimal hyperparameters for each algorithm are presented

in Table 2. Overall, these models successfully predicted the outcome

in approximately two-thirds of individuals (Table 3). All ML

models demonstrated superior performance compared to the

baseline logistic regression model (p<0.001). Despite a modest

difference in overall predictability, each model revealed similar
Frontiers in Endocrinology 04
recall and specificity scores, suggesting a balanced performance in

identifying patients with and without thyroid nodules.
Critical predictors

The top 10 critical features influencing the development of

thyroid nodules were largely consistent across all models (Figure 2).

These pivotal factors encompassed age, HDL-C, FBG, creatinine,

LDL-C, triglycerides, sex, and mean arterial pressure. Notably, age

exhibited the most substantial impact on the outcome, maintaining

the highest rank in every model. HDL-C, creatinine, and FBG were

also identified as significant predictors, consistently appearing

among the top four positions in all four models.
Nomogram

The nomogram was derived from the logistic regression model

incorporating all features to optimize predictability (Figure 3). It

demonstrated comparable performance in predicting the

occurrence of thyroid nodules in both the training and validation

sets, with accuracy scores of 0.67 and 0.66, and AUROC scores of

0.72 and 0.72, respectively. The calibration curve indicated a good

agreement between the nomogram’s predicted probabilities and the

actual observations. Furthermore, the decision curve analysis

revealed that the nomogram offered greater net benefits in the

evaluation of thyroid nodules compared to strategies that rely solely

on age or use an all-or-none approach, especially at a probability

threshold above 0.35 (Figure 4). Additionally, an Excel spreadsheet
FIGURE 1

A flow chart outlining the study design.
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has been provided to facilitate the clinical implementation of this

model on electronic devices for assessing the risk of thyroid nodules

(Supplementary Material).
Discussion

Evaluating the risk of thyroid nodule onset holds significant

benefits for tailoring monitoring strategies and guiding the

appropriate use of ultrasound in this context. This study

demonstrated the feasibility of utilizing ML to forecast the 3-year
Frontiers in Endocrinology 05
risk of thyroid nodules based on readily accessible baseline features.

All models were able to predict the occurrence of thyroid nodules in

approximately two-thirds of individuals, displaying a sensitivity of

up to 66%. This performance suggests the clinical potential as a

regular screening tool for thyroid nodules in the general population.

In contrast to recent ML studies that primarily focused on the

detection, classification, or prognosis of thyroid malignancies (39–

42), this study concentrated on the onset of thyroid nodules — a

more common clinical task that is upstream to all these later-stage

models and of public health significance. The current dataset also

represents a sizable cohort with ample observation time and reliable

study endpoints. Employing a fivefold cross-validation approach

and a comprehensive set of performance metrics allows unbiased

evaluation of the ML models. Quantifying the feature importance

also provides insightful findings regarding thyroid nodule

pathogenesis for future mechanistic research. This study

reinforces the potential of artificial intelligence to revolutionize

healthcare in the era of big data. With its capacity to generate timely

and reliable predictions in intricate tasks, ML is poised to become

an integral part of routine clinical practice, notably advancing

personalized medicine.

Although ultrasound has been proven as a cost-effective

approach for thyroid assessment, it is not routinely prescribed

during heath checkup in many countries. Instead, thyroid is

primarily evaluated through physical examinations, with further

assessments being determined by physicians’ judgments. Palpation

through fingers relies on clinicians’ experiences and skills, which

results in inter-operator variability and suboptimal sensitivity (3,

43, 44). Consequently, most thyroid nodules may only be identified

after progressing into palpable sizes or causing perceivable

symptoms, leading to a potential delay in diagnosis and treatment

of the underlying conditions. Although certain risk factors, such as

age, obesity, and smoking, are known to be associated with the

occurrence of thyroid nodules, there is currently no specific

guideline that offers instruction for screening based on these

factors. This study addresses this gap by the development of risk

stratification models. These quantitative models demonstrate

favorable performance in forecasting the 3-year risk of thyroid

nodules based on common clinical features, suggesting an evidence-

based approach for clinical decision-making that is deemed less

biased compared to the subjective judgments. For one thing, these

ML models may aid in estimating the need for further thyroid

assessment during routine health examination. A timely ultrasound

is expected to allow detection of tiny nodules before they increase in

size or exhibit symptoms, potentially facilitating the early diagnosis

and treatment of thyroid diseases and improving outcomes. For

another thing, these models can also effectively spare low-risk

individuals from unnecessary assessments, thus avoiding

overtreatment or excess health spending. In China, with an

annual estimate of 495 million individuals undergoing routine

physical examination and a detection rate of 20% for thyroid

nodules (45–47), these models are anticipated to substantially

reduce thyroid ultrasonography by at least 285 million cases and

save 4 billion dollars in costs per year.

The clinical viability of this quantitative approach is supported by

the commendable model performance in identifying both nodule-
TABLE 1 Baseline characteristics of the dataset.

Variables Statistics

Sex (Male: Female) 2578: 1808

Age (years) 38.2 ± 10.8

BMI (kg/m2) 22.9 (20.7, 25.3)

WC (cm) 83.0 ± 7.5

MAP (mmHg) 88.7 (82.0, 95.3)

FBG (mmol/L) 5.3 (4.9, 5.7)

TG (mmol/L) 1.1 (0.7, 1.7)

TCH (mmol/L) 4.9 (4.3, 5.6)

LDL-C (mmol/L) 2.9 (2.4, 3.4)

HDL-C (mmol/L) 1.4 (1.3, 1.6)

UA (mmol/L) 359.3 (295.6, 427.9)

ALT (U/L) 22.3 (16.4, 32.1)

AST (U/L) 20.9 (17.3, 25.4)

GGT (U/L) 22.3 (16.5, 33.6)

Cr (mmol/L) 69.5 (59.0, 79.8)
Results are presented as mean ± standard deviation or median (first quantile, third quantile).
BMI, Body Mass Index; WC, Waist Circumference; MAP, Mean Arterial Pressure; FBG,
Fasting Blood Glucose; TG, Triglyceride; TCH, Total Cholesterol; LDL-C, Low-Density
Lipoprotein Cholesterol; HDL, High-Density Lipoprotein Cholesterol; UA, Uric Acid; ALT,
Alanine Transaminase; AST, Aspartate Aminotransferase; GGT, g-Glutamyl Transpeptidase;
Cr, Creatinine.
TABLE 2 Best hyperparameters settings for each model.

Algorithms Hyperparameters

LR
penalty=‘l2’, class_weight = ‘balanced’, max_iter = 100000,
C = 8, solver = ‘liblinear’

RF
criterion=‘gini’, max_depth = 7, max_features = 6,
min_samples_leaf = 60, min_samples_split = 140,
n_estimators = 32

LightGBM
subsample=0.5, objective = ‘binary’, learning_rate = 0.1,
gamma = 0.1, ‘colsample_bytree’: 0.7, ‘min_child_samples’:
100, ‘n_estimators’: 64, ‘num_leaves’: 8

XGBoost
colsample_bytree’: 0.6, ‘max_depth’: 4, ‘min_child_weight’:
25, ‘n_estimators’: 64, learning_rate = 0.1, subsample=0.5,
gamma = 0.1, objective = ‘binary:logistic
LR, Logistic Regression; RF, Random Forest; LightGBM, Light Gradient Boosting Machine;
XGBoost, Extreme Gradient Boosting.
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positive and -negative patients, in addition to the net benefits of the

nomogram over alternative strategies. These models can be developed

into applications or integrated into electronic medical record systems

for rapid risk assessment and clinical triage. In this study, all pre-

trained models, along with a detailed instruction manual, have been

shared in a public repository (https://github.com/huntlylee/Thyroid-

nodule), allowing straightforward inference on user-provided data

through simple command-line inputs. To aid in the clinical adoption

of this model, a nomogram and a user-friendly spreadsheet have been

provided, designed to support physicians across a range of

ML expertise.

Identifying factors associated with disease onset is essential before

considering focused treatment or preventive strategies. In line with

prior studies, this research also identifies several patient

characteristics, such as age, HDL-C, and FBG, as being associated

with the development of thyroid nodules. Firstly, age is widely
Frontiers in Endocrinology 06
recognized as a significant risk factor for thyroid nodule (29, 48),

potentially due to age-related oxidative stress and the involvement of

vascular endothelial growth factor (49, 50). Evidence suggests that

older adults are more likely to develop thyroid malignancies of high-

risk histology, highlighting the need of early detection of thyroid

nodules (26). Secondly, there is a noted prevalence of thyroid nodules

in individuals with metabolic disorders like diabetes and

hyperlipidemia (51, 52), which is corroborated by the identification

of FBG, LDL-C, HDL-C, and triglycerides as critical predictors in this

study. The prevailing theory suggests that metabolic disorders could

promote thyroid cell growth through interactions between insulin

and thyroid stimulating hormone (53, 54). Metabolic disorders might

also trigger oxidative stress, causing cellular damage and affecting

genomic stability in the thyroid (49, 50, 55–57). Additionally,

creatinine levels have been found to be associated with thyroid

nodules (29, 58), although the cause remains unclear. Creatinine
FIGURE 2

The top 10 most critical features for each model. Each bar represents the mean importance score, with the black horizontal line indicating the standard error
of the mean. LightGBM, Light Gradient Boosting Machine; XGBoost, Extreme Gradient Boosting. BMI, Body Mass Index; WC, Waist Circumference; MAP,
Mean Arterial Pressure; FBG, Fasting Blood Glucose; TG, Triglyceride; TCH, Total Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; HDL, High-
Density Lipoprotein Cholesterol; UA, Uric Acid; ALT, Alanine Transaminase; AST, Aspartate Aminotransferase; GGT, g-Glutamyl Transpeptidase; Cr, Creatinine.
TABLE 3 Performance of each model in predicting the 3-year onset of thyroid nodules.

Models Accuracy Recall Specificity Precision AUC AP F1 Score p

LR 0.65 [0.63, 0.67] 0.60 [0.51, 0.70] 0.71 [0.62, 0.80] 0.72 [0.69, 0.76] 0.72 [0.71, 0.72] 0.76 [0.76, 0.77] 0.65 [0.60, 0.70]

RF 0.68 [0.67, 0.69] 0.66 [0.64, 0.68] 0.71 [0.66, 0.76] 0.74 [0.70, 0.77] 0.75 [0.74, 0.77] 0.78 [0.76, 0.81] 0.69 [0.69, 0.70] <0.001

LightGBM 0.69 [0.67, 0.70] 0.66 [0.62, 0.70] 0.72 [0.68, 0.76] 0.74 [0.73, 0.76] 0.76 [0.74, 0.77] 0.79 [0.77, 0.81] 0.70 [0.68, 0.72] <0.001

XGBoost 0.68 [0.67, 0.70] 0.63 [0.57, 0.69] 0.74 [0.70, 0.78] 0.75 [0.73, 0.76] 0.76 [0.74, 0.77] 0.79 [0.78, 0.81] 0.68 [0.65, 0.72] <0.001
frontie
All outcomes are averaged over five rounds of cross-validation and presented as mean [95% confidence interval]. LR, Logistic Regression; RF, Random Forest; LightGBM, Light Gradient Boosting
Machine; XGBoost, Extreme Gradient Boosting; AUC, Area Under the Receiver Operating Characteristic Curve; AP, Average Precision (i.e., Area Under the Precision-Recall Curve).
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A B

DC

FIGURE 4

Calibration plots and decision curve analysis of the nomogram. Calibration plots measure the accuracy of the nomogram’s predictions by comparing
the average predicted risks against the actual observed probabilities, employing a bootstrapping technique in both the training (A) and validation
(B) sets. The decision curve analysis quantifies the trade-off between the risk of taking unnecessary actions (i.e. unwarranted thyroid ultrasounds) and
the advantages of appropriate interventions across various threshold levels for each assessment method in the training (C) and validation (D) cohorts.
FIGURE 3

A nomogram for estimating the 3-year risk of thyroid nodule. Variables marked with “log” require logarithmic transformation with a base of 10 to
obtain the proper scores. FBG, Fasting Blood Glucose; TG, Triglyceride; TCH, Total Cholesterol; LDL, Low-Density Lipoprotein Cholesterol; HDL,
High-Density Lipoprotein Cholesterol; UA, Uric Acid; ALT, Alanine Transaminase; AST, Aspartate Aminotransferase; GGT, g-Glutamyl Transpeptidase;
Cr, Creatinine; BMI, Body Mass Index; MAP, Mean Arterial Pressure. This nomogram, along with other pre-trained models and code, are publicly
accessible at the following repository: https://github.com/huntlylee/Thyroid-nodule.
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might also act as a proxy marker for sex or other risk factors that

exhibit sex discrepancies. Further research is required to elucidate the

underlying mechanisms of these factors in the pathogenesis of

thyroid nodules.

While previous studies have yielded inconclusive findings

regarding the advantage of ML over traditional statistics in

performing different clinical tasks (34, 35, 59, 60), it is generally

believed that complex ML models often require big data to achieve

optimal performance (61). This study involved a substantial dataset of

more than 4,000 subjects with a balanced class distribution, where all

three ML models showed significant improvements over the standard

logistic regression, albeit to a modest extent. This finding reinforces

the potential of ML in predicting medical or epidemiological outcomes

when large datasets are available. Nonetheless, classic regression

approaches may continue to play a pivotal role in these tasks by

virtue of the model simplicity, which can mitigate bias and overfitting

in scenarios with smaller or imbalanced datasets (35, 62). Moreover,

the superior explainability of simple regression models over complex

ML algorithms may make them more suitable for predicting clinical

outcomes, as explainable equations may facilitate clinical adaptation.

In this study, the logistic regression model was converted into a

nomogram and a simple formula that can be implemented in an Excel

spreadsheet, enabling effective utilization of this method by clinicians

without the need for ML expertise.

Several limitations should be acknowledged in this study. Firstly,

only a monocentric dataset was obtained. While this dataset

comprises a substantial cohort with reliable ground truths, it may

still be susceptible to certain biases related to race, region and sex.

Notably, there was a minor gender disparity within the cohort, which

may be attributed to a higher exclusion rate of female participants

who are generally more susceptible to thyroid conditions. Hence, the

generalizability of these models might necessitate further validation

on a wider patient population. Secondly, only a limited number of

variables were employed for prediction. Although these variables

were chosen for their relevance and data availability, there are other

risk factors not currently accessible in the database, such as smoking,

family history, and radiation exposure. Including these features is

likely to enhance the model performance. Thirdly, only a handful of

models were tested in this early feasibility study, although they are

representative of cutting-edge ML techniques. Given the rapid

evolution in both medical research and data science, future studies

will likely assess newML approaches as they become available. Lastly,

the critical features identified may indicate associations rather than

causation due to the study’s retrospective nature. Although they offer

insights for further investigation into disease pathogenesis, it will be

essential to conduct mechanistic and prospective studies to

understand the causal relationships and their roles in the

development of thyroid nodules.

Future research should aim to address these limitations and

facilitate model deployment in clinical settings. For example,

additional variables linked to the onset of thyroid nodules will be

collected to improve model performance. A broader dataset will be

compiled from multiple independent hospitals to evaluate and

enhance the generalizability of these models. This approach may

also be extended to forecast other clinically significant outcomes, such

as the trajectory, malignancy, or prognosis of thyroid nodules. These
Frontiers in Endocrinology 08
ML models will be integrated into existing electronic health record

systems with user-friendly interfaces to facilitate human-machine

interaction and enable efficient decision-making. Efforts are

underway to collect more data and test these models in prospective

studies. The ultimate objective of this research line is to establish a

robust artificial intelligence system that can effectively support

clinicians in the evaluation and management of thyroid diseases.
Conclusion

In conclusion, this study showed the feasibility of ML in

predicting the occurrence of thyroid nodules. Age, HDL-C, FBG,

and creatinine levels were identified as the critical factors associated

with the outcome. These findings pave the way for a quantitative

approach in guiding the judicious use of ultrasound for

personalized screening. Future research will involve conducting

external validation and enhancing the model by incorporating

additional predictor variables.
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58. Bolat H, Erdoğan A. Benign nodules of the thyroid gland and 25-hydroxy-
vitamin D levels in euthyroid patients. Ann Saudi Med. (2022) 42:83–8. doi: 10.5144/
0256-4947.2022.83

59. Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease
in chronic kidney disease. Sci Rep. (2022) 12:8377. doi: 10.1038/s41598-022-12316-z

60. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B.
A systematic review shows no performance benefit of machine learning over logistic
regression for clinical prediction models. J Clin Epidemiol. (2019) 110:12–22.
doi: 10.1016/j.jclinepi.2019.02.004

61. Crown WH. Potential application of machine learning in health outcomes
research and some statistical cautions. Value Health. (2015) 18:137–40. doi: 10.1016/
j.jval.2014.12.005

62. Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S. Comparison of
machine learning methods with traditional models for use of administrative claims
with electronic medical records to predict heart failure outcomes. JAMA Netw Open.
(2020) 3(1):e1918962. doi: 10.1001/jamanetworkopen.2019.18962
frontiersin.org

https://doi.org/10.1136/bmj.i6
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1016/j.jss.2021.09.015
https://doi.org/10.1016/j.jss.2021.09.015
https://doi.org/10.1016/S2589-7500(21)00041-8
https://doi.org/10.1016/S2589-7500(21)00041-8
https://doi.org/10.1038/s41467-020-18497-3
https://doi.org/10.1002/cam4.4617
https://doi.org/10.1186/s12902-022-01085-5
https://doi.org/10.1159/000110625
https://doi.org/10.1089/thy.2019.0067
https://doi.org/10.3389/fendo.2022.967380
https://doi.org/10.2147/DMSO.S412567
https://doi.org/10.1210/jc.2015-3100
https://doi.org/10.5603/FHC.a2018.0015
https://doi.org/10.3390/cells12070982
https://doi.org/10.1530/ETJ-23-0168
https://doi.org/10.1089/thy.2021.0686
https://doi.org/10.1089/thy.2021.0686
https://doi.org/10.3390/jcm7030037
https://doi.org/10.1159/000503575
https://doi.org/10.1159/000503575
https://doi.org/10.3390/ijerph19031116
https://doi.org/10.5812/ijem
https://doi.org/10.5812/ijem
https://doi.org/10.1210/en.2012-1930
https://doi.org/10.5144/0256-4947.2022.83
https://doi.org/10.5144/0256-4947.2022.83
https://doi.org/10.1038/s41598-022-12316-z
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1016/j.jval.2014.12.005
https://doi.org/10.1016/j.jval.2014.12.005
https://doi.org/10.1001/jamanetworkopen.2019.18962
https://doi.org/10.3389/fendo.2024.1385836
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Machine learning to predict the occurrence of thyroid nodules: towards a quantitative approach for judicious utilization of thyroid ultrasonography
	Introduction
	Materials and methods
	Study cohort
	Data acquisition
	Data preprocessing
	Model development
	Feature importance
	Statistical analysis

	Results
	Cohort characteristics
	Model performance
	Critical predictors
	Nomogram

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


