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Objective: There is a controversy in studies of circulating inflammatory proteins

(CIPs) in association with osteoporosis (OP) and fractures, and it is unclear if these

two conditions are causally related. This study used MR analyses to investigate

the causal associations between 91 CIPs and OP and 9 types of fractures.

Methods: Genetic variants data for CIPs, OP, and fractures were obtained from

the publicly available genome-wide association studies (GWAS) database. We

used inverse variance weighted (IVW) as the primary analysis, pleiotropy, and

heterogeneity tests to analyze the validity and robustness of causality and reverse

MR analysis to test for reverse causality.

Results: The IVW results with Bonferroni correction indicated that CXCL11

(OR = 1.2049; 95% CI: 1.0308-1.4083; P= 0.0192) can increase the risk of OP;

IL-4 (OR = 1.2877; 95% CI: 1.1003-1.5070; P= 0.0016), IL-7 (OR = 1.2572; 95%

CI: 1.0401-1.5196; P= 0.0180), IL-15RA (OR = 1.1346; 95% CI: 1.0163-1.2668;

P= 0.0246), IL-17C (OR = 1.1353; 95% CI: 1.0272-1.2547; P= 0.0129), CXCL10

(OR = 1.2479; 95% CI: 1.0832-1.4377; P= 0.0022), eotaxin/CCL11 (OR = 1.1552;

95% CI: 1.0525-1.2678; P= 0.0024), and FGF23 (OR = 1.9437; 95% CI: 1.1875-

3.1816; P = 0.0082) can increase the risk of fractures; whereas IL-10RB

(OR = 0.9006; 95% CI: 0.8335-0.9730; P= 0.0080), CCL4 (OR = 0.9101; 95%

CI: 0.8385-0.9878; P= 0.0242), MCP-3/CCL7 (OR = 0.8579; 95% CI: 0.7506-

0.9806; P = 0.0246), IFN-g [shoulder and upper arm (OR = 0.7832; 95%

CI: 0.6605-0.9287; P = 0.0049); rib(s), sternum and thoracic spine

(OR = 0.7228; 95% CI: 0.5681-0.9197; P=0.0083)], b-NGF (OR = 0.8384; 95%

CI: 0.7473-0.9407; P= 0.0027), and SIRT2 (OR = 0.5167; 95% CI: 0.3296-0.8100;

P= 0.0040) can decrease fractures risk.
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Conclusion: Mendelian randomization (MR) analyses indicated the causal

associations between multiple genetically predicted CIPs and the risk of OP

and fractures.
KEYWORDS

osteoporosis, fracture, bone homeostasis, circulating inflammatory proteins,
Mendelian randomization
1 Introduction

Osteoporosis is a common systemic metabolic bone disease

characterized by an imbalance in bone homeostasis, microstructural

disruption of bone tissue, decreased bone mineral density (BMD),

and an increased risk of fracture (1), with fracture being the most

serious outcome of OP (2). Studies have shown that the global

prevalence of OP was 18.3% (3) and was positively correlated with

age, with worldwide prevalence rates of OP corresponding to

11.4%/24.8%/37.6%/40.8% in the 50-59/60-69/70-79/89-89 age

groups (4). In addition, the total number of fragility fractures in

the EU6 was projected to increase to 3.3 million by 2030 (a rise of

23%), with a 27% increase in annual fracture-related costs (5). The

trend of population aging is contributing to the increasing number

of OPs and fractures, which is a major global public health problem

and imposes a heavy health and economic burden on individuals

and societies (6).

The term “osteoimmunology” was coined in 2000 and has been

a hot topic of research in recent years (7), with CIPs being the key

bridge between the interconnectedness of the immune system and

the skeletal system (8). OP is considered an inflammatory bone

anomaly. However, the role of CIPs in OP and fractures is complex

and not yet fully unraveled (9). Inflammation and inflammatory

proteins not only induce OP by affecting bone strength and quality

(10) but also contribute to increased fracture risk by inhibiting bone

formation, promoting bone loss, and impairing bone regeneration

(11, 12). However, inflammation and inflammatory proteins can

also inhibit OP by promoting osteoblast (OB) differentiation,

further inducing osteogenesis through multiple signaling

pathways (13), and being key factors in promoting early fracture

healing and bone regeneration (14). Studies on the association

between CIPs and OP and fractures have been both mutually

supportive and contradictory, with bias due to confounding

factors, environmental factors, and reverse causation being one of

the main reasons for the conflicting nature of these studies.

Exploring the causal associations between CIPs and the risk of

OP and fractures in terms of genetic factors has not yet been clearly

reported. MR is an epidemiological research method that analyses

summary-level data from GWAS by means of reliable instrumental

variables (IVs). Due to the high degree of randomness of genetic

variation and the fact that alleles are not affected by the

environmental factors of the disease, MR can further reliably infer
02
causality between exposures and outcomes by greatly reducing bias

due to confounding factors, environmental factors, and reverse

causality (15). This study used a bidirectional Mendelian

randomization method to investigate whether there are

genetically predicted causal associations between CIPs and the

risk of OP and fractures.
2 Materials and methods

2.1 Study design

Our study was done under the guidance of “strengthening the

reporting of observational studies in epidemiology using Mendelian

randomization (STROBE-MR)” (16). The data we used were

obtained from publicly available GWAS database, and ethics

committees have approved these original studies. Therefore, no

ethical approval is required to cite these public datasets. SNPs used

as valid IVs in MR analyses must satisfy the following three key

assumptions. (i) The relevance assumption, the IVs must be directly

and strongly related to the exposure; (ii) the independence

assumption, the IVs must be unrelated to any confounding

factors; (iii) the exclusion restriction assumption: the IVs can only

affect outcomes through exposures (no directional pleiotropy)

(Supplementary Figure S1).
2.2 GWAS data sources

In the present study, summary-level statistics for both exposure

and outcome were derived from European ancestry, which could

reduce bias due to race-related confounders. Exposures.We obtained

91 CIPs datasets (accession numbers from GCST90274758 to

GCST90274848) from GWAS (https://www.ebi.ac.uk/gwas/home)

(17). Outcomes. We searched the Integrative Epidemiology Unit

(IEU, https://gwas.mrcieu.ac.uk/) for The summary data of OP

(finn-b-M13_OSTEOPOROSIS) and 9 types of fractures (3 major

sites each in the upper limb, lower limb, and midshaft bones),

including fracture of shoulder and upper arm (finn-b-

ST19_FRACT_SHOUL_UPPER_ARM), fracture of forearm (finn-

b-ST19_FRACT_FOREA), fracture at wrist and hand level (finn-b-

ST19_FRACT_WRIST_HAND_LEVEL), fracture of femur (finn-b-
frontiersin.org
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ST19_FRACT_FEMUR), fracture of lower leg, including ankle (finn-

b-ST19_FRACT_LOWER_LEG_INCLU_ANKLE), Fracture of foot,

except ankle (finn-b-ST19_FRACT_FOOT_ANKLE), fracture of

neck (finn-b-ST19_FRACT_NECK), fracture of rib(s), sternum and

thoracic spine (finn-b-ST19_FRACT_RIBS_STERNUM_

THORACIC_SPINE), and fracture of lumbar spine and pelvis

(finn-b-ST19_FRACT_LUMBAR_SPINE_PELVIS). After

comparing the sources of participants in the 91 datasets from the

CIPs with the 10 datasets from the skeletal system, we considered the

samples of the GWAS data for exposures and outcomes to be

independent of each other as a way of reducing bias due to

overlapping data sources. We summarise the details of these data

in Supplementary Table S1.
2.3 Selection of instrumental variables

We filtered out SNPs in the 91 CIPs dataset by setting a

significance threshold of “5E-06”. These SNPs were analyzed by

the “clump_data” function for linkage disequilibrium at “r2 < 0.001,

10000 kb” in order to exclude mutual linkage SNPs and to discard

non-biallelic SNPs to ensure independence among IVs for each

exposure. We assessed the strength of association between the

screened SNPs and exposure using F-statistic as a way to avoid

bias caused by weak IVs. The F-statistic is calculated as F = (b2/
standard error2), when F > 10 for SNPs shows that it is strongly

effective IVs (18). When the effect alleles for the SNPs’ effects in the

exposure and outcome were different, the summary set might

generate errors. We used the “harmonise_data” function to test

the causal direction of the selected SNPs in the exposure and

outcome, eliminated the palindromic alleles, and finally chose the

SNPs with the result of “TRUE” as the effective IVs.
2.4 Two-sample Mendelian
randomization analysis

We performed the TSMR analysis with the “TwoSampleMR”

package of the R version 4.2.3 software. Forward MR was analyzed

with CIPs as exposures and OP and fractures as outcomes. The

purpose of reverse MR analyses by interchanging exposures and

outcomes was to exclude bias due to reverse causality. First, we used

five methods, MR Egger, weighted median, random effects IVW,

simple mode, and weighted mode, to assess the causal associations

between exposures and outcomes, with IVW being the most

reliable. With “IVW P-value < 0.05”, we applied the Bonferroni

correction to the results using the “p.adjust” function in the R

software and recorded the exposure factors of Padjust < 0.05 and set

Padjust < 0.1 if the screening was fruitless. The results of IVs, all-MR

Egger, and all-IVW were visualized using a forest plot. Second, the

heterogeneity test. We used Cochran’s Q-statistic for heterogeneity

analysis of SNPs in IVW and MR-Egger analyses in order to assess

the robustness of IVs when P-value > 0.05 indicated that there was

no significant heterogeneity in the results (19). The test results for

heterogeneity were visualized by funnel plots of the IVs. Third, the

pleiotropy test. Pleiotropy refers to the fact that some IVs affect
Frontiers in Endocrinology 03
outcomes through confounding factors other than exposures, which

would seriously undermine the reliability of the causal associations

between exposures and outcomes. We tested for outliers by MR-

PRESSO (global test P-value < 0.05) and reassessed the causal

association between exposure and outcome after excluding

outliers (20). At the same time, we used the “MR_pleiotropy_test”

function for effect estimation and bias detection of MR-Egger

intercept, and when the P-value >0.05 showed no evidence of

significant pleiotropy (21). Leave-one-out analysis was performed

by sequentially removing single SNPs and then rerunning the IVW

analysis to assess the effect of the remaining SNPs on the outcome,

with the aim of discovering whether there were any single SNPs

driving causality. Finally, we used the mRnd website (https://

shiny.cnsgenomics.com/mRnd/) to assess the statistical power of

the MR analysis. a (type-I error rate) was set to 0.05, and R2

(proportion of variance explained for the association between the

SNP or allele score and the exposure variable) was calculated as

2×eaf×(1-eaf)×b2 (22, 23).
3 Results

3.1 Forward MR

Forward MR and the sensitivity analysis results are in

Supplementary Table S2, and detailed information on IVs and the

results of power analysis are in Supplementary Table S3, where

SNPs as IVs were all strong instrumental variables (F-statistic > 10).

IVW analysis (Figure 1) showed that CXCL11 (OR = 1.2049; 95%

CI: 1.0308-1.4083; P = 0.0192; Padjust = 0.0385) can increase OP risk.

For fracture of the shoulder and upper arm, IFN-g (OR = 0.7832;

95% CI: 0.6605-0.9287; P = 0.0049; Padjust = 0.0346) can reduce its

risk, whereas IL-4 (OR = 1.2877; 95% CI: 1.1003-1.5070; P = 0.0016;

Padjust = 0.0114) can increase its risk. For fracture of forearm,

b-NGF (OR = 0.8384; 95% CI: 0.7473-0.9407; P = 0.0027; Padjust =

0.0162) can reduce its risk, while Eotaxin/CCL11 (OR = 1.1552; 95%

CI: 1.0525-1.2678; P = 0.0024; Padjust = 0.0143) can increase its risk.

IL-10RB (OR = 0.9006; 95% CI: 0.8335-0.9730; P = 0.0080; Padjust =

0.0240) can reduce the risk of fracture at the wrist and hand level.

CCL4 (OR = 0.9101; 95% CI: 0.8385-0.9878; P = 0.0242; Padjust =

0.0725) and MCP-3/CCL7 (OR = 0.8579; 95% CI: 0.7506-0.9806;

P = 0.0246; Padjust = 0.0739) can reduce the risk of fracture of the

femur. IL-17C (OR = 1.1353; 95% CI: 1.0272-1.2547; P = 0.0129;

Padjust = 0.0777) can increase the risk of fracture of the lower leg

(including the ankle). CXCL10 (OR = 1.2479; 95% CI: 1.0832-

1.4377; P = 0.0022; Padjust = 0.0108) can increase the risk of fracture

of the foot (except ankle). For fracture of the neck, FGF23

(OR = 1.9437; 95% CI: 1.1875-3.1816; P = 0.0082; Padjust = 0.0328)

can increase its risk, while SIRT2 (OR = 0.5167; 95% CI: 0.3296-

0.8100; P = 0.0040; Padjust = 0.0160) can decrease its risk. IL-15RA

(OR = 1.1346; 95% CI: 1.0163-1.2668; P = 0.0246; Padjust = 0.0984)

and IL-7 (OR = 1.2572; 95% CI: 1.0401-1.5196; P = 0.0180; Padjust =

0.0719) can increase the risk of fracture of rib(s), sternum and

thoracic spine. IFN-g (OR = 0.7228; 95% CI: 0.5681-0.9197; P =

0.0083; Padjust = 0.0248) can reduce the risk of fracture of lumbar

spine and pelvis. We presented the above results in a summarised
frontiersin.org
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forest plot (Figure 2) and used a forest plot to visualize the results

for IVs, all-MR Egger, and all-IVW (Supplementary Figure S2). In

the sensitivity analyses, the P-value for the pleiotropy tests (MR-

egger intercept test and MR-PRESSO global test) and the

heterogeneity test (Cochran’s Q-statistic) for these 15 causal
Frontiers in Endocrinology 04
associations were all greater than 0.05. SNPs were symmetrically

distributed in the funnel plot of IVW (Supplementary Figure S3).

No obvious single SNP was found to have an influence on the

association in the leave-one-out analysis plot (Supplementary

Figure S4). In conclusion, sensitivity analyses showed no
B C D

E F G H

I J K L

M N O

A

FIGURE 1

Scatter plots of causal associations between exposures (CIPs) and outcomes (OP, fractures). (A) Scatter plot between CXCL11 and OP; (B) Scatter
plot between IFN-g and fracture of shoulder and upper arm; (C) Scatter plot between IL-4 and fracture of shoulder and upper arm; (D) Scatter plot
between b-NGF and fracture of forearm; (E) Scatter plot between eotaxin and fracture of forearm; (F) Scatter plot between IL-10RB and fracture at
wrist and hand level; (G) Scatter plot between CCL4 and fracture of femur; (H) Scatter plot between MCP-3 and fracture of femur; (I) Scatter plot
between IL-17C and fracture of lower leg (including ankle); (J) Scatter plot between CXCL10 and fracture of foot (except ankle); (K) Scatter plot
between FGF23 and fracture of neck; (L) Scatter plot between SIRT2 and fracture of neck; (M) Scatter plot between IL-15RA and fracture of rib(s),
sternum and thoracic spine; (N) Scatter plot between IL-7 and fracture of rib(s), sternum and thoracic spine; (O) Scatter plot between IFN-g and
fracture of lumbar spine and pelvis.
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significant pleiotropy or heterogeneity in these results, implying the

high validity and robustness of the MR analyses.
3.2 Reverse MR

We similarly screened IVs for OP and fractures datasets on the

basis of setting a significance threshold of “5E-06”. Reverse MR and

the sensitivity analysis results are in Supplementary Table S4, and

detailed information on IVs is in Supplementary Table S5, where
Frontiers in Endocrinology 05
SNPs as IVs were all strong instrumental variables (F-statistic > 10).

IVW analysis showed (Figure 3) that there was no evidence to

support the causal associations of OP with CXCL11(P = 0.9753),

fracture of the shoulder and upper arm with IFN-g (P = 0.2562) and

IL-4 (P = 0.4301), fracture of the forearm with b-NGF (P = 0.7119)

and eotaxin/CCL11 (P = 0.6601), fracture at wrist and hand level

with IL-10RB (P = 0.3373), fracture of femur with CCL4

(P = 0.9109) and MCP-3/CCL7 (P = 0.8241), fracture of lower leg

(including ankle) with IL-17C(P = 0.3012), fracture of foot (except

ankle) with CXCL10 (P = 0.7755), fracture of rib (s), sternum and
FIGURE 2

The forest plot showed the causal associations between exposures (CIPs) and outcomes (OP, fractures) in the forward MR analysis. SNP, single-
nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
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thoracic spine with IL-15RA (P = 0.8511) and IL-7 (P = 0.5732),

fracture of lumbar spine and pelvis with IFN-g (P = 0.1432). Since

the fracture of neck dataset was screened for too few SNPs at a

significance threshold of “5E-06”, MR analysis was performed using

a significance threshold of “1E-05” and found no evidence to

support a causal association between the levels of FGF23

(P = 0.1054) or SIRT2 (P = 0.6412) in the fracture of neck
Frontiers in Endocrinology 06
dataset. In MR analysis of the fracture of the forearm on eotaxin/

CCL11, although Cochran’s Q P-value < 0.05 for IVW indicated

heterogeneity, heterogeneity was considered acceptable in the

present study in the case of using random-effects IVW (24). In

the above reverse, MR, the P-values of pleiotropy tests (MR-egger

intercept test and MR-PRESSO global test) and heterogeneity test

(Cochran’s Q-statistic) were all greater than 0.05, indicating no
B C D

E F G H

I J K L

M N O

A

FIGURE 3

Scatter plots of causal associations between exposures (OP, fractures) and outcomes (CIPs). (A) Scatter plot between OP and CXCL11; (B) Scatter
plot between fracture of shoulder and upper arm and IFN-g; (C) Scatter plot between fracture of shoulder and upper arm and IL-4; (D) Scatter plot
between fracture of forearm and b-NGF; (E) Scatter plot between fracture of forearm and eotaxin; (F) Scatter plot between fracture at wrist and hand
level and IL-10RB; (G) Scatter plot between fracture of femur and CCL4; (H) Scatter plot between fracture of femur and MCP-3; (I) Scatter plot
between fracture of lower leg (including ankle) and IL-17C; (J) Scatter plot between fracture of foot (except ankle) and CXCL10; (K) Scatter plot
between fracture of neck and FGF23; (L) Scatter plot between fracture of neck and SIRT2; (M) Scatter plot between fracture of rib(s), sternum and
thoracic spine and IL-15RA; (N) Scatter plot between fracture of rib(s), sternum and thoracic spine and IL-7; (O) Scatter plot between fracture of
lumbar spine and pelvis and IFN-g.
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significant pleiotropy and heterogeneity, and high validity and

robustness of the MR analyses. We presented the results of the

reverse MR analyses in a summarised forest plot (Figure 4) and

attached forest plots (Supplementary Figure S5), funnel plots

(Supplementary Figure S6), and leave-one-out analysis plots

(Supplementary Figure S7) to the Supplementary Material. In

conclusion, the reverse MR results indicate that there is no

obvious bias caused by reverse causality in the forward MR.
4 Discussion

Bone homeostasis is maintained by the balance between the OB

of bone formation and the osteoclast (OC) of bone resorption, as

well as by intraosseous vascular homeostasis. OP and fractures are

inextricably linked to an imbalance in bone homeostasis, and CIPs

play a critical and complex role in the regulation of bone

homeostasis. To our knowledge, this is the first MR analysis to

explore the causal associations between 91 CIPs and the risk of OP

and 9 types of fractures. In analyzing the current GWAS datasets

cited in this study, we found that CXCL11 can increase the risk of

OP; IL-4, IL-7, IL-15RA, IL-17C, CXCL10, eotaxin/CCL11, FGF23

can increase the risk of fractures, whereas IL-10RB, CCL4, MCP-3/

CCL7, IFN-g, b-NGF, SIRT2 can decrease the risk of fractures, and

there is no reverse causality of the above results.
4.1 Association of interleukins with
osteoporosis and fractures

Studies have shown that IL-4 can reduce mature OC activity to

further inhibit bone resorption through NF-kB and Ca2+ signaling

pathways (25). Other studies have reported that IL-4 readily induces

M2 macrophages to differentiate into OC (26) and that the IL-4/IL-

4R pathway promotes the proliferation of preosteoclast cells to

provide a large number of “seeds” for OC (27). Controversy exists

regarding the role of IL-4 in the skeletal system, and we found that

genetically predicted IL-4 can increase fracture risk. OC is the only

bone-resorbing cell in the body, and osteoclastogenic cytokines,

including IL-7, IL-15, and IL-17, and anti-osteoclastogenic

cytokines, including IL-10, form a key signaling network that

regulates OC proliferation and differentiation (28). IL-7 not only

induces T cells to secrete receptor activator of nuclear factor kappa-

B ligand (RANKL) and TNF-a to enhance OC proliferation and

thereby induce bone loss (29) but also induces OC production by

the STAT5 pathway, which is independent of the RANKL pathway

(30). Controversially, some studies have found that IL-7 is a direct

inhibitor of OC generation in vitro (31). IL-15 not only increases the

number of OC by stimulating the differentiation of OC progenitor

into OC precursor (32) but also synergizes with the RANKL

pathway (33) and the phospholipase D1 (PLD1) pathway (34) to

promote OC production, further contributing to bone destruction

and bone loss. Downregulation of IL-15 levels inhibits the RANKL-

RANK- osteoprotegerin (OPG) axis and reduces the risk of femoral

head necrosis (35). Controversially, IL-15 is also essential in OB

function as well as bone mineralization (36). As an inducer of
Frontiers in Endocrinology 07
RANKL, IL-17 not only stimulates OC proliferation, leading to

bone erosion (37) but also enhances OC activity, thereby causing

bone destruction (38). Controversially, some studies have reported

that IL-17 promotes OB secretion of granulocyte-macrophage

colony-stimulating factor (GM-CSF) to inhibit differentiation of

preosteoclast cells (39). IL-10, an osteoblast factor, can hinder OC

differentiation and maturation by inhibiting RANK and RANKL

and promoting OPG expression, and high levels of IL-10 can inhibit

OC activity (40). Other studies have reported that low

concentrations of IL-10 can induce bone formation through p38

MAPK signaling, but high concentrations of IL-10 cause bone

damage (41). In conclusion, the roles of interleukins in the

skeletal system and bone homeostasis are complex and varied,

and many studies are controversial or even have opposite

conclusions, with bias due to confounding factors, environmental

factors, and reverse causality being one of the main reasons for the

conflicting nature of these studies. We have shown by MR analysis

that IL-4, IL-7, IL-15RA, and IL-17C promote fractures, whereas IL-

10RB can decrease fracture risk, which provides genetic evidence for

research in this area.
4.2 Association of chemokines with
osteoporosis and fractures

Chemokines comprise two major families (CXC, CC) that are

key signals for the migration and localization of circulating cells into

various tissues and play an important role in bone metabolism.

CXCL10 enhances the homing and differentiation of circulating

osteoclast progenitor cells and stimulates OC production. Thus, it is

considered an osteoclastogenic factor and has osteoclastogenic

effects (42). The C5a/C5aR1 axis is strongly associated with

fractures, and CXCL10 production is a key effector outcome of

this pathway (43). In addition, bone erosion was prevented by

vitamin D supplementation that inhibited the CXCL10 pathway

(44). It has also been shown that there is no significant correlation

between CXCL10 and hip fracture risk (45). Our MR analysis

revealed that genetically predicted CXCL10 can promote fracture

occurrence. CXCL11 inhibits angiogenesis, and impaired

angiogenesis is a key pathophysiological microenvironmental

condition in OP (46). Some studies have suggested that CXCL11

can inhibit the differentiation of monocytes to OC (47). However,

other studies have suggested that CXCL11 has no significant role in

OC differentiation (48). Studies on the association between CXCL11

and OP are scarce and controversial, and the present study

demonstrates that genetically predicted CXCL11 promotes the

progression of OP.

Studies have concluded that CCL4 can promote OC invasion and

induce bone resorption disease through OC differentiation gene

expression profiling (49). Controversially, other studies have

suggested that although CCL4 promotes the viability and migratory

capacity of preosteoclast cells, it is not required for OC differentiation

and is not directly involved in OC generation; furthermore, CCL4

improves function in the OB ecological niche by recruiting progenitor

cells and maintaining viability (50). Studies have shown that MCP-3/

CCL7 can exacerbate osteolysis by promoting RANKL generation
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and bone-resorptive OC recruitment (51). Controversially, Other

studies have shown that CCL7 can induce OB homing to the fracture

site to participate in repair (52). And CCL7 has a role in promoting

angiogenesis (53). It has been reported that eotaxin/CCL11 can

promote the invasion of preosteoclast cells and lead to bone
Frontiers in Endocrinology 08
resorption, so it is considered a novel inflammatory bone

resorption factor (54). In conclusion, CCL4 and CCL7 are more

similar to a regulator of bone homeostasis. However, there are fewer

reports on the relevance of CCL4/CCL7/CCL11 in bone homeostasis,

which is a direction that deserves to be explored in depth. Our MR
FIGURE 4

The forest plot showed the causal associations between exposures (OP, fractures) and outcomes (CIPs) in the reverse MR analysis. SNP, single-
nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
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analyses indicated that genetically predicted CCL4 and CCL7 can

decrease fracture risk, whereas CCL11 can increase fracture risk.
4.3 Association of other CIPs with
osteoporosis and fractures

As an osteoblast factor, IFN-g plays an important regulatory

role in osteoimmunology. IFN-g not only promotes bone

mineralization by stimulating OB differentiation through

induction of the runt-related transcription factor 2 (RUNX2)/

osterix (OSX) pathway but also reduces bone loss by inhibiting

OC activity (55, 56). Controversially, other studies have reported

that IFN-g can promote apoptosis in OB synergistically through the

activation of caspases, and it can also promote OC production

under specific conditions causing bone destruction (57, 58). OB

secretes NGF in response to mechanical loading and can be

innervated via the NGF-tropomyosin receptor kinase A (TrkA)

signaling pathway to further drive bone formation and maintain

bone homeostasis in vivo (59, 60). NGF deficiency will reduce the

migration of osteogenic precursors to the injury site, causing

delayed bone healing (61). SIRT2 is the most richly expressed

factor of the class III family of histone deacetylases (HDAC-III)

in human bone tissue, which can prevent bone loss by reducing OC

production (62). In addition, SIRT2 can promote OB proliferation

and enhance activity through SIRT2/RUNX2 cascade regulation

(63). Other studies have shown that hepatic SIRT2 gene defects can

inhibit OC production and attenuate bone loss through liver-bone

communication (64). FGF23 can inhibit the conversion of 25-

hydroxy vitamin D to active 1,25(OH)2D3 by targeting the renal

proximal tubule (65) and also affects bone mineralization and bone

homeostasis by inhibiting OB function, which ultimately leads to

bone destruction and increased fracture risk (66). It has been

suggested that FGF23 is positively correlated with impaired bone

trabecular microarchitecture, and it can be used as one of the

predictors of trabecular bone loss (67). However, other clinical

studies have concluded that there is no direct correlation between

FGF23 and bone parameters (68). We found that genetically

predicted IFN-g, b-NGF, and SIRT2 can decrease fracture risk,

whereas FGF23 promotes fracture occurrence. Studies related to the

role of these CIPs in the skeletal system are controversial, and our

study can provide reference evidence.

Our study has the following advantages. Firstly, this is the first

MR analysis to explore the causal associations of 91 CIPs with OP

and fractures. Secondly, bidirectional TSMR analysis can effectively

reduce bias caused by confounding factors, environmental factors,

and reverse causality. Thirdly, there are numerous but controversial

studies reported on the associations of CIPs with OP and fracture

and bone homeostatic imbalance, and the present study can provide

insightful information for research in this area from a genetic

perspective. This study also has some limitations. First, although

sensitivity analyses of MR verified the validity and robustness of

IVs, the possibility of residual heterogeneity remains. Second, we

only utilized databases of European ancestry for the MR analyses,

and the conclusions should be interpreted with caution when

applied to other populations. Third, this study only explored the
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genetic associations between a limited number of inflammatory

proteins with OP and fractures. Actually, there may be more

inflammatory proteins and genetic factors, which are limited by

the amount of information in the current GWAS dataset.
5 Conclusion

Osteoimmunology is receiving increasing attention, with CIPs

playing a key bridging role between the immune and skeletal

systems. We found the causal associations between multiple

genetically predicted CIPs and the risk of OP and 9 types of

fractures by MR analysis. The present study effectively reduces

bias due to confounding factors, environmental factors, and reverse

causality, and the results have favorable validity and robustness.

Our study provides reliable genetic evidence for further

investigation of the pathogenic mechanism of CIPs involved in

bone homeostatic imbalance and finds novel potential targets for

OP and fractures. With the rapid development of the post-genomic

era, the integration of more up-to-date datasets to map the network

of genetic associations between CIPs and OP and fractures is an

interesting research direction.
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