
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Zoltan Pataky,
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Introduction: Diabetic foot ulcers (DFUs) are a severe complication among

diabetic patients, often leading to amputation or even death. Early detection of

infection and ischemia is essential for improving healing outcomes, but current

diagnostic methods are invasive, time-consuming, and costly. There is a need for

non-invasive, efficient, and affordable solutions in diabetic foot care.

Methods: We developed DFUCare, a platform that leverages computer vision

and deep learning (DL) algorithms to localize, classify, and analyze DFUs non-

invasively. The platform combines CIELAB and YCbCr color space segmentation

with a pre-trained YOLOv5s algorithm for wound localization. Additionally, deep-

learning models were implemented to classify infection and ischemia in DFUs.

The preliminary performance of the platform was tested on wound images

acquired using a cell phone.

Results:DFUCare achieved an F1-score of 0.80 and amean Average Precision (mAP)

of 0.861 for wound localization. For infection classification, we obtained a binary

accuracy of 79.76%, while ischemic classification reached 94.81% on the validation

set. The system successfully measured wound size and performed tissue color and

textural analysis for a comparative assessment of macroscopic wound features. In

clinical testing, DFUCare localized wounds and predicted infected and ischemic with

an error rate of less than 10%, underscoring the strong performance of the platform.

Discussion: DFUCare presents an innovative approach to wound care, offering a

cost-effective, remote, and convenient healthcare solution. By enabling non-

invasive and accurate analysis of wounds using mobile devices, this platform has

the potential to revolutionize diabetic foot care and improve clinical outcomes

through early detection of infection and ischemia.
KEYWORDS

diabetic foot ulcer, machine learning, deep learning - artificial intelligence, wound
monitoring, remote health care monitoring
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1 Introduction

Diabetic foot ulceration (DFU) is a serious complication affecting

people with diabetes, with more than half of DFUs at risk of becoming

infected. Of these infections, approximately 20% require amputation

(1, 2). This is a significant concern as patients who undergo

amputation due to DFUs have a high mortality rate, with more than

half expected to die within five years (3). Additionally, the financial

burden associated with treating and managing DFUs and their

complications surpasses that of the top five cancers, with an annual

cost exceeding 11 billion dollars in the United States alone (4). As the

prevalence of Diabetes Mellitus (DM) continues to rise, DFUs are

expected to become an even greater burden for global health systems

and may be one of the most expensive diabetes complications (5).

Despite significant improvement in identifying novel therapies

for DFU treatment, the early diagnosis of the underlying cause and

management of DFU still remains challenging. Impaired DFU

healing is complex pathogenesis driven by multiple factors

including diabetic foot infections, wound ischemia, exhausted

immune system, and poor glycemic control (6–8). DFU

management requires infection and ischemia evaluation at

multiple time points for better management, which is currently

limited due to its invasive nature. This problem is more aggravated

in the rural areas of the country due to limited access to DFU

wound centers and clinical experts. Therefore, there is an unfulfilled

clinical need for non-invasive tools for the analysis of wound

infection as well as ischemia detection, two key factors associated

with impaired wound healing.

In recent years, DL algorithms have demonstrated great

potential in the detection and diagnosis of diseases, particularly in

medical imaging, radiology, and pathology (9–11). This has led to

the emergence of DL image analysis as an assistive tool, supporting

clinicians with decision-making procedures and enhancing the

efficiency and accuracy of disease diagnosis and treatment (12).

DL has also shown promising results in the classification and

localization of DFUs. It achieved high accuracies in ischemia and

infection classification, ranging from 87.5% to 95.4% and 73% to

93.5%, respectively (13–16). Furthermore, researchers have made

significant progress in DFU localization, with Mean Average

Precision (mAP) values between 0.5782 and 0.6940, and F1-scores

between 0.6612 and 0.7434 (17, 18).

Despite these advancements, many of these tools are still in the

early stages of development and lack automated analysis capabilities

for predicting infections, ischemia, and other physical features crucial

for DFU wound management. Additionally, current wound analysis

platforms rely on proprietary hardware attachments, such as thermal

scanners (e.g., SmartMat by Pod Metrics), 3D scanners using

structured light or lasers (e.g., Insight 3D by Ekare.ai and Ray 1 by

Swift Medical), and Optical Coherence Tomography (OCT) for

visualizing and quantifying microvascular structures related to DFU

formation (19, 20). The need for these specialized attachments may

restrict the access to DFUmanagement among the general population.

To address these limitations, it is essential to develop a non-

invasive and automated tool that can comprehensively analyze

wound tissues, even in resource-limited areas. This study aims to
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investigate this issue by introducing the DFUCare, a novel approach

that enables the comprehensive analysis of wounds through images

captured using standard phone hardware. DFUCare incorporates

key components such as wound region detection models, infection

and ischemia classification, size measurement, and traditional color

and textural analysis. DFUCare’s non-invasive nature, coupled with

its automated analysis, empowers clinicians to manage infections,

ischemia, and other critical physical features more effectively,

ultimately enhancing DFU wound management.
2 Materials and methods

This section provides a detailed description of the datasets used

in the study and different components of DFUCare. The platform

involves localizing, cropping, and classifying the wound, and

analyzing macroscopic features such as size, color, and texture

extracted from the cropped wound image to determine their

association with infection and ischemia status (Figure 1).
2.1 DFU datasets

2.1.1 DFUC2020
The goal of the Diabetic Foot Ulcer Competition 2020 (DFUC

2020) dataset was to improve the accuracy of DFU detection in

real-world settings (18). The dataset consisted of foot images with

DFUs collected from Lancashire Teaching Hospitals. The images

were captured using three digital cameras (Kodak DX4530, Nikon

D3300 and Nikon COOLPIX P100), and close-ups of the foot

were taken without zoom or macro functions. The dataset

comprised of 4,000 images, with 2,000 used for training and

2000 for testing. The images were acquired during regular patient

appointments, resulting in variability in factors such as distance,

angle, lighting, and the presence of background objects. The

dataset included cases with multiple DFUs, different stages of

healing, partial foot visibility, and foot deformities. The dataset

also featured cases with time stamps, rulers, and partial blurring

or obfuscation of wounds. The images were annotated by

healthcare professionals, indicating the ulcer location using

bounding boxes.

2.1.2 DFUC 2021
Diabetic Foot Ulcer Competition 2021 (DFUC 2021) dataset

was developed to enhance the accuracy of DFU classification in

clinical settings (21). Collected during patient visits at Lancashire

Teaching Hospitals, the dataset features 15,683 foot images

captured with three different camera models. To ensure

consistency, close-up photographs of the entire foot were taken at

a distance of 30-40 cm, maintaining a parallel orientation to the

ulcer plane and using adequate room lighting to achieve consistent

colors. The dataset includes annotations by a podiatrist and a

consultant physician for ulcer location, ischemia, and infection

status. Data curation involved cropping DFU regions and

applying natural data augmentations.
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2.2 Wound image preprocessing

To optimize the performance of wound detection model, a

comprehensive image preprocessing pipeline with the primary

objective of removing background regions, in the wound images

was applied (Figure 2A). Before background removal, min-max

image normalization was applied to ensure the comparability of

wound images across different samples. This technique rescaled the

pixel intensities of each image to a specific range, between 0 and 1. By

normalizing the pixel intensities through subtracting the minimum

value and dividing by the range of pixel values, consistent intensity

levels across all samples were achieved, accounting for variations in

camera resolution and lighting conditions.

To accurately distinguish between the skin and background

regions in the wound images, we implemented a colorspace

thresholding approach. Extensive research has demonstrated the

effectiveness of the Cr channel in the YCRCB colorspace, as well as

the a* channel in the CIELAB colorspace, for precise skin-to-

background segmentation (22). Leveraging this knowledge, we

generated a binary mask by applying Otsu’s thresholding technique

to the Cr channel in the CIELAB colorspace and the CR channel in

the YCbCr colorspace. This binary mask was applied on the original

wound image to separate the foreground from the background skin.

In addition, median filtering was incorporated to refine the binary

mask obtained from the thresholding process and minimize

background region inconsistencies (Figure 2B). This technique

replaced each pixel with the median value of its neighboring pixels,

resulting in the removal of isolated background region pixels while

preserving the overall structure of the mask. By incorporating this

multi-step approach, our platform achieved a significant reduction in

background region in the wound images.
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2.3 Wound detection and localization

DL-based object localization models, such as the YOLO series,

have consistently demonstrated exceptional speed and accuracy in

detecting objects. In particular, YOLOv5 exhibits improved learning

capabilities compared to its predecessors and utilizes the

BottleneckSCP technique to extract hierarchical features with

reduced computational complexity (23).

For our study, we employed the YOLOv5s model, pretrained on

the COCO dataset, and fine-tuned it on the DFUC 2020 dataset to

enhance model convergence. The DFUC 2020 dataset was divided

into a training set (n=1800) and a test set (n=200), and a 10-fold

cross-validation technique was applied, training each fold for

30 epochs.

To address the limited number of wound images in the dataset,

we employed data augmentation techniques. These included

adjusting the hue, saturation, and value (HSV) of the images, as

well as utilizing translation, scaling, flipping, and mosaic

techniques. This augmented dataset improved model performance

and generalization.

Additionally, the YOLOv5s model employs a stochastic

gradient descent (SGD) optimizer with an initial learning rate of

0.01 (24). The chosen learning rate ensures a balance between

convergence speed and accuracy, allowing the model to effectively

optimize its performance in detecting wounds.

To improve the localization accuracy of the model and reduce

generalization error, the weights were tuned to achieve the highest

mAP and Intersection over Union (IoU) scores within the range of

0.5 to 0.95. A 10-fold cross-validation process was performed and

the weights that achieved the best mAP and IoU scores were

aggregated. This ensures that the selected weights yield improved
FIGURE 1

Schematic overview of DFUCare platform comprises two main components: 1) Image preprocessing that includes background removal and wound
localization. 2) Image analysis which contains wound classification, size measurement, roughness quantification, color analysis.
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localization performance on the DFUs even for unseen wound

images beyond the training set.
2.4 Automated classification of infection
and ischemia in wound images

To classify the detected wound images into four categories: i)

infection, ii) ischemia, iii) both infection and ischemia, and iv)

neither infection nor ischemia, both a classical machine learning

pipeline trained on hand-crafted image features and a DL pipeline

were developed. The inclusion of the classical machine learning

approach facilitates the extraction of interpretable wound features,

ensuring transparency and practicality in medical application. The

DL-based approach automatically learns complex patterns and

hierarchical representations from wound images, capturing subtle

features and nuances not easily discernible through traditional

hand-crafted feature extraction, increasing the model performance.
2.5 Deep learning-based classification
of DFU

To determine the CNN architecture that achieved the highest

DFU classification reliability, we chose four most popular pre-trained

ImageNet models (Resnet50v2, VGG16, InceptionResNetV2, and

DenseNet121) and trained into three phases of 20 epochs each

(25–28). For each model architecture, variants were trained with
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and without the addition of an additional dense layer between the last

convolutional layer output, and the output node. Approximately 20%

of images from the training dataset were held out for validation (1,156

images). To prevent overfitting and improve the performance of the

DL models, image augmentation techniques including random

rotations, flips, and shifts in brightness to each image in each

epoch. Additionally, binary cross-entropy was used as a loss

function to update the weights in each iteration. We evaluated the

performance of the algorithms using multiple metrics, including

binary accuracy, area under the curve (Area under the ROC

(Receiver Operating characteristic curve) Curve), precision, and

recall. All four models as-is with single output node and the same

four models with a trainable dense layer after the last convolutional

layer were trained on the binary classification tasks for either the

presence of infection or ischemia. An output node following the last

convolutional layer with a sigmoid activation function was used to

give the binary classification result. Models were trained by three

phases of 20 epochs each: 1) All weights for convolution layers were

frozen and optimized by Adamwith learning rate of 3e-4. 2) 4/5ths of

the convolutional layers were frozen and RMSprop with learning rate

of 1e-5 was used for optimization. 3) 2/3rds of the layers remained

frozen and optimized with decayed learning rate of 1e-6 on binary

cross entropy loss in Tensorflow2 (Figure 3) (29).

Due to imbalances in the number of ischemia images present

(179 of the 4,799 images), ischemic models were trained both on the

dataset as-is, and with ischemia-only and ischemic and infected

images upsampled by a factor of six with random augmentations.

This duplication brings the number of positive ischemic cases (662)
FIGURE 2

Overview of wound image normalization and background removal approach. (A) Diagram illustrating the workflow of image normalization and
background process. (B) Example showing segmentation results based on a* channel, Cr channel, and the merge of both color space. Area marked
by red dotted line demonstrates false positive region and yellow dotted line indicates false negative region.
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in line with the number of negative ischemic cases (4,137). No

modifications were made to the validation dataset.

The binary classification results were converted to a four-way

classification result through the following formulas:

P(none) = (1 − P(Inf )) * (1 − P(Isch)) (1)

P(InfOnly) = P(Inf ) * (1 − P(Isch)) (2)

P(IschOnly) = (1 − P(Inf )) * P(Isch) (3)

P(Both) = P(Inf ) * P(Isch) (4)

Where P(Inf ) is the output of the binary infection model, and

P(Isch) is the prediction of the binary ischemia model. Four

classification accuracy, F1-Score, and AUC were assessed on the

training, validation, and test dataset by combining each network

architecture’s best infection or ischemia models.
2.6 Handcrafted features extraction and
classical machine learning-based
DFU classification

The classical machine learning algorithm for wound

classification was a comprehensive approach that incorporates

six visual analysis methods to extract features from wound images

(30). The algorithm computed the distribution of CIELAB color

space channels, the Gray Level Co-occurrence Matrix (GLCM) for

the full image, distribution of GLCM metrics for 64x64 pixel

patches across an image, Local Binary Patterns (LBP), Local Phase

Quantification (LPQ), and Gabor filter to extract a mixture of

color and textural features (Supplementary Figure S1). These

handcrafted features are used to train classical models including

a non-linear SVM model using a Radial Basis Function (RBF)

kernel, Gradboost [100 tress with depth of 3 either on raw features

or after applying Principal Component Analysis (PCA)], XGBoost

(100 tress with depth of 3, raw features or after PCA), and

multilayer perceptron (MLP) with three layers to classify

infected vs non-infected or ischemic vs non-ischemic DFUs
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(31–33). The algorithm was trained on a dataset of 4799 images

using 5-fold cross-validation to select the optimal number of PC to

use, and additionally tested on the held-out validation set (1,156

images). Two binary classifiers identifying infection and ischemia

respectively and multi-classifier with four categories were

developed and evaluated using F1-score, precision, recall,

and accuracy.
2.7 Wound characterization and analysis

2.7.1 Wound size measurement
To determine the surface area of the wound with a camera,

DFUCare utilized a 1.3 cm by 1.3 cm ArUco marker placed near the

wound along with the Open-cv library to calculate a “pixel to

metric” ratio based on the predefined size of the marker. This allows

for the conversion of pixel size to a numerical measurement in

centimeters (Figure 4). This provided the width and height of the

wound region using the size of the bounding box from the

wound localization.
2.7.2 Color analysis of the wounds
Studies have indicated that ulcers may exhibit varying colors

depending on their etiology and stage of healing. Wounds with an

overlying layer of black eschar may transition through various

colors as part of the healing process, changing from black to

yellow, then to red, and eventually to granular red indicating

tissue regeneration. While red or yellow hues may sometimes be

associated with infection, it is important to note that darker tones,

such as black eschar, can also indicate infection or ischemia,

especially as the wound progresses through different stages of

healing. (30, 34, 35). To incorporate this, DFUCare employed

unsupervised K-means clustering to analyze and determine the

relative percentage of the seven major colors present in the localized

DFU images, providing valuable insights to the clinician for tissue

analysis (Figure 4). The DFUCare color analysis tool enables

physicians to conduct a proper analysis of the coloration of

DFU’s by determining the relative percentages of each color

present in the wound.
FIGURE 3

DL-based DFU classification model and training. Training strategy composed of three phases down with an example of VGG 16 architecture.
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2.7.3 Texture analysis of the wounds
The progression of wound healing can be observed through

changes in the wound surface’s texture. A smooth surface is

indicative of proper healing as new tissue forms and the wound

contracts. Conversely, the presence of roughness may suggest the

potential for infection or a delay in tissue regeneration.

Furthermore, the accumulation of necrotic tissue, also known as

eschar, can contribute to roughness and impede healing. To obtain

the roughness values, a two-dimensional grayscale image of the

wound surface is transformed into a three-dimensional

representation with a height map projection using the Numpy

and Scipy libraries. After applying a Gaussian filter to minimize

image noise, the roughness can be calculated by analyzing the

“bumps” or variations of the surface of the three-dimensional

projection. This allowed a graphical representation of the

roughness as well as a numerical measurement.
2.8 Pilot study for determining the
performance of DFUCare algorithm

To test the performance of the DFUCare algorithm, we

performed a pilot study in collaboration with the Postgraduate

Institute of Medical Education and Research (PGIMER), in

Chandigarh, India. Wound images were obtained as part of a

routine visit to the foot care lab of the endocrinology clinic at

PGIMER. The infection and ischemia status of wounds were

determined by a physician at the foot care lab of PGIMER with the

help of standard wound culture and wound characteristics. Ischemia

was evaluated based on vascular status assessments, including the

absence of pulses, Ankle-Brachial Index (ABI), and patterns observed

on color Doppler. The wound images with the ArUco marker placed

adjacent to the wound were acquired using an iPhone X camera. In

addition to wound images, de-identified patient demographics,

infection status, ischemia status, and manual wound size (rounded

to the nearest whole number) were also collected.
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3 Results

In this section, we begin by conducting a detailed analysis of the

results obtained from each of the individual models on both the

DFUC2020 and DFUC2021 datasets. Additionally, we conducted a

pilot study in collaboration with the PGIMER, in which the end-to-

end DFUCare was tested.
3.1 DL model enabled wound localization
from healthy skin with high precision

As an initial step of the DFUCare, we developed a wound region

detection module using the YOLOv5s model trained on the

DFUC2020 dataset. This algorithm achieved an F1-score of 0.78

and a mAP of 0.847 on the test set (Supplementary Figure S2A).

However, upon further analysis on the incorrectly localized test

cases, we observed detection of false positives on the image

background (Figure 5A).

To prevent false positives, image preprocessing pipeline

removing background images was developed. The performance of

the image preprocessing pipeline was evaluated using a subset of

100 randomly chosen images from the DFUC2020 dataset. The

performance of the workflow was evaluated through manual

analysis of the resulting images, specifically by determining if the

wound region was unobstructed/visible after background removal

was applied. The implemented filtering workflow has shown 97%

accuracy in segmenting the foreground from the background for

downstream analysis.

Applying this preprocessing step before the wound localization

algorithm, performance increase of F1-score of 0.80 and mAP of

0.861 has been observed (Supplementary Figure S2B). These results

demonstrate the effectiveness of the developed module in accurately

detecting and localizing wounds. Additionally, the use of the image

preprocessing pipeline further improves the performance of the

algorithm by reducing the instances of false positives (Figure 5B),
FIGURE 4

The overall process of DFUCare platform with an example of patient data from PGIMER, A DFU image goes through background filter and YOLO v5.
The detected wound region is cropped then undergoes Inception-Resnet v2 to classify the status of wound (infected or ischemic) and is used to
measure the size of wound and analyze color composition and roughness.
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highlighting the importance of background region removal in

enhancing the precision of wound localization.
3.2 Wound infection and
ischemia classification

To explore the potential of DL models to determine clinical

information from DFU wound images, we conducted extensive

training of multiple CNN models using the DFUC2021 dataset.

The DFUs detected from the wound localization module were

classified on a scale of 0-1, where values below 0.5 indicated non-

infected wound, whereas values between 0.5-1, infected wound.

Among the tested DL algorithms, the Resnet50v2 model with

additional dense layer before output node obtained the best binary

classification accuracy, AUC, and precision for infection, and

DenseNet121 for ischemia classification, respectively, on the

validation set. The DL approach achieved binary classification

accuracies of up to 79.76% and 94.81%, for infection and ischemia

(Supplementary Table S1, Supplementary Figures S3A, B, S4A, B).

In the four-way classification results, the combination of

InceptionResnetv2 for infection classification and DenseNet121

with additional dense layer for ischemia classification earned the

best F1 score (Supplementary Figure S4C). Resnet50v2

demonstrated the highest recall for both. In summary, the

InceptionResnetv2 model demonstrated the best classification

performance among the DL algorithms tested.
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As a comparison to the DL approach, classical machine learning

approaches were found to have classification accuracies on held out

data ranging from 65.7% to 75.8% for infected or non-infected image

patches, and 89.4% to 91.6% accuracy for ischemic and non-ischemic

wound patches (Supplementary Table S2). Out of the classical

models, an SVM model with an RBF kernel using the first 128

principal components showed the best performance on both

infection and ischemia. Other classical models tended to overfit the

training set, and therefore, poorly generalized to held-out data. While

the classical models demonstrate the viability of utilizing handcrafted

features for classifying small image patches, these findings suggested

that the features learned and utilized by the deep learning

architectures are better for the task of wound patch classification.
3.3 Demonstration of DFUCare

To validate the results of the DFUCare platform, we

collaborated with Dr. Bhadada and his team at the PGIMER, and

surveyed a total of 10 patients DFUCare’s results, as shown in

Supplementary Figure S5, were found to be comparable to the

physician’s analysis in Supplementary Table S3. The trained YOLO

v5s model successfully localized all DFUs diagnosed by physicians

except one out of ten patients (patient 4), in which two DFUs were

detected. In this test case, the larger bounding box captured the

overall wound region, and the smaller bounding box captured the

open wound in the overall wound image.
FIGURE 5

DFUC 2020 examples showing the improvement of wound localization by preventing false positive cases through binary mask filtering. (A) Left
column shows the wound detection results by YOLOv5s when original images are used. (B) Right column shows the detection wound area after
iamge preprocessing with enhanced peroformance.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1386613
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sendilraj et al. 10.3389/fendo.2024.1386613
In DFU classification, DFUCare was correct for all of twelve

wounds except for the case of ischemic classification for patient 4.

This discrepancy may be attributed to the presence of moisture in

the image, as ischemia is associated with dryness of the wound and

surrounding skin.

In terms of DFU size measurement, DFUCare had an average

difference of ± 0.2 cm for length and ± 0.3 cm for width, with the

longest side being the length. Additionally, the results from the

color analysis module align with the wound classification results

(with cases of infection including more yellow hues and cases of

ischemia with darker hues), justifying the results from the wound

classification algorithm.

Overall, these results demonstrated the relative accuracy and

practicality of the DFUCare model in clinical environments.
4 Discussion

The aim of this study was to develop a non-invasive, automated,

and remote solution for detecting and classifying DFUs using DL-

based analysis of wound images. Our approach combined various

techniques to perform a comprehensive analysis of wound tissues,

differentiating from previous studies. Additionally, unlike existing

wound analysis platforms that rely on proprietary hardware

attachments, DFUCare only requires standard phone hardware,

making it an accessible and portable alternative for DFUmanagement.

Our pipeline successfully detected and localized the wound

region with an F1-score of 0.80 and mAP of 0.861, classified

infections and ischemia with high level accuracy (79.76% and

94.81% respectively), measured wound size, and analyzed wound

color and texture.

These results have significant implications for both wound

assessment and reducing physician workload. Assistance in the

classification of infections and ischemia enables timely interventions,

potentially reducing the risk of severe complications such as

amputations. Additionally, the non-invasive nature of DFUCare

may increase patient compliance with monitoring regimens to

improve outcomes. From a clinical perspective, automated wound

analysis significantly reduces the time physicians spend on manual

woundmeasurement and assessment, allowing them to focus on more

complex aspects of the patient care.

However, we acknowledged the current dataset’s limitations in

regard to diversity in age, race, and types of cameras used. To

address this issue, we plan to further validate our preliminary results

using a prospective set of images collected from DFU patients at

Grady Memorial Hospital. This validation will provide insights into

the generalizability of DFUCare to all skin tones, as the patient

population predominantly consists of underrepresented

minority populations.

In situations where camera quality or lighting conditions may

impair the performance of the segmentation or infection/ischemia

classification algorithm, we intend to incorporate a user override

feature. This will allow users to manually adjust the estimated

wound location, ensuring accurate subsequent size estimation or

tissue color and texture profiling.
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To further improve infection classification accuracy, we plan

to explore transformer-based models as well as collecting

additional data from diverse patients in future studies.

Incorporating attention mechanisms, such as self-attention and

spatial attention, could enhance the model’s ability to focus on

subtle infection features and important wound regions.

Additionally, we propose combining computer vision-extracted

features (color and texture) with DL-extracted features to improve

phenotype prediction performance. This integration has the

potential to yield superior biomarkers for infection classification

compared to conventional imaging alone.

Furthermore, we plan to incorporate clinical, biological, and

epidemiological features alongside macroscopic image features to

enhance the accuracy of classifying infection and predicting

curability. Collecting patient records and examining the

correlation between patient data and DFU development will

provide a wide range of information, including clinical factors

(age, gender, medical history, comorbidities, and medication

usage), biological markers (blood glucose levels, inflammatory

markers, and wound-related characteristics), and epidemiological

features (environmental factors and lifestyle choices). Integrating

these multifaceted factors with DL analysis of macroscopic image

features will enable the development of a comprehensive predictive

model for DFU outcomes.
5 Conclusion

In conclusion, this study presents a promising approach to

developing a non-invasive, and automated, platform for monitoring

and managing DFU using DL-based analysis of wound images. The

advancements resulting from this research endeavor hold the

potential to significantly improve patient outcomes by assisting in

better wound management and analysis.
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