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Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that

affects the digestive system and includes Crohn’s disease (CD) and ulcerative colitis

(UC). Although the exact etiology of IBD remains uncertain, dysfunctional

immunoregulation of the gut is believed to be the main culprit. Amongst the

immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen

species (RNS), components of the oxidative stress event, are produced at

abnormally high levels in IBD. Their destructive effects may contribute to the

disease’s initiation and propagation, as they damage the gut lining and activate

inflammatory signaling pathways, further exacerbating the inflammation. Oxidative

stress markers, such asmalondialdehyde (MDA), 8-hydroxy-2’-deoxyguanosine (8-

OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of

patients with IBD. These markers are elevated in patients with IBD, and their levels

correlate with the severity of the disease. Thus, oxidative stressmarkers can be used

not only in IBD diagnosis but also in monitoring the response to treatment. It can

also be targeted in IBD treatment through the use of antioxidants, including vitamin

C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the

role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the

potential application of antioxidant therapies to manage and treat IBD.
KEYWORDS

inflammatory bowel disease, oxidative stress, antioxidant therapy, oxidative stress
markers, IBD treatment
1 Introduction

Inflammatory bowel disease (IBD) is a condition that affects the digestive system and is

caused by a chronic immune response. There are two main types of IBD: Crohn’s disease

(CD) and Ulcerative colitis (UC). The CD is characterized by the discontinuous pattern of

the ileum and colon caused by transmural inflammation, while UC occurs only in the colon
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and rectum. It solely affects the mucosa (1). There has been a

significant rise in the prevalence of IBD in the past few years (2).

According to estimates, 3.7 million people in American and

European populations have IBD (3). It has been reported that

IBD situations in Asia are more severe than in the West (4).

Although the exact cause of IBD is still unknown, it is believed to

be due to a complex interplay of genetic, environmental, and

immunological factors (5). The treatment for IBD is constantly

evolving, and researchers continually explore new therapies to

improve patient outcomes. Currently, there is no cure for IBD,

but several new medications and treatment approaches are being

developed, including targeted therapies (6) and personalized

medicine (7). Biologics, which target specific molecules involved

in the inflammatory process, have shown great promise in the

treatment of IBD (8). Additionally, stem cell therapies (9) and fecal

microbiota transplantation (FMT) (10)are being studied as

potential treatments for IBD. Since IBD is considered a significant

global public health problem (11), There is an urgent need to

explore its pathogenesis and new effective treatment options (12).

An increasing amount of evidence derived from both clinical

investigations and experimental models indicates that oxidative

stress signaling contributes to the development of IBD through

various functional pathways. The term’ oxidative stress’, first

introduced by Helmut Sies in the late 1980s (13), occurs when

the production of oxidants exceeds the antioxidant defenses, leading

to potential damage to biological systems (14). Oxidative stress is

commonly viewed as detrimental to the body because it has the

ability to harm cells, DNA, and proteins. Despite its harmful effects,

some degree of oxidative stress is crucial for multiple physiological

processes such as cellular signaling and immune response.

Oxidative stress can damage the RNA machine involved in

transcription and translation in bacteria, a critical function in

bacterial survival (15). Similarly, studies indicated that protective

mechanisms against oxidative stress within the bacterial cell

envelope are essential for the cell’s survival (16, 17). In cancer

cells, oxidative stress can act as a stimulus for inducing cell death;

ROS can trigger the process of apoptosis in cancer cells by causing

damage to crucial cellular components like DNA, proteins, and

lipids (18). The stimulation of tumorigenesis and proliferation of

cancer cells may occur due to low levels of ROS. Conversely, high

levels of ROS can induce cell death (19). Therefore, oxidative stress

can either be detrimental or advantageous to pathogens and cancer

cells, contingent upon the concentration of ROS and the situation in

which it manifests.

In IBD, evidence suggests that oxidative stress plays a crucial

role in the onset and progression of the disease (20). Chronic

intestinal inflammation is known to cause an overproduction of

ROS and RNS, which in turn causes oxidative and nitrosative stress,

respectively. These two types of stress have been linked to several

human disorders, including IBD (21). Oxidative stress causes GI

tract mucosal layer degradation and bacterial invasion, which

triggers the immune system and leads to IBD (22). These features

show that oxidative stress is a potential agent in the pathogenesis

of IBD.

Over the past decades, extensive research has been conducted to

understand the mechanisms underlying oxidative stress in IBD.
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Several studies have identified various sources of ROS and RNS in

IBD, including neutrophils, macrophages, and inflamed intestinal

tissue (23). The oxidative stress mechanisms may include increased

ROS production, impaired antioxidant defense, biomolecule

damage, mitochondrial dysfunction, epithelial cell damage, and

the activation of inflammatory pathways (24–26). Considering

these observations, multiple treatments that involve antioxidants,

such as dietary modification, organic antioxidants, and drugs, have

been suggested to decrease oxidative harm and alleviate

inflammation in individuals with IBD. The prospect of oxidative

stress in IBD means that antioxidant therapy may be a potential

strategy for managing and treating IBD. However, further research

is needed to fully understand oxidative stress’s role in IBD and

determine the most effective antioxidant interventions. This review

aims to summarize the mechanisms of oxidative stress, its role in

the development of IBD, and the applications of oxidative stress in

the diagnosis and therapeutics of IBD.
2 Mechanism of oxidative stress in IBD

While the precise mechanisms responsible for the development

of IBD remain unclear, it is widely accepted that multiple factors

contribute to its etiology, including overproduction of ROS, damage

to biomolecules, mitochondrial dysfunction, recruitment of

immune cells, impaired antioxidant defense system, and the

activation of inflammatory pathways (Figure 1).
2.1 Overproduction of ROS

One hallmark feature of IBD is the overproduction of ROS,

which causes dysregulation of signal transduction, an inflammatory

response, and DNA damage, all of which contribute to the

progression and deterioration of the disease (27). ROS include

superoxide (O2), nitric oxide (NO), hydroxyl radical (-0H),

hydroperoxyl radical (O2H), hydrogen peroxide (H2O2), and

singlet oxygen (28). ROS are highly reactive molecules that occur

naturally as byproducts of cellular metabolism and aerobic

respiration. These compounds significantly impact physiological

functions such as cell differentiation, cell signaling, cell survival, and

the creation of inflammatory factors (29). Proteins, lipids, DNA,

and other macromolecules are all susceptible to oxidation by ROS,

which can result in chemical changes and harmful outcomes (30).

Under physiological conditions, aerobic metabolism produces ROS

predominantly in the mitochondria. However, excessive ROS

production can disrupt cellular homeostasis, resulting in severe

oxidative damage (28). In IBD, an imbalance in the redox system is

caused by excessive production of ROS in colonic tissues, shown by

oxidative changes to lipids, proteins, or DNA (31). The excessive

production of ROS and the resulting disruption in the redox balance

can give rise to oxidative stress, characterized by an increased

presence of oxidative free radicals and ROS, which is closely

linked to chronic inflammation and the development of metabolic

diseases (24). Oxidative stress caused by ROS overproduction can

contribute to the pathogenesis of IBD by damaging cellular
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components, activating proinflammatory signaling pathways, and

impairing the intestinal epithelial barrier. For instance, high levels

of ROS produced by inflammation are essential for activating

macrophages in a way that further promotes inflammation (32).

This activation results in the continuing release of proinflammatory

mediators like IL-1b, IL-6, TNF-a, and IFN-g, as well as increased
levels of ROS (33). Hence, the interactions caused and perpetuated

by the overproduction of ROS within the proinflammatory milieu

lead to a self-reinforcing vicious loop that significantly contributes

to the pathogenesis of IBD.
2.2 Damage to biomolecules

ROS can damage various cell biomolecules, including lipids,

proteins, and DNA. Uncontrolled lipid peroxidation leads to

harmful lipid peroxidation products. Lipid peroxidation occurs

when free radicals attack and damage cell membrane lipids,

particularly PUFAs (34). ROS interact with PUFAs, forming

lipid radicals, which react with molecular oxygen to create lipid

peroxyl radicals. The hydrophobic tails of unsaturated fatty acids

receive a hydroperoxy group during lipid peroxidation. This

change may affect the structural properties of biomembranes

and lipoproteins by interfering with hydrophobic lipid-lipid and

lipid-protein interactions or cause the production of hydroperoxyl

radicals and reactive aldehyde derivates, which may result in

secondary modifications of other cell components (35). In IBD,

ROS, including O2−, H2O2, and •OH, can initiate lipid

peroxidation by oxidizing PUFAs in the cell membranes of

intestinal epithelial cells; this process leads to the formation of
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lipid peroxides, such as malondialdehyde (MDA) and 4-

hydroxynonenal (4-HNE), which are highly reactive and cause

cellular damage and inflammation (36). The elevated production

of lipid peroxidation products in IBD can have several detrimental

effects. For instance, 4-hydroxynonenal treatment reduces tight

junction protein expression in the colon, boosts bacterial

movement from the gut to circulation, and intensifies Toll-like

receptor-4 signaling activation (37). Lipid peroxides damage cell

membranes, disrupting the intestinal epithelial barrier and

increasing permeability, allowing harmful substances and

bacteria to enter underlying tissue and triggering an immune

response (38). These products also activate inflammatory

pathways in IBD, inducing the expression of proinflammatory

cytokines, chemokines, and adhesion molecules (39).

Protein oxidation plays a critical role in the development of IBD

(40). Proteins are central to cellular structure and function, and

their optimal activity relies on proper folding and maintenance of

sulfhydryl groups. Oxidative stress disrupts this equilibrium,

leading to protein oxidation. It involves the reaction of proteins

with ROS or RNS, resulting in the modification of amino acid

residues, changes in protein conformation, and altered protein

functions. For instance, the two most studied sulfur-containing

amino acids in proteins, cysteine, and methionine, can undergo

oxidation and induce changes in protein conformation (41–44).

One study reported HP1021 as a redox switch protein identified in

Helicobacter pylori; the study shows that cysteine residues in

HP1021 are easily oxidized under cellular and laboratory

conditions. This oxidation impacts the protein’s capacity to attach

to DNA, and the oxidative state of the regulatory domain influences

this connection with DNA (45). Hence, HP1021 is a redox switch
FIGURE 1

Components of the oxidative stress mechanism in IBD. The alteration of mitochondrial dysfunction, overproduction of ROS, damage to
biomolecules, immune cell recruitment, and impaired antioxidant system participate in the mechanism of oxidative stress condition in IBD. Oxidative
stress also triggers NF-kB activation and enhances inflammatory responses, a vital pathological component of IBD. Additionally, Nrf2 increases a
variety of genes, allowing renal cells to act as antioxidants and reducing the production of cytokines and adhesion molecules that
promote inflammations.
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protein and could be a target forH. pylori control strategies. Besides,

protein undergoes carbonylation, another form of protein oxidative

modification in which ROS groups bind to specific amino acids,

affecting protein stability and activity (46). It can be produced by

oxidative cleavage of the Protein’s backbone or by the attack of ROS

radicals on some specific amino acids in the side chains, such as

lysine, arginine, proline, and threonine. Significantly, ROS can

modify amino acid residues in proteins, causing structural

changes and loss of enzymatic activity (47). This process can also

lead to the formation of protein aggregates and disruption of

normal cellular functions.

Furthermore, ROS/RNS can directly attack DNA, causing

oxidative DNA damage in IBD (41). High amounts of DNA lesions

can be sustained over time because cellular repair systems are

compromised by prolonged exposure to oxidative stress (42). The

oxidative DNA damage is more dangerous to cells because it affects

the cell cycle and can lead to mutations and cancer (48). Numerous

studies have shown that DNA damage plays a major role in other

chronic diseases, such as various cancers, neurodegenerative diseases,

inflammation/infections, aging, and cardiovascular disease (49). It

has been reported that individuals with IBD exhibit elevated oxidative

stress and DNA damage, particularly in lymphocytes, as observed

through studies using the comet assay technique (50). The IBD

patients’ DNA damage in peripheral blood lymphocytes is

significantly higher, indicating that basal DNA damage may be

related to insufficient antioxidant capacity and excessive ROS/RNS

generation, contributing to the IBD disease’s pathogenesis.
2.3 Mitochondrial dysfunction

Mitochondria, with their functions in energy production,

calcium homeostasis, and membrane excitability, are thought to

substantially impact the pathology of IBD, as their dysfunction may

initiate and advance the disease. The intestinal tract harbors

abundant bacteria along with their metabolic byproducts,

immune-activating molecules, molecules associated with cellular

damage (DAMPs), foreign substances, and environmental

pollutants capable of harming mitochondria (51). A study has

reported that mitochondria in the intestinal epithelium exhibit

unique protein profiles (52). Notably, these mitochondria show

increased expression of ATP-binding cassette transporters, which is

likely a response to the specific requirements of the gut

environment (53). Additionally, it’s important to note that the

gut, unlike other body parts, heavily depends on the gut microbiota

for energy and the well-being of enterocytes containing

mitochondria (54). Interactions with harmful bacteria such as

adherent-invasive E. coli LF82 disrupt the functioning of

mitochondria in the cells lining the gut. This disrupts the balance

of mitochondrial regulation mechanisms due to their strong

connection with the gut’s microbial community (55). Animal

models that lack genes responsible for protecting the gut’s

epithelium, such as Mdr1a−/−, Irgm1−/−, and Sod2−/−

transgenic mice, exhibit an increased presence of impaired

mitochondria in intestinal cells and are more susceptible to
Frontiers in Endocrinology 04
experimentally induced colitis (56). Notably, 5% of the IBD

genetic factors from human GWAS relate to mitochondrial

balance. The leading gene associations are SLC25A28 (mitoferrin

2), VARS (valine-tRNA ligase), and RNF5 (E3 ubiquitin ligase).

These genes control mitochondrial iron, tRNA transport, and

ubiquitination (57–62). In addition, there is a connection between

IBD and the HSPA1-A, -B, and -L genes, responsible for heat-shock

protein 70, a key player in the mitochondrial unfolded protein

response (63).

Similarly, mitophagy genes such as PARK7 and LRKK2 are

linked to UC and CD, respectively (64, 65). Single nucleotide

variations in the C13orf31 gene, resulting in amino acid changes

in p.C284R and p.I254V in a protein of unidentified function, play a

role in the development of systemic juvenile idiopathic arthritis and

are associated with heightened susceptibility to leprosy and CD

(66).This suggests that individuals with IBD may have an inherent

vulnerability to mitochondrial dysfunction, particularly influenced

by the gut environment. Additionally, intriguing connections with

genes like mitoferrin 2 hint at potentially specific pathogenic issues

that remain incompletely understood. Variations in genes related to

maintaining mitochondrial balance are strongly linked to the

susceptibility to CD and its clinical progression. These genes

include SLC22A5, which encodes OCTN2, IRGM and UCP2 (67–

69). Similarly, a study on the proteome of children with CD found

that the function of mitochondria was compromised. This was

particularly evident in the mitochondrial proteins responsible for

detoxifying H2S, and this downregulation was associated with a

higher disease severity (70). Again, a study documented that

examinations of the mitochondria within epithelial cells of CD

patients revealed disrupted and irregular mitochondrial structures,

suggesting impaired function (71). These changes occur before

other early inflammatory events, like modifications to tight

junctions that regulate barrier function. Notwithstanding, the

precise ways in which mitochondrial dysfunction affects the

development of IBD are currently being studied. However, it is

speculated that the impact of mitochondrial dysfunction on energy

metabolism, calcium control, and membrane excitability can

interfere with intestinal homeostasis, weaken immune responses,

and cause the chronic inflammation seen in IBD (72).
2.4 Recruitment of immune cells

Within the gastrointestinal (GI) tract, the innate immune system

comprises epithelial cells, neutrophils, macrophages, dendritic cells,

and natural killer (NK) cells (73). In contrast, the adaptive immune

system includes T lymphocytes and B cells. When activated, T

lymphocytes and B cells release cytokines and antibodies (74).

Under normal conditions, there is a well-regulated equilibrium in

the GI mucosa between inflammatory cytokines (such as TNF-a, IL-
1, IL-6, IL-8, IL-17, and IL-23) and anti-inflammatory cytokines (like

IL-5, IL-10, IL-11, and TGF-b) (75). IBD impacts both innate and

adaptive immunity. However, in the case of CD, it’s important to note

that while adaptive immunity can perpetuate inflammation, it doesn’t

trigger the initial inflammation (64). The root cause of IBD
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pathogenesis involves a disruption in the equilibrium between T

helper (Th) cells and regulatory T cells, emphasizing the inability of

regulatory T cells to function effectively.CD is characterized by

inflammation driven by Th1 cells, resulting in an overproduction

of IL-12, IL-17, and IL-23 (65). In contrast, UC is primarily

influenced by cytokines like IL-4, IL-5, IL-10, and IL-13 produced

by Th2-type T cells. In CD, the microbiota triggers the Th1 response,

leading to the release of IFN-g and TNF-a, ultimately resulting in

damage to the mucosal barrier (76). In patients with IBD, the

intestinal lining is frequently exposed to numerous environmental

stressors, such as microbial antigens and inflammatory cytokines. In

response to these triggers, immune cells such as neutrophils,

monocytes, macrophages, and T cells are recruited to the inflamed

mucosal tissue. This recruitment is orchestrated by chemokines,

adhesion molecules, and other signaling molecules released by the

inflamed tissue (77).Understanding the complex interplay between

immune cell recruitment and oxidative stress in IBD is crucial for

developing targeted therapies. Strategies to modulate immune cell

infiltration and ROS production could potentially mitigate oxidative

stress and limit tissue damage in IBD patients.
2.5 Impaired antioxidant defense system

Antioxidants play a major role in mitigating ROS’s effects to

maintain the body’s redox balance. Antioxidants shield cells from

harmful and unstable molecules by employing processes that

eliminate them, thus preventing the oxidation of endogenous or

non-endogenous molecules. Endogenous substances found within

cells can be categorized into enzymatic antioxidants, which include

superoxide dismutase (SOD), catalases (CAT), and peroxidases, or

non-enzymatic antioxidants, which encompass tocopherol,

glutathione, and ascorbic acid (78). Within the group of natural

antioxidants, glutathione in its reduced form (GSH) primarily

functions to eliminate reactive oxygen intermediates and free

radicals generated during metabolic processes (79). GSH serves as

a substrate for the antioxidant enzyme GPx and helps remove

reactive species. It transforms into its oxidized form, GSSH, and can

be converted back to GSH by glutathione reductase. Excessive free

radicals can slow down this process, causing GSSH to accumulate in

the cell (80). SOD is an antioxidant enzyme responsible for

facilitating the conversion of the highly reactive superoxide anion

(O2
-) into less reactive molecules, specifically O2 and H2O2 (81).

Similarly, CAT and GPx facilitate the conversion of H2O2 into water

(82). Moreover, several of the antioxidant genes are recognized to

have genetic variations, which can lead to differences in enzyme

activity and responsiveness (83). Certain genetic variations in

antioxidant enzyme genes have been linked to specific diseases,

with certain genetic profiles related to a higher vulnerability to

oxidative stress (84). Inadequacies in antioxidant enzymes or their

compromised metabolism will increase the concentration of

reactive oxygen species (ROS) and, in essence, cause oxidative

stress. Research has shown that the levels of antioxidant defenses,

as assessed through activities of SOD, catalase, and glutathione

peroxidase, are naturally minimal within the colon and are

primarily limited to the epithelial cells (85).
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2.6 Activation of inflammatory pathways

The two main transcription factors that control cellular

reactions to oxidative stress and inflammation are nuclear factor

(erythroid-derived 2)-like 2 (Nrf2) and nuclear factor-kB (NF-kB)
(86). The coordination of the NF-kB signaling pathway and the

Nrf2 pathway plays a crucial role in driving the complex process of

oxidative stress in the context of IBD.

2.6.1 Nrf2 signaling
Nrf2 is a crucial transcription factor that plays a significant role in

preserving mucosal balance by inhibiting the excessive production of

ROS in IBD.Nrf2 has a dampening effect on the inflammatory response

and the damage to the mucosal lining through its antioxidant actions

(87). Numerous studies reveal that Nrf2 benefits cell survival and

proliferation in various ways, ranging from redox homeostasis and

drug/xenobiotic metabolism to DNA repair (88). Nrf2 controls the

expression of several enzymatic antioxidants and results in the

modulation of the levels of ROS, such as SOD, CAT, GPx, and heme

oxygenase-1 (HO-1), which are vital in maintaining redox balance and

cellular homeostasis. Nrf2 is a transcription factor sequestered in the

cytoplasm by its inhibitor protein, Keap1, under normal conditions

(89). When cells are exposed to oxidative stress, Nrf2 is released from

Keap1 and translocates into the nucleus. Once in the nucleus, Nrf2

binds to antioxidant response elements (AREs) in the promoter regions

of target genes. This leads to the transcription of genes involved in

detoxification, antioxidation, and anti-inflammatory responses

(Figure 2) (90). Nrf2 genes encode enzymes like heme oxygenase-1

(HO-1), NAD(P), H quinone dehydrogenase 1 (NQO1), and

glutathione S-transferases (GSTs) (91). A recent study shows that

upregulation of Nrf2 gene expression in a mice experiment led to

increasedNQO-1 protein content and activity, as well as elevatedHO-1

protein content and activity in the brain, while in the liver, HO-1

activity and mRNA levels, NQO-1 activity, and protein content were

augmented (92).This study reveals the tissue-specific regulation of Nrf2

signaling and downstream antioxidant enzymes in the mice,

highlighting its adaptive response to varying oxygen concentrations.

Similarly, in Nrf2-KO mice, there are higher levels of proinflammatory

genes such as IL-1b, IL-6, IL-8, iNOS, and COX-2, and a decrease in the
expression of antioxidant enzymes like hemeoxygenase-1 and GST

Mu-1 (93). The activation of IER3 in the mucosa downregulates Nrf2

through the PI3K/Akt pathway, leading to decreased ROS production

and apoptosis in a colitis model, which keeps Nrf2 levels low in IBD

(94). Conversely, Nrf2 has been documented to reduce NOX activation

and inhibit protein kinase C, consequently leading to a decrease in ROS

levels and production in Nrf2-KO mice due to elevated antioxidant

GSH levels, highlighting its role in mitigating oxidative stress.

2.6.2 NF-kB signaling
NF-kB is a key regulator in many pathogenic processes and is

abnormally active in IBD. It is a central regulator of immune and

inflammatory responses (95). It controls gene transcription in immune

activation, cytokine production, cell survival, and inflammation. The

NF-kB pathway is a complex signaling cascade that regulates the

expression of various genes involved in immunity, inflammation, and

cell survival (96). It comprises a group of transcription factors linked to
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IkBs inhibitor proteins and remains dormant in the cytoplasm. ROS

can activate the NF-kB pathway by promoting the degradation of IkBs,
allowing NF-kB to translocate into the nucleus and initiate gene

transcription (Figure 3) (97). Numerous studies have demonstrated

the involvement of the NF-kB pathway in the development of IBD.

NF-kB is linked to IEC homeostasis and can alter the permeability of

the intestinal layer and intensify the chronic intestinal inflammation

observed in the mucosa of UC and CD patients (98). Prolonged NF-kB
signaling can exacerbate the persistent inflammation seen in UC and

CD patients (99). In intestinal epithelial cells, the activation of toll-like

receptors (TLRs) and the recognition of TNF-a by these receptors

initiate the downstream NF-kB signaling pathway. This signaling

pathway is also vulnerable to the effects of oxidative stress.

Additionally, the activation of NF-kB leads to increased

expression of key genes, including proinflammatory cytokines like

IL-6, IL-8, IL-16, and TNF-a, which contribute to inflammation.

NF-kB activation upregulates genes involved in cell survival and

proliferation, such as PUMA, leading to epithelial cell apoptosis and

contributing to UC development (100).
3 Components of oxidative stress and
their contributions to
IBD pathogenesis

3.1 ROS in IBD pathogenesis

The superoxide anion (O2•−), which is produced when

molecular oxygen gains one electron, is the most prevalent free
Frontiers in Endocrinology 06
radical in human tissues (101). Complexes I and III of the

mitochondrial electron transport chain, which transforms 1–3

percent of total oxygen into the superoxide anion, is the primary

source of O2•−in a cell (102). An additional source of O2•− is an

enzymatic reaction that is catalyzed by membrane enzyme

complexes known as NADPH oxidases (NOX) and xanthine

oxidase (XO) (103). Out of the five isoforms of the NOX family,

colon epithelium expresses NOX1 at a high level (104). Numerous

studies have shown the vital role of NOX1 in IBD pathogenesis. A

previous study shows the overexpression of NOX1 in large and

small bowel cancers in humans (105). NOX1 expression correlates

with RAS mutational status in colorectal cancer, and

immunohistochemical analysis indicates overexpression in specific

cancers, emphasizing its relevance as a therapeutic target in

colorectal and small intestinal cancer. In IBD, analyses of biopsies

from patients with CD showed increased JNK1/2 activation, as well

as NOX1 and Lipocalin-2 (LCN-2) expression (106). This indicates

that NOX1 might play a key role in mucosal immunity and

inflammation by controlling LCN-2 expression. Again, this recent

study (107) explores the impact of NOX1 loss-of-function

mutations on IBD. TNF-a induces higher ROS production in

NOX1-WT colonoids than NOX1-deficient ones, affecting the

stem cell niche and cell. It emphasizes ROS modulation for future

IBD therapies. Notably, NOX1 is vital in IBD. A recent study

highlights NOX1’s involvement in peroxynitrite production

induced by the microbiota. Certain NOX1 variants, such as NOX1

p. Asn122His, are linked to impaired gut barrier function. The

research further examines the structural dimension, indicative of a

crucial asparagine residue in the NOX1-p22phox complex, vital for
FIGURE 2

Nrf2-Mediated signaling in response to oxidative stress in IBD. (1) Upon sensing oxidative stress, cells phosphorylate Nrf2, which is normally
sequestered in the cytoplasm by kelch-like ECH-associated protein 1 (Keap1). (2) The antioxidant response element (ARE) of the antioxidant genes is
then bound by Nrf2 when it translocates into the nucleus. (3) HO-1 and GSTs are examples of antioxidant genes whose transcription is stimulated by
Nrf2. (4) The antioxidant genes are then expressed, which prevents oxidative stress and keeps cells’ redox balance.
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the electron transfer process in human NADPH oxidases (108).

Similarly, NOX1 facilitates the transmembrane electron transfer to

two molecular oxygens, forming when activated. It has been

proposed that NOX1-induced O2•− at the colon’s luminal surface

Influence various processes such as bacterial virulence, expression

of bacteriostatic proteins, epithelial renewal, restitution, and

microbiota composition to control the intestinal innate immune

defense and homeostasis (109). NOX1 and NOX4 have been linked

to the pathologies associated with the hepatitis C virus as long-

lasting, endogenous ROS generators (110). Besides, NOX4 has been

specifically linked to oncogenic H-Ras- (H-RasV12-) induced DNA

damage and senescence, suggesting a potential role in HCV-related

oncogenesis (111).

Moreover, oxidative stress causes an increase in O2•−

concentrations, which triggers the Haber-Weiss reaction and

excessive production of the harmful hydroxyl radical (OH •). A

Fenton reaction catalyzed by Fe2+ and H2O2 also produces the

hydroxyl radical (112). Other transient metals, such as copper,

chromium, or cobalt, may contribute to the generation of OH• in

place of ferrous metals. These reactions become a significant source

of OH• in the presence of oxidative stress conditions or when the

concentration of free, unbounded transient ions rises, as in the case

of hemodialysis. The OH• depolymerizes GI mucin, inactivates

pyruvate dehydrogenase, an essential mitochondrial enzyme, and

damages mitochondrial RNA and DNA in the GI tract (113). The

perhydroxyl radical (HOO•) is another protonated form of O2•−
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that starts the peroxidation of fatty acids (114). Lipid peroxidation

alters lipoproteins into pro-inflammatory forms, disrupts

biomembranes’ fluidity, permeability, and integrity, and produces

potentially hazardous byproducts (115). Furthermore, it has been

demonstrated that lipid peroxidation products have carcinogenic

and mutagenic qualities (116). In addition to mitochondria,

peroxisomes and plasma membrane NADPH oxidases are other

sources of free radicals in cells. These organelles use oxygen to

produce H2O2. Catalase (CAT) converts peroxisome-derived H2O2

to water and oxygen under physiological conditions (117). On the

other hand, a damaged peroxisome contributes to oxidative stress

by directly releasing H2O2 (118). In Fenton and Haber-Weiss

reactions, H2O2 may be transformed, along with O2•−, into the

highly toxic and oxidizing OH• hydrogen peroxide (119). XO is the

primary source of O2•− in the GI tract. As a result, the reaction

mediated by GPx and/or CAT transforms it to H2O2.MPO uses the

H2O2 neutrophil produced to create hypochlorite ions (OCl −)

(120). The O2•− is a highly unstable, highly reactive, and short-

lived form of ROS and reacts quickly to become membrane-

impermeable. As a result, it acts close to its source, oxidizing

nearby biomolecules, while H2O2 can freely diffuse across cell

membranes and oxidize molecules farther away, such as pathogen

membrane lipids. Aquaporin-8 (AQP8) facilitates H2O2 diffusion in

GI (121). This specific aquaporin isoform is crucial in controlling

H2O2 membrane permeability and signaling, making it an essential

player in redox signaling processes (122). These studies (123–125)
FIGURE 3

The NF-kB pathway as one of the mechanisms by which ROS can contribute to the pathogenesis of IBD. Radiation, mitochondria, NADPH oxidase,
and Endoplasmic reticulum are the main sources of ROS.ROS activates the IKK complex. The IKK phosphorylates IkBA, which leads to its
degradation.NF-kB is activated and translocated into the nucleus. NF-kB binds to particular DNA sequences and triggers the transcription of many
different genes, including those that produce adhesion molecules, pro-inflammatory cytokines, and other inflammatory mediators (e.g., TNF-a, IL-6,
and IL-1).The transcription of pro-inflammatory genes leads to the production of inflammatory cytokines and other molecules that contribute to the
inflammatory response in the intestinal mucosa. Immune cells like neutrophils and macrophages are drawn to the area of gut tissue inflammation by
these inflammatory signals. The influx of immune cells and the ongoing inflammation can result in tissue damage, ulceration, and the chronic
inflammation that characterizes IBD.
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documented the involvement of AQP8 in modulating H2O2

transport through the plasma membrane, influencing redox

signaling pathways associated with leukemia cell proliferation

(126, 127). It’s interesting to note that enterocytes exhibit varying

baseline levels of ROS. The small intestine, for instance, maintains a

lower concentration of ROS, whereas the colon has a higher

concentration (128). The variations in ROS generation could

affect the amounts of oxidized proteins, lipids, and DNA damage,

increasing the colon’s vulnerability to GI disorders at these two

intestinal sites (129). Circulating XO binds to vascular endothelial

cells in pathological states, causing site-specific oxidative damage to

intestinal tissue (130). In IBD, a retrospective study documented

XO activity concerning adverse effects from thiopurine therapy. The

results indicated lower XO activity in patients experiencing adverse

effects; the findings imply that monitoring XO activity might be

useful in predicting and managing thiopurine-induced toxicities

(131). Furthermore, O2•− is produced during a sequence of events

known as “the respiratory burst” that activated neutrophils go

through (132). Research has demonstrated that NOX enzymes,

particularly NOX2, are involved in this process. This is because

mice lacking NOX2 exhibit lower levels of oxidative burst and are

less vulnerable to experimentally induced UC (133).
3.2 RNS in IBD pathogenesis

RNS comprise the second category of free radicals, produced as a

byproduct of nitric oxide synthases(NOS) and expressed in specific

intestinal submucosa and mucosal regions. Through a five-electron

oxidative reaction, NOS converts arginine to citrulline and produces

the nitric oxide radical (NO•) (134). Three main isoforms of NOS are

inducible NOS (iNOS), which is present in various cells and tissues;

endothelial NOS (eNOS), which is initially identified in vascular

endothelial cells; and neuronal NOS (nNOS), which is discovered

primarily in neural tissue (135). The iNOS continuously produces

NO•, in contrast to the pulsative nature of eNOS. The overproduction

of RNS in activated macrophages, leukocytes, and epithelial cells in

the intestinal mucosa is caused by iNOS, which is only found in

inflammatory tissue (136). Numerous studies have shown the

involvement of NOS isoforms in IBD. According to this study

(137), it has been shown that in UC, the activation of the iNOS/

COX-2/5-LOX loop and increased levels of their end products, such

as NO, prostaglandin E2 (PGE2), and leukotriene B 4 (LTB 4), which

lead to the overproduction of free radicals and the impairment of the

antioxidative system. For instance, this study found that patients with

active IBD exhibited elevated mRNA expression of iNOS in intestinal

biopsies, indicating increased inflammation. This suggests a specific

role of iNOS in the inflammatory response associated with IBD,

emphasizing its potential significance in understanding the disease’s

pathophysiology (138). Similarly, in an earlier study, the up-

regulation of iNOS in the intestinal epithelial cells (IECs) has been

closely associated with the initiation and maintenance of intestinal

inflammation in IBD, which can be potentially used as a non-invasive
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blood-based biomarker of IBD, as documented (139). The role of

iNOS in IBD is further complicated by its relationship with cytokines

and pro-inflammatory cytokines, which upregulate iNOS expression

(140). Furthermore, nitrotyrosine is produced when tyrosine and NO

derived from iNOS react. Research has shown that patients with UC

but not collagenous colitis exhibit strong nitrotyrosine-stained

epithelium linked to neutrophil infiltration (141). Additionally,

iNOS is among the central downstream genes of NF-kB, but, in
turn, iNOS can promote and inhibit NF-kB activity (142).

On the contrary, the Enos isoform, which is localized to the

microvasculature at the submucosa–mucosa interface, catalyzes

the capillary recruitment of absorptive hyperemia. The

vasodilatory actions of NO• play a prominent role in this

process (143). Again, the nitric oxide radical reduces leukocyte

adhesion to endothelial cells and shields epithelial cells from

toxicity induced by H2O2 (144). Notably, the increased

expression of the eNOS gene reduces the expression of adhesion

molecules in endothelial cells, mitigates colitis induced by DSS in

mice, and is associated with severe cases of UC, as documented

(145). This suggests that eNOS could serve as both a potential

prognostic marker and a target for therapeutic intervention.

Besides, the nNOS isoform also plays a significant role in the

pathophysiology of irritable bowel syndrome (IBS) and other

gastrointestinal disorders, including IBD. For instance, this

study (146) utilized a neonatal maternal separation stress model

in mice to simulate irritable bowel syndrome (IBS) and identified

neuronal nitric oxide synthase (nNOS) as a novel and reliable

biomarker for interstitial cells of Cajal stimulation in IBS. This is

further supported by studies (147), which identified deficits in

nNOS neurons in various enteric neuropathies, including those

associated with IBD.

Moreover, One mechanism through which RNS contributes to

IBD pathology is the formation of Peroxynitrite(ONOO-), a highly

reactive oxidant formed by the reaction of NO• with O2•− (148).

ONOO-is produced by cells that contain NOS enzymes, such as

smooth muscle or endothelial cells, as well as by stimulated

leukocytes during an inflammatory response. ONOO- can induce

damage to cellular structures, including lipids, proteins, and DNA,

leading to oxidative stress and further exacerbating inflammation

and tissue injury (149). Research elucidates a novel HMGB1-

mediated inflammatory pathway in Non-Alcoholic Fatty Liver

Disease (NAFLD), revealing a redox signaling mechanism where

ONOO-, formed through NADPH oxidase activation, plays a

pivotal role in TLR-4 activation and cytokine release (150). The

findings highlight the significance of ONOO-as a key mediator in

intestinal inflammation in NAFLD. In IBD, the increased

production of NO•, coupled with excessO2•−, results in elevated

ONOO-levels. Again, a recent study indicates that in an animal

experiment, NOX1 plays a crucial role in the production of ONOO-

in the intestines (151). Similarly, the impact of ONOO-on Na-

amino acid co-transporters (NaAAcT) in rabbit intestinal villus cell

brush border membrane during chronic intestinal inflammation.

ONOO- inhibits Na-alanine co-transport (ASCT1) by reducing its
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affinity for alanine and Na-glutamine co-transport (B0AT1) by

decreasing co-transporter numbers, revealing potential mediation

of NaAAcT alterations in inflammation (152).
3.3 Lipid peroxidation and lipid radicals in
IBD pathogenesis

Both RNS and ROS can exacerbate lipid peroxidation. Because

they are high in PUFAs, membrane lipids and lipoproteins are

particularly vulnerable to oxidative damage. A hydroperoxy group

is added to the hydrophobic tails of unsaturated fatty acids during

lipid peroxidation. Through disruption of hydrophobic lipid-lipid

and lipid-protein interactions, this change may result in structural

changes to biomembranes and lipoproteins. Alternatively, it may

cause the production of reactive aldehyde derivatives and

hydroperoxyl radicals, which may cause secondary modifications

to other cell components. Lipid peroxidation’s byproducts, such as

4-hydroxynonenal or malondialdehyde, can react with lysine amino

groups, histidine imidazole groups, or cysteine sulphydryl groups to

damage proteins (153). These reactions can result in the formation

of adducts, which can serve as biomarkers of oxidative stress and

lipid modification. LOX enzymes, which catalyze the dioxygenation

of polyenoic fatty acids to form hydroperoxides, are another source

of lipid radicals. 5-LOXs play a significant role in the intestines by

catalyzing the oxidation of arachidonic acid. GPx subsequently

reduces the hydroperoxides produced by LOX enzymes (154). It

has been documented that patients with CD have higher plasma

levels of lipid peroxidation products, a decreased peroxidation

potential, and an oxidative low-density lipoprotein level,

particularly during an active phase of the disease (155). IBD

patients experience lipid peroxidation, but the cause varies based

on the type of IBD. The amount of lipid peroxidation products is

associated with epithelial CAT expression and neutrophilic MPO

activity in UC, suggesting an H2O2-and/or OCl-mediated

mechanism. In CD, lipid peroxidation is associated with

mitochondrial superoxide dismutase (SOD) activity, suggesting

the involvement of OH• and O2•− (156). This is further

supported by the finding that SOD activity is increased during

ac t ive d i sease and re turns to normal in remiss ion

(157).Additionally, the presence of oxidative damage and the

inhibition of catalase, an antioxidant enzyme, in CD patients’

immune cells further underscores oxidative stress’s role in the

disease (158). These results indicate a possible involvement of

lipid peroxidation and SOD activity in the IBD.
3.4 Cytokines and signal pathways

Reduced cytokine synthesis, which inhibits T cell and

macrophage activity, may be linked to the pathophysiology of

CD. According to an earlier study, intestinal tissue from CD

patients exhibits a reduced expression of IL-4 mRNA, a cytokine

that postpones the formation of O2•− in PMNS (159). Particularly

in those who are genetically predisposed, external and

environmental variables play a significant role in the start and
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progression of IBD, a complicated multifactorial illness. Similarly,

IL-36, a cytokine that can induce fibrosis, is found at higher levels in

fibrotic intestinal tissues of CD patients (160). Additionally, patients

with CD have lower levels of antioxidative substances such as

plasma ascorbic acid, a- and b-carotene, lycopene, and b-
cryptoxanthin, as well as tissue GSH, which takes part in GPx-

catalyzed H2O2 reduction (161). Antioxidative enzymes like GPx

and SOD, however, tend to be dependent on the state of CD as well

as the serum level; GPx activity is stable or reduced during CD

remission and increases during active CD (157). In individuals with

CD, oxidative stress occurs both locally and systemically. It is linked

to the disease’s well-documented dysbiosis and unbalanced

immunological response. According to a previous study, the mice

models of UC and CD demonstrate that the colon’s up-regulation of

GPx2 gene expression and down-regulation of aquaporin 8, which

facilitates H2O2 diffusion, may protect against severe oxidative

stress in IBD (162). In addition to IL-4, several other cytokines,

including TNF-a, IL-1b, IL-6, and IL-8, contribute to CD (163).

ROS and RNS are capable of inducing the release of these cytokines.

It has been documented that patients with active CD had up-

regulated NOS mRNA expression in their colonic mucosa and

peripheral blood mononuclear cells (164). Similarly, it also

suggested a positive correlation between NOS-derived NO• and

plasma levels of IL-6, IL-17A, and IL-23 in Sjögren’s syndrome(SS),

as documented (165).

Also, some of the environmental risk factors linked to CD may

be caused by oxidative stress. The precise etiopathology of CD is still

unknown, but oxidative stress is widely acknowledged to play a

critical role in the disease’s pathogenesis. The aforementioned

cytokines act through the mitogen-activated protein kinase

(MAPK) and NF-kB signaling pathways. Aberrant NF-kB
activation is implicated in the pathophysiology of IBD (166). The

involvement of NF-kB and MAPK signaling pathways in IBD is

shown in (Figure 4). NOX enzymes produce superoxide anion and

other free radicals. The advanced glycation end products (AGE)

content in the plasma membrane of epithelial cells is directly

increased by the conversion of the superoxide anion to hydrogen

peroxide by SOD3, as seen in (Figure 4). In summary, the NF-kB
signaling pathway is activated by both AGE and NOX, as well as

pro-inflammatory cytokines such as IL-6 or TNF-a. This leads to an
increase in the expression of caspase 3, ICAM, TNF-a, or IL-6 genes.
On the other hand, activation of MAPK improves the expression of

AP-1 signaling molecules and increases the production of iNOS, the

uninhibited source of NO. When combined, the inhibition of NF-

kB or p38 MAPK may impact ROS/RNS production and reduce the

generation of cytokines in patients with IBD, particularly when the

disease is actively progressing (167).

Similarly, combining TLR4/NF-kB and Nrf2-ARE pathway

modulation offers a comprehensive approach to managing IBD by

simultaneously reducing inflammation and enhancing antioxidant

defenses. For instance, a study showed Morningside from Cornus

officinalis inhibits LPS-induced inflammation and oxidative stress in

RAW 264.7 macrophages by blocking TLR4/NF-kB and activating

Nrf2/HO-1 pathways (168). It reduces pro-inflammatory factors

and ROS generation, and promotes HO-1 expression, suggesting its

potential as an anti-inflammatory and antioxidant agent. Besides,
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Phosphoinositide 3-kinase (PI3K)/Akt signaling regulates cell

survival and oxidative stress responses. Enhancing PI3K/Akt

signaling can protect against oxidative damage in IBD. In UC

mice, glutamine (Gln) reduced oxidative stress-induced injury by

inhibiting the PI3K/Akt signaling pathway (169). The study showed

that Gln administration improved superoxide dismutase and

glutathione peroxidase activity, decreased malondialdehyde

content, and ameliorated colitis symptoms and histological

damage. These findings suggest that targeting oxidative stress via

these molecular pathways like MAPK, TLR4/NF-kB, Nrf2, and
PI3K/Akt may offer new therapeutic strategies for managing IBD.
4 Targeting oxidative stress in
IBD diagnosis

IBD poses a significant challenge in gastroenterology due to its

complex and multifactorial nature. The dysregulation of the

immune system in the gut is a key factor in the development of

IBD (170). Recent findings indicate that oxidative stress is crucial to

the disease’s onset and progression (108). A study (171) emphasized

the critical role of oxidative stress in the development and

progression of IBD, as well as the production of ROS and

antioxidant defense systems. Similarly, the involvement of

oxidative stress in sepsis, which disrupts redox signaling, leading

to molecular damage, has been highlighted (172). The dysregulation

between ROS and antioxidants contributes to sepsis progression,

impacting cellular function and mortality. This emphasizes the role

of ROS in sepsis pathophysiology and the potential of antioxidant

adjunct therapies (172). These studies collectively contribute new

insights into understanding the role of oxidative stress in IBD and

potential therapeutic avenues targeting ROS-mediated pathways in

the management of this condition. Presently, extensive research is
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being conducted to investigate the significance of oxidative stress in

diagnosing IBD. These studies examine the importance of oxidative

stress markers as essential indicators and explore their potential

utility for diagnostic applications. ROS and RNS are key

components of the oxidative stress event implicated in IBD (173).

These molecules, produced at abnormally high levels in individuals

with IBD, exert destructive effects on the intestinal lining. This

damage not only contributes to the disease’s initiation but also

activates inflammatory signaling pathways, further amplifying the

inflammatory cascade. Within this intricate web of events, oxidative

stress markers (OSMs) such as malondialdehyde (MDA), 8-

hydroxy-2’-deoxyguanosine (8-OHdG), and serum-free thiols (R-

SH)emerge as valuable diagnostic targets for IBD diagnosis. MDA,

an aldehyde with reactive properties formed through the

peroxidation of polyunsaturated fatty acids, serves as a prominent

OSM in IBD, reflecting lipid peroxidation and cellular damage and

functions as a marker for cellular damage caused by free radicals

(174). According to this study finding (175), there is a positive

correlation between elevated lipid hydroperoxide (LOOH) levels

and heightened MDA levels, suggesting MDA as a potential

biomarker for lipid peroxidation and indicative of the influence of

endogenous oxidative stress in individuals with CD. Numerous

studies have consistently emphasized the increased levels of MDA

in patients with IBD. This highlights MDA’s role as a reliable

marker for assessing oxidative stress in the IBD. For instance,

Elevated levels of MDA in Tunisian patients, as observed in

biopsies from individuals with CD, suggest the involvement of

oxidative stress in the pathophysiology of IBD (176). Similarly,

these studies (155, 177–179) show that MDA levels were higher in

the serum and saliva of IBD patients. This specifies that MDA can

be used as a valuable marker for assessing oxidative stress in these

patients, with its levels positively correlating with disease activity

and inflammation. MDA plays a crucial role in diagnosing and
FIGURE 4

The influence of ROS and cytokines on signaling pathways in intestinal epithelial cells. NOX enzymes generate superoxide anion, elevating advanced
glycation end product (AGE) in epithelial cell membranes. SOD3 converts superoxide to hydrogen peroxide, enhancing AGE content. Concurrently,
NF-kB is activated by AGE, NOX, and pro-inflammatory cytokines (IL-6, TNF-a), triggering increased expression of caspase 3, ICAM, TNF-a, and IL-6
genes. Meanwhile, MAPK activation boosts AP-1 signaling and iNOS production. AGE advanced glycation end products, AP-1 activator protein 1,
ICAM intracellular adhesion molecule, IL-6 interleukin 6, IL-6R interleukin 6 receptor, iNOS inducible nitric oxide synthase, NF-kB nuclear factor-
kappa B, NOX NADPH oxidase, MAPK mitogen-activated protein kinases, OCl − hypochlorite ion, SOD3 extracellular superoxide dismutase, TNF-a
tumor necrosis factor-alpha, TNFR tumor necrosis factor receptor.
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tracking the effectiveness of treatment and the progression of the

disease (175). Assessing MDA levels offers valuable information

about the degree of lipid peroxidation and oxidative harm, helping

guide therapeutic approaches. The substantial evidence from these

studies solidifies MDA as a pertinent biomarker for oxidative stress

in IBD, contributing to our understanding of disease pathogenesis

and management.

On the other hand, 8-OHdG emerges as a crucial biomarker

reflecting oxidative DNA damage (180). It is a modified form of

guanine, one of the four nucleotide bases that make up DNA. The

formation of 8-OHdG, a modified nucleoside, is a consequence of

oxidative DNA damage, particularly guanine residues (181). It has

been documented in a meta-analysis study and a systematic review

that elevated levels of 8-OHdG in biological samples, such as urine,

serum, or tissue, are indicative of increased oxidative stress (182,

183). Notably, Elevated levels of 8-OHdG in individuals with IBD

have been consistently documented in research, indicating its

promising role as a dependable OSM in the context of this

disease (123–125, 158, 184). Similarly, a recent study revealed

elevated levels of 8-OHdG in individuals with CD patients

compared to those in the healthy control group (185). This

suggests that 8-OhdG is a valuable indicator for evaluating

oxidative stress in individuals with CD. The inflammatory milieu

in IBD leads to enhanced ROS generation, causing DNA damage

and subsequent 8-OHdG formation (186). Numerous studies have

documented the association between elevated 8-OHdG levels and

the severity of IBD symptoms, linking this marker to the

progression of the disease. For instance, Assessing 8-OHdG levels

provides valuable insights into the extent of oxidative damage,

aiding in disease prognosis and therapeutic strategies (187).

Again, elevated levels of 8-OHdG have been linked to disease

severity in various conditions, including cardiovascular disease

(188), chronic periodontitis (189), Huntington’s disease (190),

chronic kidney disease (191), and colorectal tumors (192–194).

These findings suggest that 8-OHdG may serve as an OSM for

disease activity and progression in various inflammatory and

degenerative diseases. Utilizing 8-OHdG as a diagnostic

instrument aligns with the increasing focus on personalized

healthcare and targeted therapeutic strategies in the context of

IBD (195). Moreover, interventions targeting oxidative stress,

informed by 8-OHdG levels, could hold promise in mitigating

IBD progression. 8-OHdG stands out as a robust marker for

oxidative stress in IBD, offering a molecular insight into disease

pathology and potential avenues for therapeutic interventions.

Besides, R-SH consistently indicates systemic oxidative stress

because they are easily oxidized by ROS, making them a reliable

biomarker for oxidative stress in IBD and other diseases (196, 197).

For example, a study (182) examined oxidative stress in IBD and

found that R-SH levels were significantly lower in IBD patients

compared to healthy individuals. These free thiols, which indicate

systemic oxidative stress, showed a strong correlation with

endoscopic disease activity and were more effective in

distinguishing disease severity than fecal calprotectin levels.

Likewise, another research (183) documented significantly lower

levels of R-SH in CD and UC patients compared to controls, with

these lower levels correlating with increased inflammation severity
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and reduced in corticosteroid-treated patients, identifying systemic

thiol stress as a key marker of oxidative stress and inflammation in

IBD. Additionally, a recent study (198) suggests that R-SH, an OSM,

could serve as a biomarker for IBD, proving more sensitive than C-

reactive protein (CRP) in detecting moderate endoscopic activity,

though less sensitive than fecal calprotectin, with age and albumin

levels as potential confounding factors, and indicates that R-SH may

improve IBD monitoring. Again, the intervention of Leucine-rich

alpha-2 glycoprotein (LRG), a serum biomarker for inflammation in

IBD, has shown greater accuracy than CRP in assessing clinical and

endoscopic disease activity in UC, suggesting it may be a more

reliable marker for inflammation in IBD (199–201).

As such, measuring MDA, 8-OHdG,and R-SH levels provides a

quantitative and qualitative assessment of oxidative stress,

providing clinicians with a valuable tool in the diagnostic

armamentarium for IBD. The diagnostic utility of OSMs goes

beyond simple identification, extending to the monitoring of

disease progression and assessing the effectiveness of treatment

interventions. The correlation between OSM levels and disease

severity implies that tracking these markers over time can provide

insights into the dynamic nature of IBD. Overall, these three OSMs

play a crucial role in the pathogenesis and progression of IBD and

have been suggested to serve as potential diagnostic, differential,

progression, and prognostic markers in the disease. Further

research is needed to fully understand the role of OSMs in IBD

and their potential as biomarkers in clinical practice.

Furthermore, Antioxidant strategies may prove beneficial in

alleviating oxidative stress and mitigating the progression of IBD.

Antioxidants, such as vitamin C (Vit-C), vitamin E (Vit-E),

glutathione, and N-acetylcysteine, represent a potential therapeutic

strategy. Vitamin C, known for its potent antioxidant properties, is

crucial in alleviating oxidative stress and potentially mitigating the

progression of IBD. Oxidative stress, marked by an imbalance between

free radicals and antioxidants, is implicated in IBD pathogenesis. Vit-C

acts as an antioxidant by scavenging free radicals, thereby reducing

oxidative damage to cells and tissues (202). This helps reduce

inflammation and oxidative damage, improving IBD patients’

outcomes (203). Several studies have explored the correlation

between Vit-C and OSMs in various inflammatory conditions,

highlighting its protective role. Combining Vit-C into the treatment

regimenmay offer therapeutic benefits by countering oxidative stress in

IBD (204). Similarly, Vit-E, a fat-soluble antioxidant, primarily protects

cell membranes from oxidative damage by interrupting the chain

reaction of lipid peroxidation (205). Vit-E’s antioxidant properties

combat ROS and reduce MDA, with various studies indicating a

correlation between OSMs, including MDA, and the severity of IBD

(206). For instance, a current study demonstrates that the combination

of pentoxifylline (PTX) and Vit-E exhibits notable anti-fibrotic effects

in human primary intestinal myofibroblasts (HIMFs) and murine

models of IBD. This combination treatment suppresses the

expression of fibrogenic markers induced by TGF-b1, showing
efficacy in preventing colonic fibrosis. The findings suggest that PTX

and Vit-E co-administration could be a promising therapeutic

approach for IBD (207). The positive correlation between Vit-E

levels and a reduction in oxidative stress suggests its potential as a

therapeutic agent for managing IBD.
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Incorporating Vitamin E-rich foods or supplements may be

beneficial in supporting the treatment of IBD. Also, Glutathione, a

tripeptide composed of cysteine, glutamate, and glycine, is a crucial

endogenous antioxidant that plays a key role in detoxification and free

radical scavenging. In the gut, glutathione is essential for maintaining

the redox balance and protecting against oxidative stress-induced

damage (208). The correlation between reduced glutathione (GSH)

levels and OSMs, such as MDA, is explored in studies. For instance, a

significant decrease in GSH levels in hypertensive patients was found,

which was associated with an increase inMDA (209). Also, it has been

documented that glutathione is regulated by the transcription factor

Nrf2 and is vital in protecting cells from various stressors. Its forms,

reduced GSH and oxidized GSSG, along with associated enzymes like

GPx and GST, contribute to detoxification and redox balance,

influencing cell survival under stress and impacting cancer

chemoprevention and treatment sensitivity (210). Similarly, another

study reveals a significant increase in postprandial reduced GSH levels

compared to postabsorptive levels, emphasizing the importance of

postabsorptive specimen collection for accurately assessing the basal

level of reduced glutathione (211). These studies collectively highlight

the importance of reduced GSH in mitigating oxidative stress and its

potential as a biomarker for oxidative damage. Notably, maintaining

an optimal balance of antioxidants, including glutathione, may be key

in managing inflammation and disease progression in patients with

IBD. Moreover, N-acetylcysteine (NAC), a precursor to glutathione,

has been extensively studied for its antioxidant properties. It acts by

replenishing intracellular glutathione levels and directly scavenging

free radicals. Research suggests that NAC supplementation may help

protect the gut from oxidative stress-related injuries and

inflammation (212). Collectively, these antioxidants contribute to

the overall defense against oxidative stress in the gut, preventing

cellular damage and inflammation. Hence, integrating antioxidant

therapies into the diagnostic framework not only adds a layer of

precision to IBDmanagement but also emphasizes the interrelation of

diagnosis and treatment in the context of oxidative stress. Hence,

targeting oxidative stress in IBD diagnosis emerges as a promising

avenue with far-reaching implications. By understanding the intricate

interplay between OSMs and disease pathophysiology, can help

enhance diagnostic precision, monitor disease progression, and

tailor therapeutic interventions for individuals with IBD. The

integration of antioxidant therapies further solidifies the role of

oxidative stress as a key player in IBD, bridging the gap between

diagnosis and treatment in the pursuit of more effective and

personalized patient care.
5 Application of oxidative stress in
IBD therapeutics

Oxidative/nitrosative stress is a significant pathophysiologic

aspect involved in the development and course of IBD. Since

inflammatory cells secrete a large number of cytokines and

chemokines, oxidative stress is triggered during inflammation,
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and overproduction of ROS is stimulated. In light of this,

treatment strategies involving compounds with anti-inflammatory

and antioxidant qualities might be considered. As IBD involves

oxidative stress and inflammation, these diverse antioxidants

collectively act as a shield against cellular damage, offering a

multifaceted approach to treatment. The complex interplay

between the endocrine system, redox balance, and oxidative stress

requires understanding how hormones like melatonin, estrogen,

and insulin act as antioxidants, while others like thyroid hormones

and corticosteroids increase oxidative stress. Plant compounds like

alkaloids and flavonoids show potential in combating oxidative

stress in diabetes. Extracts from pomegranate peel and grapeseed,

rich in polyphenols, are studied for their effects on ovarian cancer

and female reproductive health. Nutritional antioxidants such as

selenium and vitamin C are known to counter adrenal hormone-

induced oxidative stress. Research supports the role of melatonin in

improving testicular health and fertility by reducing oxidative stress.

These findings emphasize the importance of antioxidants in

managing various endocrine-related conditions (213). In

exploring the potential therapeutic agents for IBD, a study reports

a variety of polyphenolic substances, phenolic compounds,

alkaloids, storage polysaccharides, phytochemicals, and

antioxidant hormones, such as resveratrol, curcumin, quercetin,

berberine, tamarind xyloglucan, sulforaphane, ginger, and

melatonin (196). Synthetic antioxidants provide targeted support,

while natural oxidants, derived from plant sources, contribute to a

holistic and sustainable therapeutic strategy since they are used

within regulations’ parameters (197). Additionally, micronutrient

antioxidants, such as vitamins C and E, further bolster the body’s

defense mechanisms. Moreover, adjunctive therapies such as

prebiotics, probiotics, and postbiotics are also used to manage

oxidative stress and help treat IBD. Prebiotics are dietary

components crucial for mammalian nutrition. They can positively

impact enteric diseases and oxidative stress by altering gut

microbiota composition and producing short-chain fatty acids

(SCFAs) (214). This can enhance immune function, improve the

gut barrier, and stimulate beneficial microorganisms, potentially

preventing disease and oxidative stress. Probiotics are live

microorganisms that, when consumed correctly, boost health,

create competition in the gut against harmful bacteria, and

promote a healthier environment (215). Combined as synbiotics,

prebiotics, and probiotics show promise in treating IBS by

modulating microbiota, gut barrier function, immune responses,

and the gut-brain axis (216). Clinical studies demonstrate their

efficacy in alleviating IBS symptoms. Postbiotics mainly refer to

biologically active components secreted by bacteria (217). Their

advantages over probiotics include a reduced risk of infection or

potential side effects triggered by the administration of viable

microorganisms to immunocompromised individuals. The most

important postbiotics are organic acids, SCFA, tryptophan (Trp),

and bacteriocins. Understanding the synergy among these

antioxidant modalities holds promise for enhancing IBD

management and improving patient outcomes.
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5.1 Natural antioxidants used in IBD
therapy (polyphenols)

Examples of the phytochemical family known as polyphenols

present in many plant diets are flavonoids, phenolic acids, lignans,

and stilbenes. An increasing number of studies have shown that in

the early stages of IBD, natural polyphenols can effectively reduce the

severity of intestinal inflammation and oxidative stress (218). Diets

high in polyphenols may improve the pathophysiology of conditions

in which the overproduction of ROS contributes to the development

of the illness (219). Table 1 displays polyphenols and various plant-

derived compounds possessing antioxidant properties.
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5.2 Synthetic antioxidants used in
IBD therapy

Synthetic antioxidants used in IBD therapy include

medications, hormones, enzymes, and other biochemical

substances that are presented in Table 2.

5.3 Micronutrient antioxidants used in
IBD therapy

Micronutrient antioxidants in IBD therapy include vitamins E

and C, reduced glutathione, and selenium, as shown in Table 3.
TABLE 1 IBD treatments with natural antioxidants.

Antioxidant Model of study Mechanism of action Clinical Manifestations Ref.

Resveratrol (RSV)

BALB/C mice model. Upregulation of Arg1 and Slc6a8 and downregulation of
iNOS through arginine metabolism.

Reduces colitis, modulates
cytokines, promotes
anti-inflammation.

(220)

BALB/c mice model. Alleviates colitis via cytokine modulation and ANRIL-
miR-34a pathway.

Reduced colitis by modulating
cytokines, miR-34a, MUC2,
GLNAT7, and ANRIL.

(221)

BALB/c mice model. Inhibition of SUMO1 and Wnt/b-catenin pathway. Reduces colitis, modulates
cytokines, promotes
anti-inflammation.

(222)

TNBS-induced colitis
murine model.

Inhibition of pro-inflammatory cytokines. Reduces inflammation, MDA
levels, and increased GPX activity.

(223)

Randomized double-blind,
placebo-control.

Decrease the severity of the disease and increase quality
of life.

Decrease the severity of the
disease and increase quality of life.

(223–
225)

Curcumin (CUR)

DSS colitis Mice model. Stabilization of the gut-liver axis. Improvement of DAI, colonic
mucosal injury, and
inflammatory infiltration.

(226)

Primary rat VSMCs model. Inhibition of the TLR4-MAPK/NF-kB pathways. Reducing the overexpression of
inflammatory mediators, NO
production, and the activation of
TLR4, MAPK/NF-kB pathways.

(227)

DSS-induced colitis
mouse model.

Inhibits NLRP3 inflammasome activation. Mitigates colitis symptoms and
reduces inflammation.

(228)

Randomized Controlled Trial. Decrease the severity of the disease and increase quality
of life.

Higher clinical and endoscopic
remission rates. Adverse events
were rare.

(228,
229)

A Randomized, Double-Blind,
Multicenter Study.

Decrease the severity of the disease and increase quality
of life.

No adverse events and reduction
in clinical disease activity.

(230)

Quercetin (QCT)

(TNBS) induced rat model. Weakens the clinical, morphological, and biochemical
alterations via its antioxidant mechanism.

Mitigates TNBS-induced changes
with antioxidant action.

(231)

(TNBS) induced colitis model. Eupatilin and QCT quercetin both mitigate IBD. Reduces MPO activity, elevates
GSH levels, and attenuates
lipid peroxidation.

(232)

DSS-induced colitis model. Modulating gut microbiota and its metabolites SCFAs. Increasing goblet cell density and
mucus protein, Reducing the
overexpression of inflammatory
mediators, and
MPO levels.

(233)

(Continued)
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5.4 Adjunctive therapies used in IBD
treatment (prebiotics, probiotics,
and postbiotics)

Adjunctive therapies such as prebiotics, probiotics, and

postbiotics are used in managing oxidative stress and the

treatment of IBS and IBD, as presented in Table 4.
5.5 Kelch-like ECH-associated protein 1
(KEAP1) inhibitors used in IBD treatment

Therapeutic approaches targeting the KEAP1-NRF2 pathway

primarily utilize KEAP1 inhibitors (259). These inhibitors block

KEAP1 from binding to NRF2, resulting in the stabilization and

activation of NRF2. Consequently, NRF2 activity increases, leading

to the elevated expression of antioxidant enzymes such as

glutathione S-transferase, NAD(P)H quinone oxidoreductase 1,

and heme oxygenase-1 (260). These enzymes play a crucial role

in reducing oxidative stress and inflammation in IBD. Currently,
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extensive studies are being carried out to explore the potential of

KEAP1 inhibitors as treatments for IBD. For example, the

intervention of KEAP1 inhibitors, such as natural coumarins,

promotes Nrf2 activation, which reduces oxidative stress and

inflammation in IBD by inhibiting NF-kB and enhancing

antioxidant responses, as documented (261). Further studies on

coumarin derivatives are essential for developing Nrf2 activators

with intestinal anti-inflammatory activity. Similarly, CPUY192018,

a potent small-molecule inhibitor of the Keap1-Nrf2 PPI,

demonstrated cytoprotective effects in NCM460 colonic cells and

a DSS-induced UC model by activating Nrf2 signaling (262). This

suggests that direct inhibition of Keap1-Nrf2 PPI might be

beneficial for UC treatment. By combining Keap1 inhibitors with

H2S-donor moieties via molecular hybridization, DDO-1901

showed enhanced efficacy in alleviating colitis by mitigating

oxidative stress and inflammation, outperforming parent drugs

alone (263). Additionally, a recent research study investigates how

4-Octyl itaconate (OI), a form of itaconate functioning as a KEAP1

inhibitor, affects DSS-induced UC in mice (264). OI diminishes

oxidative stress and cell death, boosts the gut barrier’s function, and
TABLE 2 IBD treatments with synthetic antioxidants.

Antioxidant Model of study Mechanism of action Clinical manifestation Ref.

Melatonin

Randomized clinical trial. Decreased level of anxiety and depression. Help sustain remission in UC
patients. Steady CRP levels.

(239)

DSS-induced mice model. Increased antioxidant capacity. Improve
oxidative stress resistance of mice with colitis.

Regulate microbial flora.
Improve intestinal health.

(240)

N-
acetylcysteine (NAC)

TNBS-induced colitis model. Suppressed COX2 and E (2) (PGE (2) levels. Reduced iNOS
activity.

(241)

Modified Superoxide
Dismutase (SOD)

TNBS-induced mouse model. Recombinant Lact. Fermentum reduces
oxidative stress via the NF-kB pathway.

Higher survival rate and lower
DAI score.

(241)

Pilot study. Improved UC therapy. Less severe side effects. (242)

Double-blind control trial. Safe treatment. Improve serum level markers. (243)

Propionyl-L-
carnitine (PLC)

Mildto moderate UC/CD patient’s study. Improve clinical symptoms. Decrease DAI.
No side effects.

(244)

Clinical trial Higher safety profile. Improve
clinical symptoms.

Mild digestive system
adverse reaction.

(245)
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TABLE 1 Continued

Antioxidant Model of study Mechanism of action Clinical Manifestations Ref.

Catechines

Randomized double-blind,
placebo-control.

Polyphenon E resulted in a therapeutic benefit for
patients refractory to 5-aminosalicylic and azathioprine.

Active treatment remission rate.
Minor side effects.

(234)

(TNBS)-induced colitis model. Ameliorating colitis through the NF-kB pathway. Effective anti-inflammatory and
antioxidant impact, and stabilizing
mast cells.

(235)

C57BL/6J mice model. Inhibition of pro-inflammatory cytokine. Improved DAI score, reduced
intestinal score.

(236)

Anthocyanins
Clinical trial.
(UC patients)

Decrease the severity of the disease and increase quality
of life

Improved clinical symptoms. (237)

Silymarin
A randomized, double-blinded,
placebo-controlled clinical trial.

Decrease the severity of the disease and increase quality
of life.

Improvement in hemoglobin level,
Improved DAI score, and
High remission rate.

(238)
sin.org

https://doi.org/10.3389/fendo.2024.1390351
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Muro et al. 10.3389/fendo.2024.1390351
lessens inflammation. It lowers the activity ofKEAP1, increases

NRF2, and promotes the production of protective enzymes. This

study highlights OI’s promising role in treating IBD. Hence, using

KEAP1 inhibitors is crucial for treating IBD, where ROS plays a

significant role.
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6 Conclusion and future perspective

IBD represents a significant health challenge characterized by

chronic inflammation of the digestive tract. The role of oxidative

stress in the pathogenesis of IBD is well-documented, with high
TABLE 4 IBD treatments with adjuvant therapies.

Adjuvant
therapy

Model of study Treatment Clinical manifestation Ref.

Prebiotics

A Prospective
Observational Study.

Oral microencapsulated sodium butyrate (BLM). BLM supplementation appears to be a valid add-on
therapy for remission in UC patients.

(250)

A randomized, double-
blind, placebo-
controlled study.

scFOS Improved rectal discomfort, IBS symptoms, and quality
of life.
scFOS reduced anxiety and increased Bifidobacteria
in feces.

(251)

Probiotics

A pilot, randomized,
double-blind, placebo-
controlled study.

Lactobacillus and Bifidobacterium species. Significantly induced remission in UC patients. Reduced
stool frequency and improved biochemical markers like
C-reactive protein, hemoglobin, and IL-10 levels.

(252)

Randomized
Controlled Trial.

Specific probiotics. Significantly reduced oxidative stress (d-ROMs) and
boosted antioxidant response (BAP), improving patient
health safely and effectively.

(253)

A randomized
clinical trial.

Bacillus coagulans Unique IS2. Improved GI symptoms like pain and bowel movements.
Demonstrated safety and efficacy for adult IBS. No
impact on inflammatory cytokines.

(254)

DSS-induced colitis
in mice.

Lactobacillus (Pediococcuspentosaceus,
Lactobacillus plantarum, and Weissellacibaria).

Reduced DAI, pathological score, regulated cytokine
secretion at the level of gene expression, and increased
colon length. Potential treatment for IBD.

(255)

Postbiotics

Clinical trial with a
randomized
controlled design.

Sodium butyrate. A significant increase in the colonic IL-10/IL-12 ratio
was found within butyrate-treated patients. Rectal
butyrate enemas had minor effects on inflammation and
oxidative stress in UC patients.

(256)

DSS IBD mouse model. D-methionine (D-Met) and/or butyric acid (BA). Reduced disease severity and suppressed inflammation-
related gene expressions. Potential therapeutic for IBD.

(257)

DSS-induced
colitis model.

Heat-killed Bifidobacterium bifidum
B1628 (HB1628).

Reduced DAI, histology scores, and pro-inflammatory
cytokines, with increased IL-13.
Reduced inflammation, improved gut microbiota balance,
and enriched metabolic pathways, indicating HB1628’s
potential in mitigating colitis and modulating gut health.

(258)
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TABLE 3 IBD treatments with micronutrient antioxidants.

Antioxidant Model of study Mechanism of action Clinical manifestation Ref.

Vitamin E

Clinical trial. Novel therapy for mild to moderate active UC. No side effects. (246)

Pilot study. Lower infection frequency and disease severity. Improved neutrophil count
and function.

(247)

C57BL/6 mice model. PTX and Vit-E suppressed TGF-b1 induced expression of
fibrogenic markers.

Exhibit significant anti-fibrotic
effects on both human primary
intestinal myofibroblasts (HIMFs)
and in vivo IBD models.

(207)

Vitamin C

C57BL/6 and BALB/C. Boost Antioxidant enzymes (SOD, CAT, GPx). Lowers the expression of pro-
inflammatory cytokines (iNOS,
TNF-a).
Lowers MDA levels.

(246,
247)

Clinical trial. Reduce corticosteroid dosage for disease control. Significant improvement in
clinical symptoms.

(248)

Selenium
DSS-induced mice model. Has minimal impact on inflammatory processes and

disease progression.
Alleviate inflammation and Lower
disease severity.

(249)
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levels of reactive ROS and RNS contributing to gut mucosal damage

and the activation of inflammatory pathways. Effective

management of IBD may involve the use of antioxidants to

mitigate oxidative stress, as evidenced by elevated oxidative stress

markers such as malondialdehyde (MDA), 8-hydroxy-2’-

deoxyguanosine (8-OHdG), and serum-free thiols (R-SH).

Antioxidant therapies, including vitamin C, E, glutathione, and

N-acetylcysteine, have shown the potential to alleviate IBD

symptoms. Future research should focus on elucidating the

detailed mechanisms by which oxidative stress contributes to IBD

and exploring novel therapeutic strategies targeting this pathway.

Specifically, targeting oxidative stress through molecular pathways

such as MAPK, TLR4/NF-kB, Nrf2, and PI3K/Akt could offer new

therapeutic avenues for IBD management. These pathways play

critical roles in modulating inflammation and cellular responses to

oxidative stress, providing promising targets for intervention.

Polyphenol phytochemicals, such as curcumin, resveratrol, and

others, have shown potential in modulating the molecular

pathways, thereby reducing inflammation. These compounds

exhibit antioxidant properties, neutralizing ROS and reducing

oxidative stress, which is critical in the pathology of IBD. Further

clinical trials are needed to validate these strategies’ effectiveness

and establish standardized protocols for incorporating antioxidants

into IBD treatment regimens.
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23. Alemany-Cosme E, Sáez-González E, Moret I, Mateos B, Iborra M, Nos P, et al.
Oxidative stress in the pathogenesis of crohn’s disease and the interconnection with
immunological response, microbiota, external environmental factors, and epigenetics.
Antioxidants (2021) 10:64. doi: 10.3390/antiox10010064

24. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH. Molecular
mechanisms of ROS production and oxidative stress in diabetes. Biochem J (2016)
473:4527–50. doi: 10.1042/BCJ20160503C

25. Sánchez de Medina F, Romero-Calvo I, Mascaraque C, Martıńez-Augustin O.
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205. Villalón-Garcıá I, Álvarez-Córdoba M, Povea-Cabello S, Talaverón-Rey M,
Villanueva-Paz M, Luzón-Hidalgo R, et al. Vitamin E prevents lipid peroxidation and
iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiol Dis (2022)
165:105649. doi: 10.1016/j.nbd.2022.105649
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