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Background: Polygenic risk scores (PRS) serve as valuable tools for connecting

initial genetic discoveries with clinical applications in disease risk estimation.

However, limited studies have explored the association between PRS and

gestational diabetes mellitus (GDM), particularly in predicting GDM risk among

Chinese populations.

Aim: To evaluate the relationship between PRS and GDM and explore the

predictive capability of PRS for GDM risk in a Chinese population.

Methods: A prospective cohort study was conducted, which included 283 GDM

and 2,258 non-GDM cases based on demographic information on pregnancies.

GDM was diagnosed using the oral glucose tolerance test (OGTT) at 24–28

weeks. The strength of the association between PRS and GDModds was assessed

employing odds ratios (ORs) with 95% confidence intervals (CIs) derived from

logistic regression. Receiver operating characteristic curves, net reclassification

improvement (NRI), and integrated discrimination improvement (IDI) were

employed to evaluate the improvement in prediction achieved by the

new model.

Results: Women who developed GDM exhibited significantly higher PRS

compared to control individuals (OR = 2.01, 95% CI = 1.33–3.07). The PRS

value remained positively associated with fasting plasma glucose (FPG), 1-hour

post-glucose load (1-h OGTT), and 2-hour post-glucose load (2-h OGTT) (all p <

0.05). The incorporation of PRS led to a statistically significant improvement in

the area under the curve (0.71, 95% CI: 0.66–0.75, p = 0.024) and improved
Abbreviations: GDM, gestational diabetes mellitus; OGTT, oral glucose tolerance test; IADPSG,

International Association of Diabetes and Pregnancy Study Groups; GWAS, genome-wide association

study; PRS, polygenic risk score; NIPT, non-invasive prenatal testing; SNP, single nucleotide

polymorphism; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; FPG, fasting plasma

glucose; 1h OGTT, 1-h postload plasma glucose; 2h OGTT, 2-h postload plasma glucose; OR, odds ratio; CI,

confidence interval; ROC, Receiver operating characteristic curves; AUC, area under the curve; NRI, Net

Reclassification Improvement; IDI, Incremental Diagnostic Improvement.
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discrimination and classification (IDI: 0.007, 95% CI: 0.003–0.012, p < 0.001; NRI:

0.258, 95% CI: 0.135–0.382, p < 0.001).

Conclusions: This study highlights the increased odds of GDM associated with

higher PRS values and modest improvements in predictive capability for GDM.
KEYWORDS

gestational diabetes mellitus, genome-wide association study, polygenic risk score,
non-invasive prenatal testing, single nucleotide polymorphism
Introduction

Gestational diabetes mellitus (GDM) is characterized by glucose

intolerance that arises during pregnancy and typically resolves after

delivery (1). In China, the incidence of GDM is alarmingly high,

estimated at 14.8% (2), and this figure continues to rise annually.

Studies have indicated that abnormal increases in blood glucose

levels are strongly associated with an increased risk of adverse

health outcomes for both mothers (3–6) and their offspring (7)

during pregnancy and later in life (8–10). Therefore, identifying risk

factors associated with GDM before or early in pregnancy is crucial

for improved monitoring, the development of safe and timely

interventions, and treatments.

GDM is a complex disorder influenced by a combination of

demographic, genetic, and environmental factors, resulting in ethnic

differences in its occurrence. The genetic variants for disease

characteristics have identified rapidly in the past decade. Genome-

wide association studies (GWAS) have provided summary statistics

that describe the effect size and statistical significance of the

association between specific alleles and disease outcomes (11). Some

studies have elucidated genetic variants associated with type 2

diabetes in both Caucasians and Asians, revealing some similarities

in the genes associated with the disease (12, 13). For example, certain

genes implicated in type 2 diabetes, such as CDKAL1, IGF2BP2,

TCF7L2, KCNQ1, andMTNR1B, have been associated with the risk of

GDM (14). Among Korean populations,MTNR1B andCDKAL1 have

been shown to exhibit positive associations with GDM risk (15, 16).

However, recognizing that assessing the risk of a complex disease

such as GDM cannot solely rely on a single genetic variant is essential.

In recent years, PRSs have been developed for a range of health traits

and conditions. These scores, which are based on summary statistics

from GWAS, have been developed as an innovative approach to

evaluating the genetic risk of a disease by considering the cumulative

effects of multiple genetic loci. This approach can be used to stratify

individuals based on their genetic risk of acquiring various diseases,

improving screening, preventative interventions, and patient care

(17). Some research has shown the promise of PRSs in identifying

genetic risk for various diseases, including Alzheimer’s disease and

cardiovascular diseases (18–20). Ho et al. found that the predictability

of PRSs varies across different diseases (21). While the degree of
02
predictability for individual disease risk using PRSs remains different,

emerging data supports the utilization of PRSs for population-based

GDM. Therefore, in this study, we implemented this novel approach

to assess the genetic risk of GDM.

GDM is typically diagnosed based on the results of an oral

glucose tolerance test (OGTT) performed between 24 and 28 weeks

of pregnancy. However, the damage induced by abnormal blood

glucose levels in early pregnancy cannot be reversed. Therefore,

herein, we conducted a prospective cohort study on a Chinese

population to investigate the predictive validity of the PRS for GDM

among pregnant women and developed a prediction model that

incorporates both traditional and genetic factors associated with

GDM. By screening for these factors, we aimed to enhance the

identification of women at risk of developing GDM, enabling early

intervention and the implementation of management strategies.
Methods

Study population

The present study was conducted between October 2012 and

September 2019 at Wuhan Women and Children’s Medical Care

Center. A total of 11,311 pregnant women who met the following

criteria were recruited: a) < 16 wk of pregnancy with a singleton

gestation at the time of enrollment; b) resident of Wuhan City; c)

willing to have prenatal care and give birth at the study hospital.

(Figure 1). The study protocol was approved by the ethics

committee of Tongji Medical College, Huazhong University of

Science and Technology (number (2012)14) and the Wuhan

Women and Children Medical and Healthcare Center (number

2010009). All participants in this study provided written informed

consent prior to participation.
Definition of GDM

GDM was defined according to the diagnostic criteria of the

International Association of Diabetes and Pregnancy Study Group

(IADPSG) and local policy. Universal testing for GDM was
frontiersin.org
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conducted between the 24th and 28th weeks of gestation, employing

the 75 g 2-h OGTT. GDM was diagnosed if fasting glucose was ≥5.5

mmol/L, 1-h glucose was ≥10.0 mmol/L, and/or 2-h glucose was

≥8.0 mmol/L. Based on these criteria, a total of 265 participants in

the cohort were initially diagnosed with GDM during pregnancy.
Covariates

Demographic information of the participants was collected using

questionnaires. The collected data encompassed maternal education

level, economic status, smoking status, pre-pregnancy body mass

index (PBMI), age, alcohol consumption during pregnancy, house

decoration, employment status, physical activity, gravidity, and

parity. Maternal educational level (≤9/9–12/≥12 schooling years),

economic status (very good/good/normal/poor/very poor), physical

activity (never or rarely, 1–2 days/week, 3–4 days/week, 5–6 days/

week, daily), smoking status (yes/no), alcohol consumption (yes/no),

employment status (yes/no), multiparity (yes/no), gravidity (1/2/≥3),

and decorating status (yes/no) were among the variables considered.

PBMI was calculated by dividing pre-pregnancy weight (in kg) by

height squared (in m2).
Genotype data and calculation of PRS

Genotype data were obtained using peripheral venous blood

samples collected during non-invasive prenatal testing (NIPT)

screening (22). Next-generation high-throughput sequencing was

performed at BGI-Wuhan, yielding ultra-low sequencing depth

ranging from 0.06× to 0.1× per individual. The BaseVar

algorithm was used to call single nucleotide polymorphisms

(SNPs), and genotype imputation was performed using STITCH.

On the basis of this theory, we excluded samples with sequencing

depth <0.05× or mapping rates <90% from the analysis. The
Frontiers in Endocrinology 03
imputation accuracy was assessed by randomly selecting 30 Han

Chinese individuals from the 1,000 Genomes Project with a

sequencing coverage of 30×. Their data were down-sampled to a

sequencing depth of 0.1× and imputed using the true NIPT

genotype data through STITCH. The imputation accuracy was

evaluated by calculating Pearson’s correlation coefficient between

the true genotype set (at 30× coverage) and the imputed genotype.

The imputed genotypes were represented as dosages ranging from 0

to 2. For further analysis, biallelic variants with a minor allele

frequency (MAF) >0.05, a Hardy–Weinberg equilibrium (HWE) p-

value >1e-6, and a genotype missing rate <0.1 were included.

Genotype dosages were used to compute the PRS for GDM.

The calculation of PRS was based on multi-ancestry GWAS

summary statistics (23). Our study utilized a multi-ancestry meta-

analysis with an effective sample size comprising 72.2% European,

13.4% East Asian, 9.9% South Asian, 2.8% Hispanic/Latino, and 1.7%

African participants. This analysis identified five SNPs strongly

associated with GDM, including the previously reported GWAS for

MTNR1B (rs10830963, p = 4.3 × 10−54) and CDKAL1 (rs9348441, p =

1.6 × 10−14). The remaining three loci for GDM mapped to/near

TCF7L2 (rs7903146, p = 4.0 × 10−16), CDKN2A-CDKN2B (rs10811662,

p = 4.1 × 10−9), and HKDC1 (rs9663238, p = 2.9 × 10−8). To calculate

the PRS for each individual in this study, we identified the risk alleles

they carried and used the effect size of each risk allele to weight the

calculation. To ensure comparability across individuals, we

standardized all PRS to have a mean of zero and a unit variance.
Statistical analyses

Statistical analysis was performed using SPSS version 19.0.

Continuous variables were expressed as the mean ± standard

deviation (SD) and analyzed using the independent sample

Student’s t-test. Categorical variables were described as

frequencies and percentages, with their analysis employing the
FIGURE 1

The flow chart of population inclusion criteria.
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chi-square test or Fisher’s exact test, as appropriate. Variables found

to be associated with GDM in univariate analysis (p < 0.05) and

those previously documented in the literature were incorporated

into the analysis. A correlation analysis was conducted to examine

the relationship between the values of oral glucose tolerance and the

PRS. The PRS was treated as a categorical variable in the models,

with each quintile of the PRS evaluated for its association with

GDM. A multivariate logistic regression model was fitted to

estimate odds ratios (ORs), with associated 95% confidence

intervals (CIs) to predict GDM. GDM status served as the

outcome variable, with maternal traditional risk factors and PRS

employed as predictors. Due to the final dataset comprising 283

cases (11.1%) and 2,258 cases (88.9%), which is extremely

imbalanced, we calculated the average of the model evaluation

metrics through five-fold cross-validation and the incorporation

of under-sampling. Receiver operating characteristic (ROC) curves
Frontiers in Endocrinology 04
were used to estimate the area under the curve (AUC), net

reclassification improvement (NRI), and integrated discrimination

improvement (IDI) to compare two prediction models: the

traditional risk factors model and the traditional risk factors

model with PRS.
Results

Characteristics of the study population

Table 1 presents the characteristics of the 2,541 participants

included in the study, with 283 participants (11.1%) diagnosed with

GDM. Significant differences in maternal age and PBMI were observed

between the GDM and non-GDM groups. In the GDM group, the

average age was 30 ± 4 years, and themean PBMI was 22.8 ± 3.5 kg/m2.
TABLE 1 Demographic characteristics of participants in the GDM group and the non-GDM group.

Non GDM (n=2258) GDM (n=283) p value

Pre-pregnancy BMI (kg/m2) 21.00±2.82 22.80±3.59 <0.01a

Age (year) 28.99±3.54 30.46±3.94 <0.01a

Gravidity (%)

1 1402 (62.1%) 140 (49.5%) <0.01b

2 477 (21.1%) 81 (28.6%)

≥3 379 (16.8%) 62 (21.9%)

Parity (%)

1 1852 (82.0%) 217 (76.7%) 0.026b

≥2 406 (18.0%) 66 (23.3%)

House decoration (%)

No 1400 (62.0%) 195 (68.9%) 0.028b

Yes 858 (38.0%) 88 (31.1%)

Smoking status (%)

No 1452 (64.3%) 172 (60.8%) 0.272b

Yes 806 (35.7%) 111 (39.2%)

Physical activity (a week,%)

0 252 (11.2%) 29 (10.2%) 0.091b

1-2 216 (9.6%) 30 (10.6%)

3-4 124 (5.5%) 11 (3.9%)

5-6 62 (2.7%) 1 (0.4%)

7 1604 (71%) 212 (74.9%)

Alcohol consumption (%)

No 2192 (97.1%) 278 (98.1%) 0.346b

Yes 66 (2.9%) 5 (1.9%)

Employment status (%)

No 849 (37.6%) 122 (43.1%) 0.043b

(Continued)
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Most neonates were born to primiparous mothers (n = 217, 76.7%).

The prevalence of smoking and alcohol consumption during

pregnancy was low, with most mothers reporting non-smoking (n =

172, 60.8%) and abstinence from alcohol (n = 278, 98.1%).

Additionally, approximately half of the women were employed

during pregnancy (n = 161, 56.9%), and most mothers in the GDM

group received a general income (n = 195, 68.9%).
Association between PRS and GDM

Logistic regression analyses were conducted to assess the

relationship between PRS and GDM. The ORs with their

corresponding 95% CIs for GDM across increasing quintiles of

PRS levels were as follows: 1.00 (reference), 1.26 (0.81–1.97), 1.72

(1.13–2.64), 1.81 (1.20–2.78), and 2.01 (1.33–3.07) (Figure 2).

Women who developed GDM exhibited significantly higher PRS

than the control individuals (mean ± SD: 0.33 ± 0.08 in the GDM

group, 0.31 ± 0.08 in the non-GDM group, p < 0.05). Significant

positive correlations were observed between PRS and fasting plasma

glucose(FPG), 1-h OGTT, and 2-h OGTT (Figure 3). The
Frontiers in Endocrinology 05
distribution of traditional risk factors based on the quintile

classification of the PRS is shown in Supplementary Table S1.
Correlations between traditional risk
factors and GDM

Significant differences were observed between gravidity, parity,

employment during pregnancy, and house decoration in the past 3

months, indicating their association with GDM (p < 0.05).

However, educational level, smoking, alcohol consumption,

income, and physical activity did not show statistically significant

differences (p > 0.05). Variables exhibiting statistical significance

were included in the multivariate logistic regression analysis.
Multivariate logistic regression analysis

As shown in Table 2, the multivariate logistic regression

analysis indicated that PBMI (OR = 1.14, p < 0.001), maternal age

(OR = 1.09, p < 0.001), employment during pregnancy (OR = 0.75,
TABLE 1 Continued

Non GDM (n=2258) GDM (n=283) p value

Employment status (%)

Yes 1409 (62.4%) 161 (56.9%)

Maternal education level (years of schooling,%)

≤9 122 (5.4%) 17 (6%) 0.817b

9-12 275 (12.2%) 36 (12.8%)

≥12 1861 (82.4%) 230 (81.1%)

Economic status (%)

Very good 56 (2.5%) 13 (4.6%) 0.072b

good 736 (32.6%) 73 (25.8%)

normal 1454 (64.4%) 195 (68.9%)

poor 8 (0.4%) 1 (0.4%)

very poor 4 (0.2%) 1 (0.4%)

Pre-eclampsia (%)

No 2248 (99.6%) 279 (98.6%) 0.098

Yes 10 (0.4%) 4 (1.4%)

Cholestasis (%)

No 2254 (99.8%) 281 (99.3%) 0.279

Yes 4 (0.2%) 2 (0.7%)

Other disease (%)

No 2251 (99.7%) 280 (98.9%) 0.163

Yes 7 (0.3%) 3 (1.1%)
Decorate: decorate the house in recent 3 years.
Values are presented as numbers (percentages) or means ± SD, as appropriate. at-test. bchi-square test or Fisher's exact test.
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p = 0.039), gravidity (OR = 1.43, p = 0.042), and PRS (OR = 19.68, p

< 0.001) were independent risk factors influencing the occurrence of

GDM. Lower PBMI and younger age were identified as significant

protective factors against GDM. These results suggest that PRS,

along with traditional risk factors such as PBMI, maternal age,

employment during pregnancy, and gravidity, play an important

role in the development of GDM.
Frontiers in Endocrinology 06
Predictive performance of the model

The model’s predictive performance was assessed employing

the ROC curve (Figure 4). The ROC curve illustrates the

discriminative abilities of different models. The basic model,

which included only PRS (Model 1), yielded an AUC of 0.59

(95% CI: 0.54–0.64). When traditional risk factors, such as
BA

FIGURE 2

The association between PRS to GDM. Comparisons of the GDM-PRS (A) of the subjects with GDM and Control. Relationship of GDM-PRS quintile
(B) with GDM. *p<0.05. PRS, polygenic risk score; GDM, gestational diabetes mellitus.
B CA

FIGURE 3

Correlations between PRS of GDM and fasting (A), OGTT1h (B) and OGTT2h (C) glucose. Pearson correlation coefficients (r) were used to assess the
correlatios; PRS, polegenic risk score; OGTT, oral glucose tolerance test results; GDM, gestational diabetes mellitus.
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maternal age, parity, gravidity, PBMI, and employment status, were

added to the model (Model 2), the AUC improved to 0.66 (95% CI:

0.62–0.71). Furthermore, the incorporation of PRS into the model

with traditional risk factors (Model 3) further increased the AUC to

0.71 (95% CI: 0.66–0.75, p = 0.024). However, AUC as an evaluation

metric may not be sensitive enough in certain scenarios, failing to

adequately capture subtle changes or differences in model

performance. To substantiate our claims more robustly, we

incorporated the NRI and IDI indices into our analysis. The NRI
Frontiers in Endocrinology 07
and the IDI of the combined traditional risk factor model and

traditional risk factors with PRS were calculated using the R

language. The incorporation of PRS into the traditional risk factor

model improved the discrimination and classification (IDI: 0.007,

95% CI: 0.003–0.012; NRI: 0.258, 95% CI: 0.135–0.382) of GDM.

These results indicate that the improvement in the NRI for the

GDM group is meaningful (0.2043, 95% CI: 0.0812–0.3274), while

the improvement in the NRI for the non-GDM group did not reach

statistical significance (0.0457, 95% CI: -0.0774–0.1688). These

results support our conclusion that PRS can effectively augment

the predictive accuracy of GDM risk models.
Discussion

In this prospective cohort study, a notable and positive

association was identified between PRS and GDM. PRS also

exhibited positive correlations with FPG, 1-h OGTT, and 2-h

OGTT. Although the correlation coefficient was small but

significant, it potentially indicates a real but weak association

between PRS and GDM. The magnitude and significance of the

correlation coefficient can be influenced by multiple factors,

including sample size, data distribution, and measurement errors.

Consequently, further large-sample studies are required to validate

its reliability and generality. Furthermore, we observed that

incorporating PRS into the prediction model mildly improved the

prediction of GDM.

Although individual SNPs are not sufficient to accurately

predict disease risk, PRS allows for an assessment of overall

genetic risk. PRS quantifies genetic factors by incorporating

diverse low-penetrance variants identified through GWAS. By

combining these associations, PRS provides a measure of genetic

predisposition to a heritable trait, which can be used for disease risk

stratification, prognostic predictions, and personalized prevention

strategies (17, 24). Previous studies have demonstrated the utility of

PRS in predicting disease risk and guiding preventive measures

(25). These scores have already been demonstrated to predict breast

cancer, lung cancer, prostate cancer, and post-transplant diabetes

mellitus risk in patients of European descent more accurately

compared to current clinical models (21, 26, 27). Our study

indicates that individuals in the fifth quintile exhibit a 2.01-fold

higher risk of developing diabetes compared with those in the first

quintile. These findings are consistent with those of a previous

GWAS on GDM. Our study validated the associations between PRS

and GDM risk, indicating that women with a higher PRS may

exhibit high fasting glucose concentrations or abnormal expression

of glucose metabolism-related genes, leading to insulin resistance

and an increased risk of GDM. Another study supports our

findings, demonstrating a strong association between the PRS and

GDM risk (16). The PRS derived from their optimal model

indicated a significantly higher risk of GDM (28). Collectively,

these findings underscore the importance of incorporating genetic

risk factors, as captured by the PRS, in predicting GDM.

In this study, we conducted a comparative analysis of general

characteristics and anthropometric measurements between

pregnant women in the GDM and non-GDM groups. Several risk
FIGURE 4

Accuracy of predicting GDM using a PRS and tradional risk factors.
ROC curves of the novel prediction model in comparison to a PRS
model and Traditional risk factors model. PRS mode 1 (black line);
Traditional risk factors model: Pre-pregnancy BMO, Age, Working
condition and Gravidity (blue line); Combined traditional risk factors
and PRS model: Pre-pregnancy BMI, Age, Working condition and
Gravidity and PRS (red line).
TABLE 2 Multivariate regression analysis for the PRS and traditional
risk factors.

Odd ratio
(95% CI)

p value

Pre-pregnancy BMI 1.14 (1.10-1.20) <0.001

Age 1.09 (1.05-1.13) <0.001

Employment status 0.75 (0.57-0.99) 0.039

Gravidity 0.115

2 1.43 (1.01-2.03) 0.042

≥3 1.36 (0.87-2.11) 0.174

Parity 0.66 (0.43-1.01) 0.055

GDM-PRS 19.68 (4.07-95.08) <0.001

Constant <0.001
SE, standard error; 95% CI, 95% confidence interval. Odds ratios indicate the relational size of
effect arising from the specific variable class listed (for categorical variables) or one-unit
change (for continuous variables).
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factors for GDM were identified, including PBMI, age, gravidity,

and employment status. These findings are consistent with those of

previous research that has also identified older age, higher BMI, and

multigravidity as risk factors for GDM (29, 30). However, we did

not observe significant associations with smoking, alcohol

consumption, house decoration, income, and physical activity in

the multivariate analysis. These results differ from those of a

previous study conducted on a different population (31). These

discrepancies may be attributed to differences in the study

population or other confounding factors.

Previous predictive models have explored the potential of

combining biomarkers to reduce the prevalence of maternal

disease and adverse pregnancy outcomes (29, 32). One notable

strength of our model is the incorporation of genetic factors, in

contrast to other published multivariate risk prediction models (33,

34). Ideally, the selected genetic variants that constitute PRS should

be relevant to the population being screened. While the PRS

demonstrated an association with increased GDM risk in this

study, its utility in predicting GDM cases was limited. This is

consistent with recent studies indicating that the predictive

performance of polygenic scores for complex traits, including

GDM, has been shown to be modest in clinical settings (35). To

date, all studies employing robust GWAS to assess the predictive

value of PRS across a range of traits and populations have

consistently reported the same observation: PRS predicts

individual risk far more accurately in Europeans than in non-

Europeans (36–38). Most GWAS have primarily focused on

European populations, resulting in a bias towards this specific

group in multi-ancestry GWAS meta-analyses (39). Additionally,

differences in allele frequencies and linkage disequilibrium patterns

between populations can render accurately identifying the causal

variant challenging, thereby limiting the predictability of multi-

ancestry meta-analyses in continental Chinese populations (39, 40).

Furthermore, factors such as diverse environmental exposures,

gene–gene interactions, gene–environment interactions, historical

population dynamics, statistical noise, and potential causal effect

differences further restrict the generalizability of genetic risk scores

(41). The development of a PRS model based on SNPs identified

within the Chinese population would likely provide a more accurate

prediction of the genetic risk of GDM in Chinese individuals.

However, it should be noted that the reported AUCs may vary

owing to differences in the prevalence of GDM and testing criteria

across studies (42). Although AUC is used to evaluate the model’s

ability to distinguish between final events, it exhibits a certain value;

however, it is not sensitive to changes in absolute risk estimation

and lacks specific clinical significance (43). Whether the use of AUC

is a sensitive enough metric to assess the clinical utility of polygenic

prediction has remained a subject a debate (44, 45). Therefore, we

further employed NRI and IDI (43) to assess the improvement in

risk prediction accuracy achieved by the new model compared to

traditional risk factor models. The results showed that the

prediction model with PRS improved the proportion of correctly

reclassified individuals and overall discrimination ability compared

to the traditional risk factor models, with statistical significance.

GDM is influenced by a combination of genetic and

environmental factors, each of which has the potential to
Frontiers in Endocrinology 08
contribute to its onset (23). Our study has several strengths,

including being the first to systematically investigate the

association between PRS and GDM with a relatively large sample

size. We optimized PRS for our specific population and used

objective OGTT measures to determine GDM status. The genetic

approach to predicting GDM holds the advantage of being

applicable early in pregnancy, which will allow for intervention

before any adverse outcomes associated with hyperglycemia occur.

Nonetheless, our study has certain limitations that warrant

acknowledgment. Firstly, our current predictive model was derived

from a cohort study and included several known risk factors for GDM,

such as age, PBMI, and gravidity. Besides demographic factors, future

studies may incorporate other risk factors, such as clinical

characteristics (32) and family history of the disease (46, 47), to

further enhance the efficacy of the predictive model. Secondly, in this

study, PRS were based on SNPs identified in other ethnicities. Given

the potential variations in the risk loci of GDM among ethnic groups,

currently few loci have been found to be associated with the incidence

of GDM. A PRS model based on SNPs identified in the Chinese

population would offer a more accurate prediction of the genetic risk of

GDM in Chinese individuals. The exploration of genetic variants

specific to the Chinese population would enhance the precision of

GDM risk prediction in this demographic. Thirdly, external validation

of our novel prediction model is required to assess its generalizability

and performance in different populations in China. The interaction

between traditional risk factors and genetic factors should also be

further explored and validated. Lastly, this study lacked information on

lifestyle factors, such as food intake during pregnancy (48). These

factors can interact with the PRS for GDM risk and may influence the

overall risk. Future studies should consider incorporating

comprehensive lifestyle data to better understand the effects of these

factors on GDM risk.
Conclusion

In the present study, the PRS had significant correlations with

GDM in our cohort, the use of a PRS has shown promise in predicting

the risk of GDM and has the potential to be corporated into

personalized. As genetic risk profiles vary among populations, large-

scale genome-wide sequencing studies are urgently needed to identify

the genetic risk loci of GDM in Chinese populations to build accurate

PRS models for clinical practice.
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