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Guangzhou, China, 3Wurang Town Health Center, Zhaoqing, China, 4Department of Obstetrics and
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Objective: Previous observational studies have identified a correlation between

elevated plasma homocysteine (Hcy) levels and polycystic ovary syndrome

(PCOS). This study aimed to determine whether a causal relationship exists

between Hcy and PCOS at the genetic level.

Methods: A two-sample Mendelian Randomization (TSMR) study was

implemented to assess the genetic impact of plasma levels of Hcy, folate,

vitamin B12, and vitamin B6 on PCOS in individuals of European ancestry.

Independent single nucleotide polymorphisms (SNPs) associated with Hcy

(n=12), folate (n=2), vitamin B12 (n=10), and vitamin B6 (n=1) at genome-wide

significance levels (P<5×10-8) were selected as instrumental variables (IVs). Data

concerning PCOS were obtained from the Apollo database. The primary method

of causal estimation was inverse variance weighting (IVW), complemented by

sensitivity analyses to validate the results.

Results: The study found no genetic evidence to suggest a causal association

between plasma levels of Hcy, folate, vitamin B12, vitamin B6, and PCOS. The effect

sizes, determined through random-effect IVW, were as follows: Hcy per standard

deviation increase, OR = 1.117, 95%CI: (0.842, 1.483), P = 0.442; folate per standard

deviation increase, OR = 1.008, CI: (0.546, 1.860), P = 0.981; vitamin B12 per

standard deviation increase, OR = 0.978, CI: (0.808, 1.185), P = 0.823; and vitamin
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B6 per standard deviation increase, OR = 0.967, CI: (0.925, 1.012), P = 0.145.

The fixed-effect IVW results for each nutrient exposure and PCOS were consistent

with the random-effect IVW findings, with additional sensitivity analyses reinforcing

these outcomes.

Conclusion: Our findings indicate no causal link between Hcy, folate, vitamin

B12, vitamin B6 levels, and PCOS.
KEYWORDS

polycystic ovary syndrome, homocysteine, B vitamins, Mendelian randomization,
instrumental variables
1 Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine

metabolic disorder characterized by hyperandrogenemia, oligo- or

anovulation, and polycystic ovarian morphology. According to the

Rotterdam criteria, approximately 8%-13% of women globally are

diagnosed with PCOS (1, 2). Beyond infertility, individuals with

PCOS frequently experience long-term health issues, including

obesity, insulin resistance, cardiovascular diseases, and other

metabolic dysfunctions (3, 4). The precise origins of PCOS

remain elusive; however, pathophysiological research indicates

that it is a heterogeneous condition influenced by genetic

predispositions, environmental factors, and hereditary

components (4, 5). Recent studies have highlighted a notably

increased risk of cardiovascular conditions such as coronary heart

disease and stroke among those with PCOS (6–8) and have

observed alterations in vascular endothelia associated with the

syndrome (9). Two extensive cohort studies in Denmark have

established that the risk of cardiovascular disease in PCOS is

elevated, independent of body mass index (BMI) (10, 11). Some

researchers have proposed viewing the cardiovascular risks

associated with PCOS and its sequelae as a “risk enhancer” (12).

Nevertheless, findings from recent Mendelian randomization (MR)

studies challenge earlier clinical observations (13) by refuting a

direct causal link between PCOS and major cardiovascular events

like coronary heart disease and stroke (14), indicating that

comorbid conditions of PCOS may significantly contribute to its

long-term adverse effects.

Homocysteine (Hcy), a sulfur-containing amino acid, is an

intermediate product in the metabolic conversion of methionine.

Hyperhomocysteinemia (HHcy, defined as a plasma Hcy level ≥15

mmol/L) can result from low dietary intake of folate or vitamin B12,

or from mutations in the MTHFR and CBS genes (15). A recent

meta-analysis illustrated that the pooled prevalence of HHcy among

Chinese females is 28%, indicating an upward trend (16).

Furthermore, studies have uncovered a causal link between

reduced vitamin B12 levels and an increased risk of PCOS (17),
02
as vitamin B12 deficiency contributes to elevated Hcy levels.

Various investigations have confirmed the association between

higher Hcy levels and PCOS, demonstrating significant increases

in both circulating plasma and follicular fluid Hcy levels in PCOS

patients (18, 19). Research involving PCOS patients who

experienced recurrent pregnancy loss (RPL) has shown that high

levels of Hcy in serum and follicular fluid induce apoptosis in

granulosa cells and impair villous angiogenesis, which may lead to

defects in embryo implantation and early miscarriage (20).

However, folate supplementation has been shown to mitigate the

effects of Hcy (21). Elevated Hcy levels in PCOS patients have also

been linked to poor oocyte maturation, reduced fertilization rates,

and decreased embryo quality, thereby adversely affecting fertility

(22, 23). Moreover, high Hcy levels show linkage with obesity,

insulin resistance, and elevated androgen levels (24), contrasting

with previous meta-analysis results (25). High Hcy levels are also

related to insulin resistance and exacerbate hyperandrogenism, a

key feature of PCOS (25). After adjusting for age, BMI, insulin

resistance, and other variables, multivariable logistic regression

analysis revealed that serum Hcy significantly increases the risk of

PCOS [OR=1.172, CI: (1.032, 1.330)] (26). Consequently, Saadeh N

et al. have noted that serum Hcy strongly correlates with PCOS and

serves as an effective predictor for diagnosing PCOS [AUC=0.855,

CI: (0.811, 0.898)] (27).

The relationship between elevated Hcy levels and the incidence

of cardiovascular disease (CVD) has been substantiated by previous

research (28). Additionally, the interplay between HHcy and

biochemical HHcy may exacerbate cardiovascular risks in women

with PCOS (29). Insulin resistance and HHcy are prominent

features of PCOS, with insul in resistance prompting

compensatory HHcy. It has also been suggested that endogenous

opiates may contribute to HHcy in PCOS patients (30). Despite

adjustments for age, BMI, insulin resistance, and other factors,

serum Hcy levels remain significantly higher in PCOS patients,

potentially increasing the risk of developing PCOS (26). While

elevated Hcy levels are implicated in linking PCOS to

cardiovascular incidents, the direct association between PCOS
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and cardiovascular outcomes continues to be a subject of debate,

largely due to varying diagnostic approaches for PCOS and

definitions of CVD (31). Thus, further research is imperative to

elucidate the relationship between elevated Hcy levels and PCOS.

MR studies, through the natural grouping of instrumental

variables (IVs), offer a robust method for addressing potential

confounders and biases inherent in observational studies,

establishing a reliable causal relationship between Hcy and PCOS

at the genetic level, and also testing for reverse causality. This study

aimed to determine whether there is a causal relationship between

Hcy, folate, vitamin B12, and vitamin B6 and PCOS using MR

analysis. This investigation is crucial for identifying potential causes

of elevated Hcy levels in women with PCOS and the role of folate

supplementation in managing elevated serum Hcy levels in

this population.
2 Materials and methods

2.1 Data sources

Genome-wide association study (GWAS) data sources for Hcy,

vitamin B6, vitamin B12, folate, and PCOS are readily accessible

online (Figure 1). Single nucleotide polymorphisms (SNPs)

associated with these variables were employed as IVs in this

study. Ethical approval is not required for this study since it

utilizes data collected from published studies and public

databases. Detailed information regarding the ethical approval

and informed consent for each subject can be found in the

original publications where these data were first reported.
Frontiers in Endocrinology 03
2.1.1 Exposed data sources
SNPs associated with serum Hcy concentrations were selected

from the largest genome-wide association meta-analysis conducted to

date (44,147 individuals of European ancestry) (32). SNPs related to

folate and vitamin B12 were derived from previous GWAS studies,

incorporating 37,465 and 45,576 individuals of European descent,

respectively (33). SNPs associated with vitamin B6 were obtained

from earlier GWAS research involving 1,864 individuals of European

descent (34, 35).

2.1.2 Data source of outcome
SNPs associated with PCOS were extracted from the current

largest GWAS, which included 10,074 cases and 103,164 controls

from seven European cohorts involved in the 1000 Genomes Project

or HapMap2 (36). The diagnostic criteria for PCOS were defined as

follows: NIH criteria (2,540 cases/15,020 controls), Rotterdam

criteria (2,669 cases/17,035 controls), and self-reported cases

(5,284 cases/82,759 controls). SNPs related to insulin resistance

and total testosterone levels were sourced from the IEU Open

GWAS project. Additionally, SNPs related to obesity were

obtained from FinnGen release 8 (http://r8.finngen.fi). The

FinnGen project is a pioneering research initiative that combines

genetic data with digital healthcare records from over 500,000

participants in Finnish biobanks (35).
2.2 Screening of IVs

Utilizing the 1000 European Genomic Reference Panels, we

applied the PLINK clustering method to evaluate the linkage
FIGURE 1

Overview Mendelian randomization analysis of plasma homocysteine, folate, vitamin B12, and vitamin B6 level with polycystic ovary syndrome.
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disequilibrium of SNPs and selected independent SNPs with no

linkage disequilibrium as IVs. The selection criteria for these SNPs

were as follows: [1] They must satisfy the independence hypothesis,

with an r2<0.001, window size=10000kb and P value<5E-08; [2] A

minor allele frequency (MAF) of ≥0.01; [3] The absence of correlation

with potential confounding factors, as verified through the

PhenoScanner database (http://www.phenoscanner.medschl.

cam.ac.uk) (37); [4] In cases where specific PCOS GWAS data for

an SNP are unavailable, no proxy SNP is sought; [5] SNP

harmonization was carried out to correct allelic orientation, and

palindromic SNPs were excluded; [6] The strength of selected IVs

was calculated utilizing the F-statistic and R2, where R2 = 2 × EAF × (1

- EAF) × b2/(2 × EAF × (1 - (EAF) × b2 + 2 × EAF × (1 - EAF) × N ×

SE x b2] (EAF: effect allele frequency, b: beta, N: sample size, SE,

standard error). The F-statistic was calculated as = (N-2) × R2/(1-R2)

(N: sample size) (38). An F-statistic below 10 was considered indicative

of a weak IV (39). The final selected SNPs are presented in

Supplementary Table S3.
2.3 MR analysis

To investigate the causal relationship between Hcy levels and

PCOS, we conducted a two-sample MR (TSMR) analysis. The

foundational assumptions of MR include [1] a strong correlation

between the IVs and the exposure, [2] no correlation between IVs and
Frontiers in Endocrinology 04
potential confounding variables, and [3] IVs influence the outcome

exclusively through the exposure. The inverse variance weighting

method (IVW) served as the primary analytical approach for MR

analysis (40). Cochrane’s Q value was employed to evaluate the

heterogeneity of SNP estimates. In the absence of significant

heterogeneity (P < 0.05), a fixed-effect model was utilized. If

heterogeneity was detected, a random-effects model was adopted

(41). Several important sensitivity analyses were then implemented.

The weighted median method provided an estimate consistent with

IVWwhen the effective IV proportion exceeded 50% (42). MR-Egger,

which uses the P-value of its intercept to assess horizontal pleiotropy,

often yields a broad confidence interval due to its limited statistical

efficiency (43). Furthermore, MR-PRESSO, grounded in the InSIDE

hypothesis, was used to detect and correct for bias potentially

introduced by pleiotropic outliers through a global test and outlier

removal (44). The robustness of the primary results was confirmed

through leave-one-out analysis, systematically excluding one SNP at a

time. To mitigate potential confounding effects related to PCOS,

SNPs were screened for confounding factors employing the

Phenoscanner V2 database. Power analyses were performed using

the mRnd network calculation tool (https://shiny.cnsgenomics.com/

mRnd/). Additional MR analyses were implemented to further

substantiate the relationship between Hcy, B vitamins, and PCOS

symptoms. All statistical analyses were executed utilizing R software

(version 4.3.1) with the “TwoSampleMR” and “MR-PRESSO”

packages. A P-value of <0.05 was deemed statistically significant.
FIGURE 2

Association of homocysteine, folate, vitamin B12, and vitamin B6 with PCOS, SNP, single nucleotide polymorphism; OR, odds ratio; Cl, confience
interval; PCOS, polycystic ovary syndrome.
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3 Results

3.1 Causal effects of Hcy on PCOS

Fixed-effects models analyzed through IVW revealed that

genetically predicted Hcy levels were not significantly associated

with PCOS [odds ratio (OR) = 1.117, CI: (0.857, 1.457), P = 0.413].

These results were consistent with those obtained from the random-

effects model IVW analysis [OR = 1.117, CI (0.842, 1.483), P = 0.442].

Further analyses using MR-Egger, the weighted median method, and

maximum likelihood estimation supported these findings (Figure 2).

The potential causal effects of SNPs associated with Hcy on PCOS

were further explored and are depicted in Figure 3. A funnel plot

analysis indicated that the effects of Hcy were symmetrically

distributed, suggesting the absence of directional pleiotropy

(Supplementary Figure S1). Additionally, Cochran’s Q test for

heterogeneity was not significant (Q = 12.501, P = 0.327),

indicating a lack of variance across studies. No evidence of

horizontal pleiotropy was detected (P for intercept = 0.670), and
Frontiers in Endocrinology 05
MR-PRESSO analysis confirmed the absence of outliers (Global test

P-value = 0.406) (Supplementary Table S5).
3.2 Causal effect of folate on PCOS

The fixed-effects model of IVW analysis revealed that

genetically predicted folate levels were not significantly associated

with PCOS [OR = 1.008, CI: (0.546, 1.860), P = 0.981]. This result

was corroborated by the random-effects model IVW analysis, with

consistent findings reported across all methods (Figure 2).
3.3 Causal effects of vitamin B12 on PCOS

The fixed-effects model of IVW analysis indicated that genetically

predicted vitamin B12 levels were not associated with PCOS [OR =

0.978, CI:(0.808,1.185), P = 0.823]. These findings were consistent

with the random-effects model IVW analysis. Further analyses using
BA

FIGURE 4

Leave-one-out analysis for the association of homocysteine and vitamin B12 with PCOS. (A) Homocysteine оn PCOS. (B) Vitamin B12 оn PCOS.
PCOS, polycystic ovary syndromme.
BA

FIGURE 3

Forest plot of the potential effects of homocysteine associated SNPs and vitamin B12-associated SNPs on PCOS. (A) Homocysteine-associated SNPs
on PCOS. (B) Vitamin B12 associated SNPs on PCOS. PCOS, polycystic ovary syndrome; MR, mendelian randomization; All-Inverse variance
weighted, random effects inverse variance weighted analysis.
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MR-Egger, the weighted median, and maximum likelihood

confirmed these results, as shown in Figure 2. The potential causal

effect of SNPs associated with vitamin B12 on PCOSwas assessed and

detailed in Figure 3. The funnel plot analysis demonstrated

symmetrically distributed effects of vitamin B12, with no evidence

of directional pleiotropy (Supplementary Figure S1). Moreover,

Cochran’s Q test revealed no significant heterogeneity (Q = 7.470,

P = 0.588), and there was no detection of horizontal pleiotropy (P for

intercept = 0.410) or outliers in the MR-PRESSO analysis (global test

P = 0.583) (Supplementary Table S5).

3.4 Causal effects of vitamin B6 on PCOS

The Wald Ratio analysis for genetically predicted vitamin B6

levels found no significant correlation with PCOS [OR=0.967, CI:

(0.925,1.012), P = 0.145], as displayed in Figure 2. Due to the use of

only one SNP in the IV set for vitamin B6, further pleiotropic tests

and sensitivity analyses were not feasible.

3.5 Sensitivity analysis

Leave-one-out analysis demonstrated that the effects of Hcy and

vitamin B12 on PCOS remained unchanged with the sequential

exclusion of any single SNP (Figure 4). The power assessment results

are detailed in Supplementary Table S4. Furthermore, a thorough

review of each SNP’s pleiotropy using the Phenoscanner V2 database

revealed a previously identified Hcy SNP (rs548987) associated with

BMI, which showed a significant association with PCOS

(Supplementary Table S2). Reevaluation of the effect sizes, after

excluding this SNP, yielded consistent results (Supplementary Figure

S2). Additionally, we identified a causal association between vitamin

B12 and obesity, evidenced by an OR of 0.938 (95% CI: 0.891–0.988, P

= 0.013). No causal relationships were found between Hcy, B vitamins,

and other metabolic traits such as insulin resistance, obesity, or total

testosterone levels (Supplementary Figure S3). A reporting checklist for

this TSMR study is provided in Supplementary Table S1.

4 Discussion

In this study, we investigated the potential causal associations

between plasma levels of Hcy, folate, vitamin B12, and vitamin B6 and

the risk of PCOS. Our findings indicated that there was no substantial

evidence to suggest that genetically predicted levels of Hcy, folate,

vitamin B12, and vitamin B6 were causal factors for PCOS.

Our investigation found no genetic causal connection between

elevated genetically predicted plasma Hcy levels and the incidence of

PCOS. This conclusion contrasts with several observational studies that

have reported increased plasmaHcy levels in women with PCOS (18, 27,

45). Homocysteine thiolactone, an active metabolite of Hcy, has been

demonstrated to disrupt tyrosine phosphorylation in the insulin receptor

b-subunit and related substrates, hindering phosphatidylinositol 3-

kinase activity and subsequently reducing insulin-mediated glycogen
Frontiers in Endocrinology 06
synthesis, a key factor in the development of insulin resistance (46).

Experimental studies in a PCOSmouse model indicate that HHcy could

intensify insulin resistance and inflammation in adipose tissue by

altering macrophage M2 polarization via estrogen inhibition (19).

Common metabolic disturbances associated with PCOS, such as

insulin resistance and hyperinsulinemia, have also been associated

with elevated Hcy levels, which are further linked to heightened risks

of hyperinsulinemia and atherosclerosis (47). Biochemical

hyperandrogenism, another hallmark of PCOS, significantly correlates

with increased HHcy risks, showing an effect size of 2.24 (95% CI: 1.26–

4.01) (29). Ting Li et al. found that androgens may escalate Hcy levels by

inhibiting the mammalian target of rapamycin pathway in granulosa

cells from PCOS-affected mice (48). It is hypothesized that the higher

incidence of HHcy observed in the PCOS population might reflect an

increased mutation rate of the MTHFR gene, particularly in Asian

populations, where polymorphisms such as MTHFR rs1801131 and

MTHFR rs1801133 could be contributing factors to elevated Hcy levels

in PCOS (49). Despite these associations, our sensitivity analysis found

no evidence of a causal link between Hcy levels and the risk of PCOS or

its related symptoms, including insulin resistance, obesity, and total

testosterone levels.

The relationship between vitamin B12 supplementation and the

risk of PCOS remains a topic of debate. Vitamin B12 acts as a methyl

donor in conjunction with folate in the methylation process. A

deficiency in vitamin B12 can impede the Hcy remethylation

pathway, leading to increased levels of circulating Hcy (50).

Previous randomized controlled trials (RCTs) have demonstrated

that supplementation with vitamin B12 and folate effectively reduces

blood Hcy levels in PCOS patients (51). However, our results

indicated no significant causal relationship between genetically

predicted vitamin B12 levels and the risk of PCOS. Contrastingly,

another recent MR study (17) reported findings that suggest

genetically predicted vitamin B12 may reduce the risk of PCOS

(IVW-MR: OR = 0.753, CI = [0.5688–0.998], P = 0.048) and obesity

(IVW-MR: OR = 0.917, CI = [0.843–0.995], P = 0.037). These

discrepancies between studies could be attributed to several factors:

First, Shen JY et al. did not apply Bonferroni or False Discovery Rate

(FDR) corrections for P values, which could increase the risk of false

positives due to multiple testing. Second, the inconsistency in GWAS

data sources for PCOS may also influence outcomes. Shen JY et al.

utilized data from the FinnGen database, which included 642 cases

and 118,228 controls, whereas our study used data from the largest

PCOS GWAS to date, Apollo, with 10,074 cases and 103,164 controls.

Despite these differences, our sensitivity analysis revealed that

vitamin B12 deficiency was associated with an increased risk of

obesity, aligning with previous findings (17).

Previous research has established that a deficiency of vitamin B6

in the general population leads to an elevated Hcy levels (52).

Vitamin B6 is crucial for the catabolic pathway of Hcy, catalyzing

the conversion to cysteine. However, in this study, only one effective

IV for vitamin B6 was identified, whichmay limit the statistical power

of our findings and affect the reliability of the observed negative

causal relationship between vitamin B6 and PCOS (42).
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folate supplementation is a recognized therapeutic strategy to

reduce elevated HHcy levels. As a vital component in Hcy

metabolism, a decrease in serum folate is one of the primary

causes of HHcy. Recent meta-analyses and RCTs have shown that

folate supplementation can improve insulin resistance and glucose

metabolism in individuals (53). Specifically, two prior RCTs

demonstrated that daily supplementation of 5 mg of folate for

eight weeks significantly reduced Hcy levels, inflammatory markers,

and HOMA-IR scores in PCOS patients (54, 55). The underlying

mechanism is likely related to folate’s role in enhancing the DNA

methylation of genes involved in metabolic regulation (56), which

helps to mitigate cellular and protein damage caused by oxidative

stress and maintains endothelial function through single-carbon

metabolism (57). Moreover, a recent systematic review involving

eight RCTs highlighted that folate supplementation not only

improves BMI in women with HHcy but also in women with

PCOS (58); Folate supplementation could be particularly beneficial

for obese PCOS patients with HHcy.

This study’s primary strength lies in its utilization of the largest

available GWAS data on Hcy-SNPs and PCOS-SNPs, employing a

MR design. This approach enhances the causal inference of the

relationship between Hcy, B vitamins, and PCOS by reducing

residual confounding and other biases. However, the study is not

without limitations. Firstly, the number of genome-wide association

studies and single nucleotide polymorphisms available for analysis in

PCOS is relatively limited. Azziz R has indicated that the identified

loci might account for less than 20% of the heritability of PCOS,

which raises concerns about the comprehensiveness of the results

obtained from MR analysis (59). Secondly, the current GWAS data

for PCOS do not include subtype classification based on the

Rotterdam recommendations, which restricts our ability to discern

potential associations between Hcy exposure and specific PCOS

subtypes. Thirdly, this study is based primarily on data from

European populations, limiting its applicability to other ethnic

groups. Such geographical and genetic specificity might hinder the

generalization of the findings to broader, more diverse populations.

Fourthly, while we have elucidated the relationship between Hcy and

PCOS from a genetic standpoint, it is important to recognize that

PCOS is a complex endocrine and metabolic disorder influenced by

genetic, metabolic, and environmental factors. Consequently, our

results, focused solely on genetic contributions, may present certain

limitations in fully capturing the multifaceted nature of PCOS.
5 Conclusions

The findings from ourMR analysis currently provide no evidence

to support a causal relationship between genetically predicted Hcy

levels and PCOS. Additionally, supplementation with folate and

vitamin B12 does not appear to reduce the risk of PCOS. Given

these results, further research is essential to explore the impact of Hcy

on various subtypes of PCOS, as defined by the Rotterdam criteria.

Such investigations are critical for enhancing our understanding of
Frontiers in Endocrinology 07
PCOS and could potentially lead to more effective treatment

strategies for PCOS patients exhibiting clinical HHcy.
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