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Effects of T2DM on cancer
progression: pivotal
precipitating factors and
underlying mechanisms
Yu-Yuan Zhang1,2, Yong-Jiang Li1,2*, Chun-Dong Xue1,2,
Shen Li1, Zheng-Nan Gao1* and Kai-Rong Qin1,2

1Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology,
Dalian, Liaoning, China, 2School of Biomedical Engineering, Faculty of Medicine, Dalian University of
Technology, Dalian, Liaoning, China
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder affecting people

worldwide. It is characterized by several key features, including hyperinsulinemia,

hyperglycemia, hyperlipidemia, and dysbiosis. Epidemiologic studies have shown

that T2DM is closely associated with the development and progression of cancer.

T2DM-related hyperinsulinemia, hyperglycemia, and hyperlipidemia contribute

to cancer progression through complex signaling pathways. These factors

increase drug resistance, apoptosis resistance, and the migration, invasion, and

proliferation of cancer cells. Here, we will focus on the role of hyperinsulinemia,

hyperglycemia, and hyperlipidemia associated with T2DM in cancer

development. Additionally, we will elucidate the potential molecular

mechanisms underlying their effects on cancer progression. We aim to identify

potential therapeutic targets for T2DM-related malignancies and explore

relevant directions for future investigation.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder primarily

characterized by insulin resistance and relative insulin deficiency (1). This condition

leads to persistent hyperglycemia (2–4). T2DM accounts for approximately 90% of all

diabetes cases worldwide. It is often associated with various systemic complications,

including cardiovascular disease, nephropathy, neuropathy, and retinopathy (3, 4).

Hyperglycemia is a hallmark of T2DM, resulting from the body’s inability to efficiently

use glucose due to impaired insulin action (5–10). This chronic elevation of blood glucose

levels is a key factor in the development of T2DM-related complications (9–11).

In addition to hyperglycemia, T2DM is often associated with hyperinsulinemia. This

condition is an early compensatory response to insulin resistance, where the pancreas produces
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more insulin to overcome reduced insulin sensitivity (12, 13). Over

time, hyperinsulinemia can lead to pancreatic b-cell dysfunction,
further exacerbating hyperglycemia. T2DM is also linked with

dyslipidemia, characterized by elevated levels of triglycerides and

low-density lipoprotein (LDL) cholesterol, along with decreased

levels of high-density lipoprotein (HDL) cholesterol (14–16). This

lipid imbalance further contributes to the increased risk of

cardiovascular disease in T2DM patients.

Epidemiologic studies consistently show that individuals with

T2DM have an increased risk of developing several malignancies

(17–20). These include lung, colorectal, liver, breast, gastric, and

pancreatic cancers (21). The pathological features of T2DM,

particularly hyperinsulinemia, hyperglycemia, and hyperlipidemia,

are believed to contribute to this increased cancer risk (Figure 1).

Hyperglycemia promotes cancer cell proliferation by providing a

readily available source of glucose, fueling rapid cell division (22, 23).

Hyperinsulinemia promotes tumor growth and progression through its

mitogenic effects by activating insulin and insulin-like growth factor

(IGF) signaling pathways (24, 25). Dyslipidemia contributes to chronic
Frontiers in Endocrinology 02
inflammation and oxidative stress, creating a pro-tumorigenic

environment (26–28).

Despite these associations, the precise molecular mechanisms

linking T2DM-related features to cancer progression remain

incompletely understood. In this review, we will provide an

overview of the epidemiologic associations between T2DM and

cancer. We will also explore the potential molecular mechanisms

involved. Specifically, we will examine how hyperglycemia,

hyperinsulinemia, and hyperlipidemia may accelerate cancer

development and progression in patients with T2DM.

2 Epidemiological association
between T2DM-related features
and cancer

In recent years, clinical researchers have conducted extensive

epidemiological studies to elucidate the relationship between these

two diseases (29). The majority of the findings from these studies
FIGURE 1

Patients with T2DM have a Higher Cancer Risk. The increased risk of cancer in people with T2DM is intricately associated with comorbid
hyperinsulinemia, hyperglycemia, hyperlipidemia, and other factors. T2DM, Type 2 diabetes mellitus.
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consistently show a significantly increased risk of cancer among

individuals with T2DM. To gain a clearer understanding of the

association between T2DM and cancer, this section compiles and

summarizes epidemiological research on the three key features of

T2DM: hyperinsulinemia, hyperglycemia, and hyperlipidemia in

relation to cancer.

Numerous epidemiological studies have consistently shown that

the increased risk of cancer among people with T2DM is

significantly influenced by hyperinsulinemia. Researchers have

discovered that hyperinsulinemia increases the risk of colorectal,

breast, endometrial, hepatocellular, and prostate cancers through

assessments of the relationship between the empirical dietary index

for hyperinsulinemia (EDIH) and specific cancer risks (30–34).

Furthermore, hyperinsulinemia increases the likelihood of cancer

recurrence in individuals with prostate cancer (PCa), breast cancer,

and curative hepatocellular carcinoma (HCC) (35–37). While being

unrelated to survival rates in individuals with late-stage colon

cancer, a prospective investigation found that a higher EDIH

associated with hyperinsulinemia may increase the incidence risk

of colon cancer (38). Moreover, one of the contributing factors to

hastening mortality in cancer patients is hyperinsulinemia (39).

Specific research results have indicated that hyperinsulinemia

increases the probability of dying from colorectal, gastroenteric,

and hepatic malignancies by 1.51-fold, 1.61-fold, and 2.72-fold,

respectively (40–42). It is noteworthy that hyperinsulinemia raises

the risk of death among cancer patients regardless of whether

individuals fall into the obese category (43). Opting for meals

with a lower insulinemic potential may be a useful strategy to

improve general health and prevent early death (44). The findings of

the previous study demonstrate that hyperinsulinemia may

independently influence cancer incidence and mortality rates.

While glycemic control has received significant attention in the

context of T2DM, the importance of hyperglycemia as a key

component in tumor growth is sometimes overlooked. Nevertheless,

epidemiological research has established a connection between

hyperglycemia and cancer incidence, progression, and mortality rates

(7). For instance, in a study investigating the impact of blood sugar on

cancer risk in women from the 1987–1992 ORDET cohort, conditional

logistic regression was employed to determine the rate ratios (RR). The

results indicated that women with blood sugar levels in the highest

quartile had a significantly higher risk of breast cancer compared to

those in the lowest quartile (RR 1.63; 95%CI: 1.14-2.32; trend p-value =

0.003) (45). Additionally, a recent systematic study sheds light on the

major influence of diabetes and hyperglycemia on the occurrence of

colon cancer (46). Although several cohort studies have emphasized the

link between diabetes and cancer risk, only a limited number of studies

have directly examined the underlying impact of high blood sugar on

cancer risk (7). At present, clinical studies are the main focus of

research on the relationship between hyperglycemia and cancer (47).

Clinical research has demonstrated that elevated blood glucose is

associated with poor clinical outcomes in patients with T2DM and

cancer (5). Conversely, the prognosis for cancer in diabetic people

improves when plasma glucose levels return to normal. This suggests

that T2DM and cancer share common signaling pathways that

hyperglycemia may activate. Therefore, regulating plasma glucose
Frontiers in Endocrinology 03
levels in people with cancer and T2DM may improve the prognosis

for cancer.

Hyperlipidemia primarily develops as a result of dysregulated

lipid metabolism. Lipids serve crucial functions in cellular signaling,

chemical transport, and energy storage and they are essential

components of cell membranes. An increasing body of evidence

from recent studies indicates that abnormal lipid metabolism

increases the risk of tumorigenesis, disease progression, and

treatment resistance (28, 48). Excess lipid and cholesterol

accumulation within cancer cells is stored in lipid droplets, and

higher lipid droplet levels and stored cholesterol ester content are

now considered indicators of cancer invasion (49). Furthermore, lipid

metabolism reprogramming has emerged as a new factor in cancer

development (28). Recent epidemiological studies have highlighted

the critical role of lipid metabolism in the progression of various

cancers, including breast cancer (50), thyroid cancer (51), prostate

cancer (52), and ovarian cancer (53). Elevated serum cholesterol

levels have been linked to an increased risk of colon, rectal, prostate,

and testicular cancers (54). Interestingly, low cholesterol levels have

occasionally been associated with cancer. A prospective study based

on the Japan Public Health Center found a significant correlation

between low cholesterol levels and the incidence of primary liver and

stomach malignancies (55). Recent research has also linked low

cholesterol to colon and lung malignancies (54, 56). However, due

to the conflicting epidemiological results mentioned above, it is still

unclear how cholesterol contributes to the development of cancer.

According to some recent research, low cholesterol levels may be

linked to impaired immune function, increasing one’s vulnerability to

cancer (57). In contrast, low cholesterol levels may lower the risk of

cancer by activating the nuclear factor-kB (NF-kB), which inhibits

cell proliferation and promotes cell differentiation (58). Furthermore,

extracellular vesicle proteins and lipids could serve as biomarkers for

lung cancer diagnosis and prognosis, as well as therapeutic targets for

drug development (59). While epidemiological research examines the

impact of aberrant blood lipid levels on cancer, the heterogeneity of

study results makes it challenging to establish causal correlations.

Uncovering the specific pathways by which hyperlipidemia promotes

cancer remains a critical task.
3 Hyperinsulinemia and
cancer progression

In patients with T2DM, hyperinsulinemia is associated with an

increased risk of cancer. It can also accelerate cancer progression

through both direct and indirect mechanisms (Figure 2). These

mechanisms involve the activation of key signaling pathways and

the modulation of extracellular factors that influence tumor growth.
3.1 Direct mechanisms

Under normal conditions, insulin primarily regulates glucose

metabolism with limited direct involvement in cancer progression.

However, in individuals with hyperinsulinemia, the excessive
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activation of insulin signaling pathways, including the

phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT),

mTOR, and Ras/mitogen-activated protein kinase (MAPK)

pathways, significantly enhances tumor growth (60–65). 1) PI3K/

AKT Pathway: In hyperinsulinemic states, the PI3K/AKT pathway

is persistently activated due to chronic insulin receptor (IR)

stimulation, leading to enhanced tumor cell proliferation,

migration, and survival (66). This pathway also inhibits apoptosis

by downregulating pro-apoptotic proteins such as B-cell

lymphoma-2 (Bcl-2)-associated death promoter and rapidly

accelerated fibrosarcoma-1 (Raf-1), thereby promoting tumor cell

survival (67). 2) mTOR Pathway: The mTOR pathway is activated

by abnormal insulin signaling, enhancing synthetic metabolism, cell

proliferation, and inhibiting autophagy (68). This contributes to

tumor growth by facilitating the accumulation of biomolecules

essential for cancer cell proliferation. 3) Ras/MAPK Pathway:

Hyperinsulinemia also activates the Ras/MAPK pathway, which

regulates cell division, migration, and proliferation (62). This

pathway is particularly important in promoting the aggressive

spread of tumors and is implicated in various cancers, including

prostate and endometrial cancers (69).
Frontiers in Endocrinology 04
3.2 Indirect mechanisms

Normally, systemic factors are balanced to regulate cell growth.

In hyperinsulinemia, elevated insulin levels indirectly promote

tumorigenesis. This occurs through alterations in the insulin-like

growth factor-1 (IGF-1) and sex hormone-binding globulin

(SHBG) system (13, 65). Insulin increases IGF-1 synthesis in the

liver and upregulating growth hormone receptors. This leads to

elevated IGF-1 levels in the bloodstream (70–72). In

hyperinsulinemic states, these elevated IGF-1 levels result in

enhanced proliferation, migration, and anti-apoptosis in HCC cell

lines, such as SK-Hep1 and HepG2. Additionally, there is increased

resistance to sorafenib. These effects are mediated by the regulation

of the PI3K/AKT and RAS/Raf/ERK signaling pathways (24). In

addition to increasing cancer risk through IGF-1, insulin also

influences carcinogenesis and progression by lowering sex

hormone-binding globulin (SHBG) levels (73). Normally, sex

hormone levels are tightly regulated to maintain physiological

balance. However, during conditions like menopause or hormonal

imbalances, elevated sex hormones can increase the risk of certain

cancers. For example, prolonged exposure to high estrogen levels is
FIGURE 2

Mechanisms underlying the promotion of cancer progression by hyperinsulinemia. IR, insulin receptor; PI3K, phosphatidylinositol 3-kinase; AKT,
protein kinase B; mTOR, mammalian target of rapamycin; BAD, Bcl2-associcated death protein; FOXC2, forkhead box protein C2; EMT, epithelial-to-
mesenchymal transition; NE, neuroendocrine; MMP-2, matrix metalloproteinase-2; ECM, extracellular matrix; PTEN, phosphatase and tensin
homolog deleted on chromosome 10; IGF-1, insulin-like growth factor-1; IL-6, interleukin-6; TGF-b, transforming growth factor-b; IL-10,
interleukin-10; IGF-1R, IGF-1 receptor; MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase.
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closely linked to the development of breast and endometrial

cancers. In individuals with hyperinsulinemia, elevated insulin

levels reduce SHBG. Lower SHBG levels lead to higher circulating

levels of free estrogen and testosterone. This increase in active sex

hormones may accelerating the onset and progression of hormone-

related cancers, such as endometrial and breast cancers (74).

Notably, recent research suggests a close relationship between sex

hormones, such as estrogen and testosterone, and the expression of

the insulin-degrading enzyme (IDE). High levels of these hormones

can enhance the negative feedback of IDE on itself. Additionally,

elevated hormone levels may increase the risk of hormone-

dependent malignancies (75).
3.3 Inflammation and immune modulation

The inflammatory milieu associated with hyperinsulinemia is

distinct from that of normal individuals, contributing to a more

pro-tumorigenic environment. Persistent high levels of insulin can

promote generation of an inflammation environment, which plays a

key role in tumor initiation and progression (12). Studies have

shown that hyperinsulinemic patients secrete more pro-

inflammatory cytokines, including interleukin-6 (IL-6) and tumor

necrosis factor-alpha (TNF-a), compared to normal individuals.

Under inflammatory stimuli such as transforming growth factor-b
(TGF-b), IL-6, and interleukin-10 (IL-10), tumor-associated

macrophages (TAMs) are more likely to transition from the anti-

tumor M1 phenotype to the pro-tumor M2 phenotype (76). Within

the tumor microenvironment (TME), M2 macrophages contribute

to tumor promotion by facilitating immune escape (77). Moreover,

M2 macrophages can influence the outcomes of radiation,

chemotherapy, and immunotherapy by impacting the drug

resistance of tumor cells (78). Other immune subsets, such as

neutrophils and dendritic cells, also play roles within the TME.

In conclusion, cancer can develop in both individuals with normal

insulin levels and those with hyperinsulinemia. However,

hyperinsulinemia significantly accelerates cancer progression and

alters the tumor microenvironment. This leads to more aggressive

cancer phenotypes. These distinctions underscore the importance of

understanding the specific mechanisms by which hyperinsulinemia

influences cancer to develop targeted interventions.
4 Hyperglycemia and
cancer progression

In patients with T2DM, high blood glucose levels, or

hyperglycemia, can influence the development and progression of

cancer through various mechanisms, as illustrated in Figure 3.

These include increased oxidative stress, chronic inflammation,

and the activation of specific signaling pathways like the insulin-

like growth factor (IGF) and advanced glycation end products

(AGEs)/receptor for AGEs (RAGE) pathways.
Frontiers in Endocrinology 05
4.1 Increased oxidative stress

Normally, the oxidative environment in the human body

maintains a dynamic balance. However, elevated glucose levels in the

bloodstream intensify intracellular glucose metabolism, leading to

excessive production of reactive oxygen species (ROS). This

increased ROS disrupts the electron transport chain, impairs

adenosine triphosphate (ATP) synthesis, and promotes

mitochondrial dysfunction, further elevating ROS levels (79–81).The

accumulation of ROS due to mitochondrial malfunction degrades

cellular components and stimulates tumor formation through

deoxyribonucleic acid (DNA) mutations and genomic instability

(81–83). Moreover, hyperglycemia activates NADPH oxidase, a key

ROS generator, thereby exacerbating oxidative stress, damaging DNA,

activating oncogenes, and suppressing tumor suppressor genes, all of

which contribute to tumor growth and progression (82–84).

Moreover, hyperglycemia induces the production of inflammatory

cytokines, such as TNF-a and IL-6 (85, 86), which further elevate ROS

levels by activating NADPH oxidase (87). These inflammatory

cytokines, along with increased ROS, contribute to chronic

inflammation and create a tumor-promoting microenvironment.

Normally, antioxidant enzymes neutralize harmful reactive

molecules, but hyperglycemia reduces the activity of these enzymes,

like catalase and superoxide dismutase (SOD), resulting in ROS

accumulation and cellular oxidative damage (88).

Molecular regulation plays a crucial role in the connection

between cancer and hyperglycemia-induced oxidative stress. For

instance, oxidative stress activates the transcription factor GATA1,

which upregulates the expression of von Willebrand Factor, thereby

promoting tumor metastasis (89). While the complex interactions

between these molecular components are not yet fully understood, it

is clear that oxidative stress driven by hyperglycemia can lead to the

formation of DNA adducts and chromosomal abnormalities,

contributing to genetic instability and cancer development (90, 91).

In conclusion, hyperglycemia impacts tumor development and

progression in individuals with T2DM. This effect is more pronounced

compared to individuals with normal glucose levels. Hyperglycemia

increases oxidative stress, which contributes to cellular damage, genetic

mutations, and abnormal cellular development
4.2 Warburg effect

The Warburg effect was first discovered by Otto Warburg in the

1950s (92). It describes the tendency of cancer cells to prefer lactate

production through glycolysis. This preference occurs even when

sufficient oxygen is available for ATP synthesis via oxidative

phosphorylation. In normal, well-differentiated cells, energy is

primarily generated through a combination of the tricarboxylic

acid cycle (TCA) and oxidative phosphorylation, yielding up to

36 mol of ATP from 1 mol of glucose (93). However, in cancer cells,

glycolysis predominates even in aerobic conditions, leading to

production of lactate rather than ATP (94).
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In individuals with normal blood sugar levels, cancer cells may

still exhibit the Warburg effect, but this metabolic shift is less

pronounced due to the limited availability of glucose. However, in

the context of T2DM and associated hyperglycemia, elevated glucose

levels significantly amplify the Warburg effect. High glucose levels

increase aerobic glycolysis in cancer cells, promoting cancer growth

(95, 96). Glucose enters cells via the glucose transporter 1 and triggers

various metabolic pathways, some of which increase the invasive

potential of cancer cells (97). For instance, high glucose conditions

have been shown to upregulate key glycolytic enzymes, such as

hexokinase II and pyruvate kinase in breast cancer cells (98) and

enolase 1 in gastric cancer cells (99).

In pancreatic cancer, hyperglycemia induces the accumulation

of hypoxia-inducible factor 1a, leading to increased lactate

dehydrogenase A (LDHA) activity and expression (100, 101).

This upregulation elevates the glycolytic rate, accelerating cancer

progression and worsening disease outcomes (100, 101). The

upregulation of LDHA activity converts pyruvate to lactate, which

is extruded through monocarboxylate transporter 4, contributing to

the formation of an acidic TME (102). Lactate, once considered a

metabolic waste, has intriguingly been discovered to enhance the

metabolism of regulatory T cells that infiltrate tumors, allowing

cancer cells to evade immune cytotoxicity (103).
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In summary, the Warburg effect is a common feature of cancer

cells. In individuals with T2DM, hyperglycemia significantly

enhances this effect. This leads to increased glycolysis and lactate

production. Consequently, the cancer phenotype becomes

more aggressive.
4.3 Chronic inflammation

Chronic inflammation plays a pivotal role in cancer development

and progression through multiple pathways. The chemokines and

growth factors generated during the inflammatory response can

enhance the development, invasion, and metastasis of cancer cells

while preventing normal cell death (104). In individuals with T2DM,

hyperglycemia significantly amplifies chronic inflammation compared

to normal glucose levels with individuals, accelerating cancer

progression (105). In individuals with hyperglycemic, prolonged

exposure to high glucose levels increases the formation of AGEs,

which interact with the receptor for AGEs (RAGE). This interaction

activates several signaling pathways, including NF-kB, MAPK, and

Janus kinase/signal transducer and activator of transcription (JAK/

STAT), leading to heightened production of inflammatory cytokines

like Interleukin-1 b (IL-1b), IL-6, and TNF-a (18). These cytokines
FIGURE 3

Mechanisms underlying the promotion of cancer progression by hyperglycemia. HIF1a, hypoxia-inducible factor 1a; LDHA, lactate dehydrogenase A;
PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; MAPK, mitogen-activated protein kinase; JAK, Janus kinase; STAT, signal transducer and
activator of transcription; FAK, focal adhesion kinase; Erk, extracellular signal-regulated kinase; Elk1, comprising E26 transformation-specific domain-
containing protein Elk-1; EGR1, early growth response protein 1; Src, sarcoma; IGFBP-2, Insulin-like growth factor binding protein-2; IL-1b,
interleukin-1b; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; IL-18, interleukin-18; TGF-b, transforming growth factor-b; Sp1, specificity
Protein 1; MMPs, matrix metalloproteinases; VEGF, vascular endothelial growth factor; Ang-2, angiopoietin-2; COX-2, cyclooxygenase-2; iNOS,
inducible nitric oxide synthase; BcL-X, B-cell lymphoma-extra large; BcL-2, B-cell lymphoma-2; XIAP, X-linked inhibitor of apoptosis protein.
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exacerbate the inflammatory response, creating a microenvironment

that significantly promotes cancer cell proliferation and survival.

Hyperglycemia also increases oxidative stress, leading to the

activation of transcription factors such as NF-kB and activator

protein-1 (AP-1), and the upregulating genes related to

inflammation. This results in the release of inflammatory

cytokines like IL-1b, Interleukin-18 (IL-18), and IL-6 (106). The

free radicals generated by oxidative stress in hyperglycemic

conditions cause more severe DNA damage, contributing to DNA

mutations and chromosomal abnormalities underlying cancer

development. Moreover, hyperglycemia increases the production

of protein kinase C (PKC) isoforms, including PKC-a, PKC-b1,
PKC-b2, and PKC-d (107, 108). The increased activity of PKC can

further activate NF-kB and enhance the expression of inflammatory

molecules, including TNF-a and TGF-b (109).

Additionally, hyperglycemia disrupts lipid metabolism, causing

adipose tissue to produce excess free fatty acids. Elevated free fatty

acid levels can induce inflammatory reactions through various

signaling pathways, such as the activation of pro-inflammatory

serine/threonine protein kinase cascades, which encourage the release

of IL-6 and stimulate C-reactive protein production (110). Excess free

fatty acids also induce endoplasmic reticulum stress and suppress

glucose metabolism, further increasing inflammation (111, 112).

Furthermore, high levels of free fatty acids may suppress the

expression of genes involved in glucose metabolism, such as glucose

transporters, reducing intracellular glucose uptake and increasing the

risk of inflammation in hyperglycemic situations (97, 113).

The sustained and intensified inflammatory response in

individuals with hyperglycemia not only accelerates cancer cell

growth but also impairs the immune system’s ability to detect

and eliminate malignant cells (114, 115). This altered immune

function, combined with the chronic inflammatory environment,

fosters the rapid progression and spread of cancer. On the contrary,

normal people have a healthier physiological environment and do

not experience long-term inflammatory reactions, which may be

one of the reasons for the low risk of cancer. Therefore, a

comprehensive approach that includes glycemic control,

reduction of oxidative stress, and modulation of inflammatory

responses are essential strategies to reduce risk of cancer in

patients with T2DM.
4.4 The IGF signaling pathway

IGF serves as a critical mediator of growth, development, and

survival. It also contributes to an increased risk of cancer. IGF

promotes cancer cell proliferation and inhibits apoptosis (116). In

normoglycemic individuals, insulin secretion and IGF-1R activation

are tightly regulated, resulting in a more controlled rate of cancer

cell growth. However, in hyperglycemia individuals, regulation of

the IGF signaling pathway influences cancer progression (117).

Specifically, elevated glucose levels stimulate the release of more

insulin by pancreatic b-cells, leading to higher insulin levels in the

bloodstream. This increase in insulin can directly or indirectly

impact the IGF-1R, which belongs to the receptor tyrosine kinase

family. The activation of IGF-1R by insulin triggers several signaling
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pathway, including PI3K/AKT, MAPK, JAK/STAT, Sarcoma (Src),

and focal adhesion kinase (FAK), all of which collectively enhance

cancer cell proliferation, survival, and migration (25). Moreover,

insulin may affect the expression of insulin-like growth factor

binding protein (IGFBP) to regulate the bioavailability and

transport of IGF-1, indirectly affecting its efficacy. For instance, in

differentiated 3T3-L1 adipocytes, insulin can stimulate the

transcription of the IGFBP-2 gene and increase its secretion

(118). Early cancer cell studies have also found that the insulin

signaling pathway regulates IGFBP-2 transcription, consistent with

the aforementioned results (119). With elevated IGFBP-2

concentrations, the bioavailability of IGF-1 decreases, impeding

its transport and potentially weakening its impact on tumor

progression. However, epidemiological studies have shown that

overexpression of IGFBP-2 is associated with aggressive

phenotypes in various human cancers, including glioma, ovarian

cancer, prostate cancer, pancreatic cancer, breast cancer, lung

cancer, colorectal cancer, melanoma, liver cancer, gastric cancer,

rhabdomyosarcoma, and leukemia (120). Exogenous IGFBP-2 can

promote the activation of the integrin b1/FAK/ERK/Elk1/EGR1
pathway, thereby stimulating HCC cell proliferation (121).

Interestingly, some studies have found that insulin further

inhibits the secretion of IGFBP-1 and IGFBP-2 (122), a result in

stark contrast to previous findings. Therefore, the action of IGF-1

might be minimally affected by IGFBP but rather influenced by the

activation of IGF-1R and its downstream signaling pathways to

impact cancer progression.
4.5 The AGEs/RAGE signaling pathway

Hyperglycemia leads to the formation of AGEs, which are non-

enzymatic glycation products, resulting from the interaction

between the aldehyde group of reducing sugars and

macromolecules such as proteins, amino acids, lipids, and nucleic

acids. In normoglycemic individuals, the formation of AGEs is

significantly lower. This reduces the likelihood of AGE

accumulation. Consequently, the detrimental effects of AGEs on

cellular function are minimized. RAGE, a pattern-recognition

receptor in the immunoglobulin superfamily, interacts with

extracellular AGEs. RAGE is constitutively expressed in immune

cells, lung tissues, and certain cancer cells, including pancreatic

cancer (123), non-small cell lung cancer (124), gastric cancer (125),

and breast cancer (126). The interaction between AGEs and RAGE

activates multiple signaling pathways that critical for tumor growth,

angiogenesis, and invasion, such as the PI3K/AKT/mTOR, MAPK,

MMPs, vascular endothelial growth factor (VEGF), NF-kB, JAK/
STAT, and p53 (127).

In hyperglycemic conditions, the AGE-RAGE interaction is

significantly enhanced due to the elevated levels of glucose and

subsequent increase in AGE formation. This leads to a more

aggressive activation of signaling pathways that promote cancer

progression. For example, in PCa-3 cells, the interaction between

AGEs and RAGE activates the PI3K/AKT pathway, increasing the

phosphorylation of downstream Retinoblastoma protein (Rb) and

decreasing overall Rb levels, ultimately enhancing cell proliferation
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(128). Similarly, hyperglycemia-induced AGE accumulation

activates RAGE, leading to elevated ERK phosphorylation and

increased expression of MMP-2 and MMP-9, which drive oral

cancer cell migrate and further deterioration (129). In gastric

cancer, the RAGE/ERK/Sp1/MMP-2 pathway is significantly

activated under hyperglycemic conditions, promoting invasion

and metastasis (130). Furthermore, the binding of AGEs to RAGE

improves transcription of NF-kB and AP-1, resulting in up-

regulation of VEGF and ang2 mRNA levels, promoting

angiogenesis (131), which plays an important role in the

cancer development.

The activation of the AGE/RAGE axis induces a strong pro-

inflammatory response. This leads to increased leukocyte activation

and apoptosis, accelerated desmoplastic responses, and the

recruitment of stromal cel ls into the TME (132). In

hyperglycemic individuals, the chronic elevation of AGEs

continuously stimulates RAGE. This exacerbates oxidative stress

and promotes NF-kB activation. Consequently, there is an increase

in the synthesis and secretion of cytokines, chemokines, and

adhesion molecules (133). This hyperactivation contributes to a

tumor-promoting microenvironment. It leads to elevated levels of

pro-inflammatory cytokines, pro-angiogenic factors, and anti-

apoptotic signals. Specifically, the transcription and translation of

pro-inflammatory cytokines such as TNF-a, cyclooxygenase-2,
inducible nitric oxide synthase, IL-1, and IL-6 are enhanced.

Additionally, pro-angiogenic factors and anti-apoptotic signals,

including B-cell lymphoma-extra-large (Bcl-xL), Bcl-2, and X-

linked inhibitor of apoptosis protein (XIAP), are upregulated (132).

The AGEs/RAGE signaling pathway plays a crucial role in

glioma-associated microglia, TAM, and breast cancer-associated

fibroblasts (CAFs). The TAM and glioma-associated microglia

contribute to tumor development, invasion, and angiogenesis by

secreting VEGF and pro-inflammatory cytokines (134). In MDA-

MB-231 breast cancer cells, the CAFs promote migration and induce

phenotypic alterations linked to invasion by upregulating interleukin-

8 (IL-8) levels and activating the IL-8/C-X-C chemokine receptor

type 1/2 paracrine signaling pathway (135). Therefore, the AGEs/

RAGE signaling pathway can serve as a significant target for cancer

therapy. Currently, inhibition of RAGE signaling has effectively

suppressed the growth, migration, and invasion of cancer cells

(126, 136). In clinical practice, metformin is a commonly used

medicine for the treatment of T2DM. Additionally, it has shown

therapeutic advantages in those with T2DM and concomitant

malignancy. As a result, the combination of metformin and AGE/

RAGE inhibitors may be a useful therapeutic approach to treating

T2DM-related cancer.
5 Hyperlipidemia and
cancer progression

Dyslipidemia, characterized by increased triglycerides (TG),

total cholesterol (TC), and LDL levels, as well as decreased HDL

concentrations, plays a complex role in cancer progression (16).

The interaction between hyperlipidemia and cancer involves several
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mechanisms that are not fully understood. The processes through

which hyperlipidemia promotes cancer development are shown in

Figure 4. LDL and its oxidized form, Ox-LDL, promote cancer cell

proliferation, angiogenesis, invasion, and metastasis through

interactions with receptors such as LDLR, LOX-1, and CD36

(137). Furthermore, HDL, especially when oxidized or glycated in

conditions like T2DM, can also enhance cancer cell migration and

proliferation (138). These processes are driven by aberrant lipid

metabolism and cholesterol accumulation in cancer cells (139). In

summary, hyperlipidemia promotes tumor growth in T2DM

patients through various mechanisms, which we will further

investigate in the following chapters.
5.1 Cellular processes

In normal individuals, lipid levels are tightly regulated,

preventing excessive intracellular cholesterol, which increases the

risk of cancer. However, in hyperlipidemic conditions, abnormal

alterations in the TG, TC, LDL, and HDL levels can disrupt cellular

signaling pathways, encouraging tumor cell proliferation, invasion,

migration, and anti-apoptosis. Interestingly, in prostate cancer,

cancer cells can accumulate intracellular cholesterol levels by

disrupting normal mitochondria, thereby promoting their own

proliferation and migration (140, 141). Additionally, breast,

prostate, and pancreatic malignant tumor cells are encouraged to

proliferate and invade by LDL cholesterol signaling, which activates

the AKT, ERK, and STAT3 pathways (142, 143). The LDLR

superfamily member low-density lipoprotein receptor-related

protein 1 promotes tumor cell motility and invasion by modulating

MMP-2 and MMP-9 production. It also suppresses cell apoptosis by

modulating IR, serine/threonine protein kinase signaling pathways,

and cysteine-aspartic acid protease-3 expression (15).
5.2 Tumor microenvironment,
angiogenesis and immunosuppression

The tumor microenvironment (TME) is a dynamic system of cells,

chemicals, and stromal components that support tumor growth,

invasion, and metastasis. In hyperlipidemic conditions, elevated lipid

levels further exacerbate these processes compared to individuals with

normal lipid levels. Angiogenesis, a critical factor in tumor progression,

is particularly enhanced under hypoxic conditions. HDL contributes to

this by stimulating the PI3K/Akt pathway via the scavenger receptor

class B-I (SR-BI), leading to the accumulation of hypoxia-inducible

factor-1a (HIF-1a) and the activation of angiogenic protein

transcription (144, 145). Additionally, HDL increases the

phosphorylation of the vascular endothelial growth factor receptor 2,

which in turn activates the downstream pathways ERK1/2 and p38

MAPK to promote angiogenesis (146). However, HDL can also

modulate macrophages within the inflammatory TME, potentially

inhibiting pathological angiogenesis (146).

Cholesterol plays a pivotal role in modulating the immune

response within the TME. It activates the ER stress sensor X-box

binding protein 1 (XBP1) in CD8+ T cells, leading to the
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transcription of proteins like programmed cell death protein-1 (PD-

1) and CD244, contributing to T cell exhaustion (147). Cholesterol

efflux in TAMs also enhances their tumor-promoting properties by

increasing IL-4 signaling and reducing IFN-g-induced gene

expression (148).
5.3 The LDL and Ox-LDL signal pathways

LDL is a key plasma lipoprotein that primarily transports

cholesterol throughout the body. Upon oxidation, LDL forms Ox-

LDL (149), which plays a significant role in various pathological

conditions, including cancer progression. In normal individuals,

where blood lipid levels remain in a dynamic balance, LDL and Ox-
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LDL signaling contribute to a low risk of cancer. However, in

individuals with hyperlipidemia, elevated LDL levels significantly

alter cancer progression dynamics, leading to more aggressive

tumor growth and resistance to therapy.

Normally, LDL binds to LDLR on the cell surface, where it is

internalized and processed to release cholesterol for cellular use

(150). This process is tightly regulated by mechanisms involving

sterol regulatory element-binding protein-2 (SREBP-2), SREBP

cleavage-activating protein, and proprotein convertase subtilisin/

kexin 9 (151). However, cancer cells can exploit this pathway by

upregulating LDLR expression, leading to increased cholesterol

uptake, which supports rapid cell proliferation and tumor growth

(152). Although this mechanism is present in normolipidemic

individuals, its impact is amplified in hyperlipidemic conditions.
FIGURE 4

Mechanisms underlying the promotion of cancer progression by hyperlipidemia. (A) LDL/LDLR signaling pathway; (B) Ox-LDL signaling pathways
through its receptors CD36 or LOX-1; and (C) HDL and dysfunctional HDL signaling through its receptor SR-BI pathway. This diagram has been
modified and pieced together using references (137) and (176) with modifications. LDL, low-density lipoprotein; LDLR, low-density lipoprotein
receptor; stemness-related genes includes Sox2, Bmi 1, Oct4, and Nanog; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; TKI, tyrosine
kinase inhibit; mTOR, mammalian target of rapamycin; MAPK, mitogen-activated protein kinase; CD228, melanotransferrin; CDHR3, cadherin-related
family member 3; STAT3, signal transducer and activator of transcription 3; XIAP, X-linked inhibitor of apoptosis protein; Bcl-x, B-cell lymphoma-
extra large; Bcl-2, B-cell lymphoma-2; MMP9, matrix metalloproteinase 9; COX-2, cyclooxygenase-2; Ox-LDL, oxidized LDL; LOX-1, lectin-like
oxidized low-density lipoprotein receptor-1; CD36, cluster of differentiation 36; ROS, reactive oxygen species; NF-kB, nuclear factor-kB; VEGF,
vascular endothelial growth factor; MMP2, matrix metalloproteinase 2; CT-1, carditorphin 1; HIF-a, hypoxia-inducible factor-a; miR-210, microRNA-
210; SPRED2, sprout-related EVH1 domain 2; GSK3b, glycogen synthase kinase 3b; ZO-1, Zonula occludens-1; miR-155, microRNA-210; PPAR g,
Peroxisome proliferator-activated receptor g; POX, proline oxidase; HDL, high-density lipoprotein; SR-BI, scavenger receptor class B type I; TLR2,
toll-like Receptor 2; TG, triglycerides; ApoA-I, Apolipoprotein A-I; SAA, serum amyloid A; CE, Cholesteryl ester; ApoM, Apolipoprotein M; PON1,
Paraoxonase-1; S1P, Sphingosine 1-phosphate; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal-regulated kinase.
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In such cases, excess LDL supplies a larger amount of cholesterol

and lipids for energy, further fueling cancer cell metabolism.

Dysregulated lipid metabolism can result in lipotoxicity and

elevated oxidative stress, which enhances the susceptibility of LDL

to oxidation, forming Ox-LDL (137, 153). Ox-LDL binds to

receptors such as LOX-1 and CD36, triggering cascades of

oncogenic signals that are more pronounced in hyperlipidemic

conditions. This leads to mutations, promotion the epithelium-

mesenchyme transition, initiation protective autophagy, and

production of growth factors, cytokines, and pro-inflammatory

markers. The resulting increase in ROS and pro-inflammatory

markers significantly contributes to cancer progression and

resistance to chemotherapy (137).

Research into the connection between LDL and Ox-LDL and

their effects on cancer is still in its early stages. In MDA-MB-231

breast cancer cells, an increase in LDL levels (greater than 1.5 times

that of the control group) led to upregulation of 147 mapped genes

(including pERK, pAKT, and pJNK) and downregulation of 95

mapped genes (including CD226, Claudin7, Ocludin, and

integrinb8), while reducing cell adhesion and promoting cell

migration and proliferation (142, 154–157). LDL activates STAT3

and JAK1, JAK2, and Src in prostate and pancreatic tumor cells,

promoting cancer cell proliferation, migration, invasion, and the

up-regulation of numerous oncogene products (143). Furthermore,

increased LDL cholesterol in kidney carcinoma activates the PI3K/

AKT signaling pathway, which inhibits the anticancer effects of

tyrosine kinase inhibitors (158). It’s important to note that cancer

cells may be able to evade immune surveillance at high LDL levels.

When V9gd2 T cells are activated and express LDLR, uptake of low-

density lipoprotein cholesterol leads to decreased mitochondrial

mass and reduced ATP production, resulting in inhibition of the

antitumor function of V9gd2 T cells (159).

Ox-LDL has been demonstrated to induce mutagenesis and

enhance cancer cell proliferation, migration, invasion, and

treatment resistance, in addition to the impact of LDL on cancer

cells (137, 160). In an experimental investigation on primary rat

hepatocytes, Ox-LDL, the principal component of 4-

hydroxynonenal and lipotoxic, encouraged micronucleus

formation, chromosomal aberration, and increased sister

chromatid exchange frequency at concentrations ranging from

0.1-10 mM, resulting in enhanced DNA damage and induced

mutation (161). Similarly, up-regulation of microRNA-210 and

HIF-1 by Ox-LDL increases the risk of vascular disease and

cancer (162, 163). Furthermore, Ox-LDL receptors such as LOX-1

and CD36, along with associated downstream signaling cascades,

play an important role in cancer progression. Recent investigations

have demonstrated that the Ox-LDL/LOX-1 axis facilitates the

migration of cancer cells by attracting neutrophils to tumor

endothelial cells (164). Additionally, the interaction of Ox-LDL

with LOX-1 activates NF-kB target genes like VEGF, MMP-2, and

MMP-9 to encourage the growth, invasion, and angiogenesis of

cancer cells (137, 160). In prostate cancer cells, Ox-LOL-induced

overexpression of LOX-1 resulted in epithelial-mesenchymal

transformation and promoted cancer cell invasion and migration

by reducing the expression of epithelial markers (such as cadherin

and platelet globin) and increasing the expression of mesenchymal
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markers (like vimentin, N-cadherin, snails, slugs, MMP-2, and

MMP-9) (165).

CD36 is another Ox-LDL receptor expressed in various cell types,

including monocyte macrophages, microvascular endothelial cells,

dendritic cells, and tumor cells. CD36 primarily regulates cellular

lipid metabolism but also mediates lipid uptake, immune

recognition, inflammation, molecular adhesion, and apoptosis (166,

167). CD36-mediated Ox-LDL uptake causes CD8+ T cell lipid

peroxidation, which inhibits IFN-g and TNF production via p38

kinase activation, favoring cancer cell proliferation (166). Ox-LDL

increase the association of CD36 with JAK2, resulting in increased

bladder cancer dryness by promoting JAK2 phosphorylation and

activating the STAT3 signaling cascade (168). Neurite outgrowth

inhibitor-B (Nogo-B) expression is directly upregulated by CD36-

mediated Ox-LDL uptake. Nogo-B interacts with autophagy-related

5 (ATG5) to promote autophagy. These process leads to

lysophosphatidic acid-enhanced yes-associated protein carcinogenic

activity (169). Another significant mechanism through which Ox-

LDL promotes cancer progression is autophagy. Research indicates

that Ox-LDL can activate the critical metabolic enzyme OPLINe

oxidase, increasing autophagy in cancer cells via pathways involving

Ox-LDL and peroxisome proliferator-activated receptor (137).

In conclusion, LDL and Ox-LDL signaling pathways contribute

to cancer progression in both normolipidemic and hyperlipidemic

individuals. However, the effects are significantly more aggressive in

those with hyperlipidemia. Elevated levels of LDL and Ox-LDL in

hyperlipidemic individuals lead to increased cancer cell

proliferation, invasion, and resistance to therapy. This makes

hyperlipidemia a critical factor in cancer development. Therefore,

lowering LDL and Ox-LDL levels could be a promising therapeutic

strategy for preventing and managing cancer, particularly in

individuals with T2DM.
5.4 The HDL signal pathways

HDL, often referred to as “good” cholesterol, plays a critical role in

maintaining lipid homeostasis and has been shown to exert anti-

inflammatory, anti-oxidative, and anti-tumor effects in the TME (170–

172). In individuals with normal lipid levels, HDL functions optimally.

It facilitates reverse cholesterol transport (173), reducing oxidative

stress, and mitigating inflammation. Together, these actions

contribute to a reduced risk of cancer progression (171, 172).

However, in T2DM patients, HDL undergoes structural and

compositional changes, resulting in dysfunctional lipoproteins (174,

175). Elevated cholesteryl ester transfer protein (CETP) activity and

reduced lecithin cholesterol acyltransferase (LCAT) activity lead to

altered inHDL particle size and composition, resulting in dysfunctional

HDL. This dysfunction is marked by a decrease in key proteins such as

apolipoprotein A-I and paraoxonase 1, along with an increase in

triglycerides and serum amyloid A (SAA) (176, 177). These

alterations negatively impact HDL’s ability to counteract oxidative

stress and inflammation, crucial mechanisms that normally accelerate

cancer development.

The accumulation of SAA in HDL particles enhances its

binding to Toll-like receptor 2 (TLR2), triggering the NF-kB
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signaling pathway, which promotes production of pro-

inflammatory cytokines. This pro-inflammatory state creates a

conducive environment for cancer initiation and progression,

contrasting with the protective anti-inflammatory role of HDL in

individuals with normal lipid profiles (178, 179). Additionally,

lower levels of apolipoprotein M in HDL lead to elevated free

sphingosine-1-phosphate (S1P) levels, which further exacerbate

tumor growth, migration, and angiogenesis through the AKT

phosphorylation pathway (176). Moreover, the glycation and

oxidation of HDL, particularly prevalent in T2DM patients, have

been implicated in the progression of cancers such as breast cancer

(180). Oxidized and glycated HDL affects MDA-MB-231 breast

cancer cells through the AKT/ERK signaling pathway, increasing

integrin expression and enhancing cancer cell growth, migration,

and invasion (181). Additionally, through enhancing lipid

internalization and cholesterol intake, SR-BI overexpression in

cancer cells encourages cell growth and proliferation (182, 183).

In conclusion, HDL generally protects against cancer in

individuals with normal lipid levels. However, in hyperlipidemic

conditions, its functionality is compromised, leading to a higher risk

of cancer development. These differences in HDL signaling

pathways highlight the importance of managing lipid levels to

reduce cancer risks, especially in T2DM patients.
6 Other factors and
cancer progression

The connection between T2DM and cancer is significantly

influenced by the gut microbiome, a rapidly emerging area of

research. The gut microbiota, consisting 500–1000 species and

1014 bacteria—ten times more abundant than human cells—acts

as a complex endocrine organ. It plays vital roles in digestion,

nutrient absorption, and reinforcement of the intestinal immune

system. Additionally, it maintains the intestinal mucosal barrier,

preventing harmful substance infiltration, synthesizes beneficial

compounds like vitamins, regulates host metabolism, and reduces

cancer risk while enhancing anti-tumor responses (184–190).

Studies have demonstrated a strong connection between T2DM

and the gut microbiota. Research by Larsen in 2010 revealed significant

changes in gut microbial composition between individuals with and

without T2DM (191). Ma’s subsequent summary highlighted a

reduction in beneficial bacteria and an increase in harmful and

potentially pathogenic bacteria in T2DM patients (184). Dysbiosis, or

an imbalance in the gut microbiota, has been associated with various

illnesses, including diabetes, metabolic syndrome, non-alcoholic fatty

liver disease, and even mental disorders such as depression and

multiple sclerosis (192). Moreover, abnormal gut microbiota changes

have been linked to a higher risk of several cancers, including colorectal

cancer (193), hepatocellular carcinoma (194), non-small cell lung

cancer (195), and prostate cancer (196).

The gut microbiota plays a crucial role in human health and

disease development. It influences immune cell activity and cancer

risk through its remarkable metabolic abilities (197). Through the

metabolic byproducts it produces, the gut microbiota may be able to
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indirectly cause the development of cancer in distant organs such as

the pancreas, liver, breast, lung, prostate, and stomach (198). The

primary metabolic products of the gut microbiota are short-chain

fatty acids (SCFAs). Historically, SCFAs have been primarily

studied for their anti-inflammatory properties. Recent research,

however, has uncovered a unique carcinogenic pathway called the

“gut-prostate axis”, where SCFAs produced by specific bacteria (e.g.,

Rikenellaceae, Alistipes, and Lachnospira) promote PCa growth

(199). Additionally, the gut microbiota indirectly impacts PCa

progression through other metabolic products such as

testosterone, estrogen, folate, and phenylacetylglutamine (196).

The gut microbiota also influences tumor immune responses

through various mechanisms, including stimulating regulatory T cell

proliferation, inducing IgA expression, regulating antimicrobial peptides

and systemic inflammation, and affecting bacterial translocation (196).

The intestinal mucosal barrier, composed of tightly bound epithelial

cells, usually separates the gut microbiota from immune cells. However,

specific changes in gut microbial composition can stimulate themucosal

immune system, leading to chronic inflammation andmucosal damage.

This imbalance in intestinal mucosal immunity may cause cellular and

DNA damage, genetic mutations, activation of tumor-associated

signaling pathways, and ultimately contribute to tumor development

and progression (197, 200).

The relationship between gut microbiota, T2DM, and cancer is

complex and remains an active area of research. While current data

suggest a strong connection, there is insufficient evidence to

definitively conclude that gut microbiota dysbiosis directly causes

cancer in T2DM patients or to fully elucidate the specific

mechanisms involved. Therefore, further research is necessary to

better understand these interactions and underlying mechanisms.
7 Conclusion

In normal individuals, cancer development is typically driven by

genetic factors, environmental exposures (such as smoking or

radiation), and chronic inflammation. These individuals usually

maintain balanced metabolic states, including normal blood sugar,

insulin, and lipid levels. However, in T2DM patients, cancer

progression is accelerated due to hyperglycemia, hyperinsulinemia,

and hyperlipidemia. Hyperglycemia increases oxidative stress and

chronic inflammation, leading to DNA damage and promoting the

Warburg effect, which fuels cancer cell metabolism. Hyperinsulinemia

activates critical signaling pathways, such as PI3K/AKT, mTOR, and

Ras/MAPK, which drive cell proliferation, survival, and resistance to

apoptosis. Additionally, hyperinsulinemia lowers SHBG levels,

increasing the availability of sex hormones like estrogen, thereby

heightening the risk of hormone-dependent cancers. Hyperlipidemia

contributes by altering lipid metabolism, influencing cellular signaling

within the tumor microenvironment, and promoting angiogenesis and

immune suppression, all of which support tumor growth

and metastasis.

These metabolic abnormalities do not act in isolation but are

interrelated, creating a pro-tumorigenic environment through

synergistic interactions. Hyperinsulinemia and hyperglycemia,

often exacerbated by T2DM, induce insulin resistance and elevate
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IGF-1 levels, further activating the PI3K/AKT pathway and

supporting tumor cell proliferation. Hyperglycemia and

hyperlipidemia provide essential metabolic substrates that fuel

cancer cell glycolysis and lipid synthesis, accelerating tumor

growth. Moreover, the chronic inflammation and oxidative stress

associated with these conditions activate pro-inflammatory

pathways like NF-kB and transcription factors such as HIF-1a,
enhancing tumor angiogenesis, metastasis, and overall progression.

In summary, the metabolic abnormalities in T2DM significantly

accelerate cancer progression. Understanding the complex interplay

between these metabolic states and cancer is crucial for developing

targeted interventions. Future research should focus on elucidating

the precise molecular mechanisms underlying these interactions

and exploring the potential of insulin sensitizers, metabolic

modulators, and anti-inflammatory agents as therapeutic

strategies. Personalized approaches that integrate metabolic

management with conventional cancer therapies may offer

improved treatment efficacy and outcomes for patients with

T2DM-related malignancies. Continued investigation into these

areas could pave the way for novel therapies that address both

metabolic disorders and cancer progression.
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