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Prostate cancer is the second most commonly diagnosed cancer in men. The

mammalian insulin-like growth factor (IGF) family is made up of three ligands

(IGF-I, IGF-II, and insulin), three receptors (IGF-I receptor (IGF-1R), insulin

receptor (IR), and IGF-II receptor (IGF-2R)), and six IGF-binding proteins

(IGFBPs). IGF-I and IGF-II were identified as potent mitogens and were

previously associated with an increased risk of cancer development including

prostate cancer. Several reports showed controversy about the expression of the

IGF family and their connection to prostate cancer risk due to the high degree of

heterogeneity among prostate tumors, sampling bias, and evaluation techniques.

Despite that, it is clear that several IGF family members play a role in prostate

cancer development, metastasis, and androgen-independent progression. In this

review, we aim to expand our understanding of prostate tumorigenesis and

regulation through the IGF system. Further understanding of the role of IGF

signaling in PCa shows promise and needs to be considered in the context of a

comprehensive treatment strategy.
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1 Introduction

Prostate cancer (PCa) is the fifth leading cause of cancer-related mortality in men

worldwide, as well as being the second most commonly diagnosed solid-organ cancer, after

lung cancer, in men (1, 2). PCa happens at a rate of 11.3 per 100,000 in developing

countries and 37.5 per 100,000 in industrialized countries (3). Similarly, mortality rates in
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developed and developing nations are 8.1 and 5.9 per 100,000,

respectively. According to current estimates, approximately 10

million males are presently diagnosed with PCa, with

approximately 400,000 deaths per year, and this figure is expected

to rise to over 800,000 by 2040 (3, 4). Although PCa is generally

diagnosed at an early stage, the risk-benefit ratio of the treatment

remains uncertain. It still represents a global challenge because of

the significant morbidity from the current form of therapy and the

long disease history and uncertainty in individual patients’ clinical

progress (5–7). Approximately 5% of men diagnosed with PCa are

diagnosed with distant metastases (often in multiple sites), and 15%

are diagnosed with locoregional metastases (8). Such cases have a

poor overall survival rate of only 30% for five years (8).
2 The insulin-like growth factor family

The mammalian insulin-like growth factor (IGF) family is made

up of three ligands (IGF-I, IGF-II, and insulin) and three receptors

(IGF-I receptor (IGF-1R), insulin receptor (IR), and IGF-II receptor

(IGF-2R)) (9). IGF-1R and IR are receptor tyrosine kinases (RTKs) that

are structurally similar hetero-tetramers. IR has two alternatively

spliced isoforms, IRA and IRB, whose functions are currently

unknown. IGF-II, which binds to IRA and IGF-1R and is a more

potent mitogen than IGF-I, has recently been demonstrated to control

IR isoforms rather than insulin-binding affinities (10). IRB governs

metabolic processes in adults, whereas IRA controls prenatal growth

and development and mediates the mitogenic effects of insulin. A

family of six IGF-binding proteins (IGFBPs) tightly controls the

amounts of IGF-I and IGF-II as well as their bioavailability in the

circulation and cells (11). IGFBPs are distinct from ligands and

receptors and have a greater affinity (pM) for IGFs than their

corresponding receptors (nM) (10). IGF-I and IGF-II are produced

by a variety of cells, including the liver and muscles, among others.

They are secreted constitutively as opposed to being retained in the cells

of origin, where they serve as paracrine/autocrine factors (12).
2.1 IGFs

In mammalian cells, the production of IGF-I is mainly induced

by growth hormones and transcriptional factors. Then it was shown

that IGF-II (67 amino acids) has comparable growth-promoting

properties but growth hormone does not regulate its expression

(13–15). Additionally, IGF-I and IGF-II are quite similar to insulin

in terms of amino acid sequence (16). The three disulfide

connections that are shared by these three peptides, allow them to

preserve the proper peptide shape. IGFs differ structurally from

insulin as they are composed of single chains with a connecting

domain (C domain) between the N-terminal B chain and the C-

terminal A chain. They result from the elimination of the N- and C-

terminal signal peptides from pre-pro-IGF peptides during post-

translational processing. The chaperone GRP94 aids in the folding

and maturation of the IGF peptides (17, 18).

Studies using knock-out and transgenic mice have revealed

additional details about the biological actions of mammalian IGFs.
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Igf1-null mice had a high postnatal mortality rate and were 30%

smaller and lighter than wild-type mice (19). The postnatal growth

retardation was also present in those who survived, and it was

particularly noticeable during both growth stages (pubertal and

post-pubertal). Their bones grew more slowly, and their organs

were proportionately smaller. Igf-1r knockout also caused a serious

growth deficit and was embryonically fatal in mice (19).

Despite the findings that unraveled the potential role of IGF-I

and IGF-II in development, it is still reported that the expression of

both IGF-I and IGF-II is tissue-dependent and time-dependent

(20). On the other hand, the role of IGF-II in physiology and disease

has been the subject of far fewer investigations than that of IGF-I.

However, like IGF-I, most tissues in adults produce IGF-II, with the

liver producing the majority of the circulating levels. Notably, IGF-

II levels in adults are roughly three times higher than IGF-I. Despite

this, IGF-II is thought to play crucial roles in fetal growth and

development, and it is abundant in the fetal skeletal muscle (12, 21).

The stimulation of the IRA to promote stem cell self-renewal is

another unique action of IGF-II. Moreover, the expansion of neural

progenitor cells and neural stem cell maintenance is supported by

IGF-II/IRA signaling (22).
2.2 IGFBPs

It was evident that the preponderance of circulatory IGFs was

much larger than the concentration of peptides in the bloodstream

because IGFs were not bound to binding proteins (23). In humans

and other mammals, six highly similar high-affinity IGF-binding

proteins (IGFBP-1 to IGFBP-6) were identified (24). IGFBPs are

pluripotent and used in a variety of metabolic processes. All IGFBPs

have conserved three subdomains, including high-affinity IGF-

binding terminal domains. Contrarily, one other unstructured

domain (known as the central linker domain), is thought to be

responsible for the various functions that are unique for each IGFBP

(25). Furthermore, it has been reported that the specific function of

IGFBP is affected by many post-translational modifications (such as

proteolytic cleavage, glycosylation, and phosphorylation). Although

this division may not be rigorous, it is possible to roughly divide the

functions of IGFBPs into those that rely on their ability to bind and

control the activity of IGFs and those that appear to be independent

of direct IGF binding (26, 27).

Due to the higher affinity of IGFBPs for IGF-I and IGF-II, the

availability of free IGFs decreases and this inhibits them from

binding and activation of their receptors. IGFBPs have two key

functions that are both critical to the metabolism of IGFs (28). IGFs

are produced and swiftly secreted via the constitutive secretory

route, as tissues do not contain any intracellular storage of IGFs

despite their widespread distribution throughout the body. As soon

as they are secreted, IGFs bind to high-affinity IGFBPs, creating

binary complexes of about 30–40 kDa. IGFs bound to two IGFBPs,

IGFBP-3 and IGFBP-5, can join with the acid-labile subunit (ALS),

a third glycoprotein, to form a ternary complex that is about 150

kDa in size (29). Without the ability to store them in tissues, the

body can build up enormous IGF reservoirs due to IGFBPs. In

humans, the total amount of IGFs in circulation is about 100 nM,
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with 80–90% of that amount being found in the ternary complex

with IGFBP-3 (30). The second important function of IGFBPs is the

creation of new pathways for giving IGFs specificity. IGFs are made

in most tissues and can regulate the bulk of cell processes. IGFBPs

are synthesized in numerous tissues, at different times, in various

amounts, and in several combinations to add some specificity to the

IGF activity (12).

Furthermore, at the cellular level, IGFBPs can boost IGF activity

in several different ways. This can happen by altering the kinetics of

IGF ligand/receptor interactions and preventing receptor

downregulation, or by changing the interactions between IGFBPs

and ECM or cell surfaces thus localizing and increasing the IGF

concentrations near to cell receptors (31).
2.3 IGF receptors

Both IGF-1R and IR are synthesized as polypeptide precursors,

which are then modified post-translationally, where a and b
subunits are formed upon the cleavage of the precursor molecule.

The heterotetramer receptor is made up of two a and two b
subunits that are joined together by disulfide bridges. 627 amino

acids make up the IGF-1R -subunit, 196 of which are found in the

extracellular domain. The intracellular and extracellular domains

are joined by a brief transmembrane domain (TM). The

juxtamembrane domain (JM), enzymatic tyrosine kinase (TK)

domain, and C-terminal domain are the three subdomains of the

b-subunit’s intracellular domain. Positions 976 to 981 are occupied

by the TK ATP-binding motif (GXGXXG), while position 1003

contains a catalytic lysine that is essential for Mg-ATP binding. The

activation loop of the TK domain contains a trio of tyrosines at

positions 1131, 1135, and 1136 that are crucial for receptor

autophosphorylation. The JM region contains an NPEY motif

that, after being phosphorylated, serves as a docking site for Shc

and the insulin receptor substrates (IRS), whose recruitment

signifies the start of the downstream signaling process. The

internalization of receptors, which controls signaling, depends on

the NPEY motif (32, 33).

Generally, the IGF-1R, which is expressed on most cells, plays

specialized roles in well-differentiated cells such as neurons as well

as being involved in cellular proliferation and anti-apoptosis during

growth and development. The IGF-pluripotent IR’s roles, however,

are still being defined; for instance, a novel function for the IGF-IR

in viral entry into cells has just been identified (34).

Several tissue-growth-related transcription factors, including

androgen and estrogen receptors, high-mobility group A1

(HMBA1), Krüppel-like factor 6 (KLF6), eukaryotic translation

initiation factor 2 (E2F1), and c-Jun, upregulate IGF-IR

expression (12, 35). In contrast, several tumor-suppressor genes,

including p53, WT1, and BRCA1 downregulate it (36–38).
3 Post-receptor signaling

The binding of IGF-I, IGF-II, or insulin ligand to the IGF-1R

initiates a series of events. The binding of IGFs to their receptors
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activates both MAPK and PI3K-AKT pathways, which results in

downstream cellular effects (such as cellular proliferation, anti-

apoptosis, and differentiation actions) through other downstream

molecules (39). Furthermore, IGF-1R signaling could be mediated

through several proteins such as JNK, Jak1, Jak2, focal adhesion

kinase, and TIMP2 (40). Moreover, crosstalk between IGF-1R and

G-protein coupled receptors (GPCRs) has been reported which may

indicate a potential role of IGF-1R in cancer.

IRS 1-4 and other signaling proteins, such as Shc, bind to the

IGF-1R at the extracellular subunit as a result of the binding of IGF-

I and IGF-II (41). This autophosphorylation of the subunit residues

prepares it to serve as a docking site for these proteins. PI3(p110)

kinase’s subunit catalyzes the recruitment of protein kinase B (Akt)

to the cell membrane (42), causing its phosphorylation and

activation, then PI3 regulatory kinase’s component, p85, is

recruited by IRS-1. Bcl2 antagonist of cell death (Bad), glycogen

synthase kinase 3 (GSK3), forkhead transcription factors (FOXO1),

and Akt substrate of 160 kDa are only a few of the many substrates

for activated Akt (AS160). These elements have a major role in

controlling cell metabolism and apoptosis (42, 43). By

phosphorylating the protein Tuberous Sclerosis Protein (TSC2),

Akt controls protein synthesis by loosening its inhibition on Rheb

and activating the mammalian target of rapamycin (mTORC1). A

set of mitogen-activated protein kinase (MAPKKK, MAPKK, and

MAPK) pathways can be initiated by the phosphorylation of IRS-1

and Shc, which can also result in the recruitment of Grb2, SOS, and

Ras. These pathways can then be activated, which promotes cell

growth, migration, and survival (44, 45).

Recent research has shown that the IGF-1R (and IR) can

migrate to the nucleus in both healthy and cancerous cells

through mechanisms that are still being fully elucidated, although

sumoylation is thought to be one method. The IGF-1R can bind to

DNA and control the transcription of its own receptor gene as well

as genes involved in apoptosis and the cell cycle. A more thorough

analysis of the whole range of IGF-1R effects within the cell was

completed (46).

The internalization of the IGF-1R is a complicated process that

includes subcellular transport, intracellular signaling, and recycling

of the receptor to the surface in addition to partial destruction of the

receptor. The ligand binding process starts with the IGF-increased

IR’s internalization (endocytosis). Through substrates that

specifically bind to tyrosine residues 1250 and 1251 in the C-

terminus, internalization, and degradation play a part.

Internalization separates the ligand from the receptor via the

acidic endosomal route, where caveolin- or clathrin-dependent

mechanisms may be used for internalization (47). The lysosomal

or proteasomal routes are both options for the receptor’s

degradation. The process of receptor ubiquitination, which is

brought on by ligand interaction, results in the receptor’s

destruction by the proteasome. The receptor concentration on the

surface may therefore be downregulated as a result of ligand binding

and internalization, even though the levels may be adjusted by

increased IGF-1R gene expression. A collection of proteins called

adhesion-associated proteins may regulate subcellular transport.

These include the discoidin domain receptor 1 (DDR1), non-

receptor tyrosine adhesion kinase FES-related (FER), and non-
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integrin collagen RTK. The IGF-1R can translocate to the nucleus or

the Golgi apparatus’ internal membrane compartments for

destruction (28, 47). Intracellular signaling, which appears to be

important in the migratory behavior of cancer cells, can be started

by the IGF-1R in the Golgi. IGF-I induces the translocation of IGF-

1R to the nucleus, where it may bind with DNA to increase

transcription, with consequences that seem to support an

aggressive cancer phenotype (28, 47).
4 The role of the IGF family
in carcinogenesis

The IGF family plays a critical role in various cellular processes

such as proliferation, differentiation, and apoptosis (Figure 1). In

particular, IGFBPs protect IGFs from degradation and regulate

their interactions with the receptors. High circulating levels of the

potent mitogen, IGF-I, were previously associated with an increased

risk for breast, prostate, lung and colorectal cancers (48–51). Both

mitogens, IGF-I and IGF-II, were identified to be overexpressed in

various cancer types such as sarcoma, leukemia, breast, lung, colon,

stomach, esophagus, liver, pancreas, kidney, thyroid, brain, ovary,

cervical, endometrial and prostate cancers (52–57). High IGF-IR

expression was positively associated with worse disease outcomes

for several cancer types, including prostate and gastric cancer, as

well as renal cell carcinoma (58–60).

IGF-I, the crucial peptide hormone involved in controlling

human growth and development, functions by promoting cell

growth and preventing apoptosis (54, 61, 62). Such actions have a

significant impact on the tumor development (63). Other members

of the IGF family directly affect cancer-related cellular activities and

interact with a wide range of molecules that are crucial for cancer
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initiation and progression. IGF-I has been associated with the

activation of the MAPK and PI3K signaling pathways (64).

Additionally, diet and exercise have an impact on the expression

and production of IGF-I (65). IGF-I overexpression was previously

identified to induce tumor development (66, 67), while high

expression of IGF-1R and IGF-II triggered cancer metastasis (68).

Additionally, IGF-1R was reported to be essential for cell

transformation triggered by oncogenes and tumor-virus proteins

(53). Several approaches were implemented to inhibit the mitogenic

effect of IGF signaling including eliminating IGF-1R from the cell

membrane, blocking the interaction of IGFs with IGF-1R, or

interrupting the signal transduction pathway (53, 69–71). On the

other hand, IGF-2R is known to antagonize the effect of IGF-II,

where tumors that had low expression of IGF-2R or possessed IGF-

2Rmutations and could not hence degrade IGF-II, had much higher

growth rates (72, 73). Thus, restoring IGF-2R expression induced

apoptosis and reduced the growth of cancer cells (74).

IGFBPs regulate the interaction between IGF-I and IGF-1R and

affect the mitogenic activity of IGF-I (75–84). One of the most studied

IGFBPs is IGFBP-3 which prolongs the half-life of the IGFs and

regulates their availability to the cell surface receptors (85, 86).

Besides, IGFBP-3 has anti-proliferative actions affecting cancer

growth (87, 88). It was previously reported that serum levels of

IGFBP-3 were inversely associated with cancer risk in those patients.

Also, IGFBP-3 was found to inhibit breast and prostate cancer growth

and induce apoptosis (89–91). Moreover, vitamin D and its synthetic

analogs could increase the expression of IGFBPs and reduce IGF-1R

and IGF-II in breast and prostate cancer (92–95). Another factor

affecting the expression of IGF family members is the expression of

tumor suppressor genes. For example, wild-type p53 protein induces

IGFBP-3 expression, represses the transcription of IGF-II, and

suppresses IGF-1R expression (96–101).
FIGURE 1

Structure and role of insulin growth factor (IGF) family, including binding proteins, ligands, and receptors, in multiple processes involved
in carcinogenesis.
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5 The impact and expression of the
IGF family in neoplastic prostate cells
and tissues

During the transition from benign to malignant state in prostate

cancer, several IGF family members change. For instance, IGF-I,

IGFBP-2 and IGFBP-5 levels rise, while IGF-IR and IGFBP-3 levels

lessen (82, 102–104). The controversial reports about the expression

of the IGF family and its connection to prostate cancer risk and

development may be the result of the high degree of heterogeneity

among prostate tumors, sampling bias, evaluation techniques, or

the experimental design (105).

Some proteases produced in the pros tate cancer

microenvironment were previously identified to enhance IGF-I/

IGF-1R signaling. These include prostate-specific antigen (PSA),

human kallikrein 2, trypsin, and cathepsin D, which were identified

to degrade IGFBPs, thus releasing free mitogenic IGF-I (106, 107).

High IGF-I expression and low IGFBP-3 in prostate cancer were

identified as contributors to cancer initiation and progression by

affecting cellular transformation, apoptosis, and metastasis (108).

IGF-I and IGFBP-3 expression in prostate cancer patients was

strongly associated with more advanced or aggressive disease,

indicating a critical role in cancer progression (49). Further

studies highlighted the potential of IGF-I as a strong predictor of

advanced rather than early-stage prostate cancer (109). On the

contrary, a study by Ma et al. reported no significant associations

between free IGF-I and other IGF-I biomarkers with lethal and non-

lethal prostate cancer (110). However, blood levels of IGFBP-3

showed contradictory results in prostate cancer (111). Serum levels

of IGF-I, IGF-II, IGFBP-2, IGFBP-4, and IGFBP-5 were found to be

higher in prostate cancer patients (82, 103, 112–116). Moreover,

IGFBP-2 expression was found to be higher in the prostate cancer

tissue compared to the normal tissue counterpart (102). Neither

IGF-II nor IGFBP-2 concentrations were associated with prostate

cancer risk (117). On the other hand, low levels of IGFBP-3 were

reported in the serum and prostate tumor tissue of cancer patients

(102). Moreover, IGF-I was found to be significantly elevated while

IGFBP-3 was reported to be reduced in prostate cancer tissues

(118). Also, such an expression was found to be linked to tumor size

and hyperplasia (118, 119). IGF-I and IGFBP-3 plasma levels were

suggested to be indicators of prostate cancer risk (112). Moreover,

the lower IGFBP-3 levels could lead to enhanced IGF-I

bioavailability (85). In addition, the plasma levels of IGFBP-3

were considerably lower in African-American men compared to

white men (120, 121). This could support the findings that African-

American men have a higher incidence of prostate cancer than

white men (122). Additionally, high IGF-I levels in the blood/serum

of healthy men were associated with a high risk of developing

prostate cancer (123, 124). This suggests that prolonged exposure to

high concentrations of IGF-I could trigger carcinogenesis of

prostate epithelial cells (125). Therefore, targeting IGF-I could be

a potential therapeutic approach in prostate cancer.

When compared to the benign prostate epithelium, primary

prostate cancer had higher levels of IGF-1R expression, which is

further escalated in metastasis (126). This was further supported by
Frontiers in Endocrinology 05
studies using human prostate xenografts where higher IGF-1R

expression was found in metastatic and androgen-independent

tumors (127, 128). Also, transgenic mice with a prostate-specific

deletion of IGF-1R and the tumor suppressor gene p53 had more

aggressive prostate cancer than their wild-type counterparts (129).

In vitro, studies indicated that IGF-I stimulated the proliferation

of various prostate cancer cell lines (22Rv1 and DU145) by the

activation of the AKT/ERK/MAPK pathway (130). Also, IGF-I

regulated the invasion potential of DU145 prostate cancer cells by

controlling the activity of MMP-2 and MMP-9 as well as secreted

TIMP-2 levels, that are transduced via the PI3K and MAPK

pathways (131). Further, IGF-I was described to regulate the

expression of miR-143, leading to an increase in IGFR expression

in PC-3 and DU145 prostate cancer cell lines. Such an effect was

found to lead to resistance to docetaxel treatment (132).

Additionally, it has been demonstrated that IGF-I activated

androgen receptor signaling in prostate cancer cells via the IGF-

1R-forkhead box protein O1 (FOXO1) signaling axis, which is also

implicated in castration-resistant prostate cancer (133–135). In

vivo, PC-3 tumors proliferate at a considerably slower rate in

IGF-I-deficient hosts than in IGF-I-expressing hosts (136). Mice

injected with the androgen-sensitive and PSA-producing LNCaP

cell line were found to develop tumors and their serum PSA levels

were correlated with tumor volume (137). Also, mice fed a low-fat

diet with xenografts of LAPC-4 showed a decrease in tumor size

along with a reduction in the IGF-I expression (138). Other in vivo

studies reported that the blocking of IGF-1R in combination with

castration inhibited prostate cancer growth (139, 140). However,

the most thoroughly studied IGF-1R inhibitor, limsitinib, was

explored in a phase II study, where it did not significantly

alleviate prostate-specific antigen levels after 12 weeks of

treatment or increase the overall survival in men with metastatic

castrate-resistant prostate cancer (141).

IGFBP-3 is the most prevalent form of the IGFBPs, which has

been linked with prostatic growth. The majority of serum and

prostatic IGF-I binds to IGFBP-3, thus regulating its concentrations

(142). IGFBP-3 was identified to have anti-tumor effects by

regulating multiple processes such as adhesion, motility,

proliferation, and invasion of prostate cancer cells (143).

Additionally, in vitro studies using PC3 or DU145 cell lines

showed that IGF-I regulates cell adhesion and motility that is

needed for the formation of a pre-metastatic niche (144). This

was reported to be mediated through integrin expression especially

a3, a5, and b1 expression pattern and distribution (145).

The second most prevalent IGFBP is IGFBP-2, which has a

growth inhibitory effect on healthy prostate epithelial cells but a

strong stimulatory effect on prostate cancer cells via the activation

of MAPK and PI3K pathways (146). Also, high IGFBP-2 levels in

prostate cancer patients not receiving neoadjuvant hormonal

therapy had worse survival compared to patients with low

IGFBP-2 levels, thus indicating an androgen effect on the IGFBP-

2 action (147).

Proteases targeting IGFBPs are known to degrade IGFBPs into

small fragments, thus reducing the affinity of IGFBPs to IGFs.

Prostate-specific antigen (PSA) is known to be an IGFBP protease

while g-nerve growth factor (NGF) is also known to degrade
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IGFBPs 3, 4, 5, and 6, thereby boosting IGF action (11).

Furthermore, other proteases such as human kallikrein 2 (hK2),

trypsin, MMPs, and cathepsin D, present in the prostate tumor

microenvironment were identified to affect IGFBP-3 and release

free IGF-I (107). Protease-resistant IGFBPs could be a potential

therapeutic agent in cancer therapy by preventing the mitogenic

activity of IGF. Also, it was interesting to find that inhibiting the

signaling pathway of epidermal growth factor (EGF), had a

suppression effect on IGF-I in prostate cancer cells (148). The

protease PAPP-A is responsible for the cleavage of IGFBPs 2, 4, and

5 (149), which was previously linked to cancer development in

various types including prostate cancer (150–155). A possible

explanation for the role of PAPP-A is through increasing the

levels of IGFs and their downstream signaling pathway (156).

Studies have reported that PAPP-A levels were elevated in

prostate cancer patients, especially those with metastasis (157).

On the other hand, several studies reported that the protease-

resistant IGFBP-4 led to an inhibition of cell growth and

angiogenesis (155, 158). Other in vitro and in vivo studies

indicated that the mutant IGFBP-2 was able to inhibit tumor

growth possibly by inhibition of angiogenesis (159).

A subgroup of IGFBPs is called IGFBP-related proteins

(IGFBPs-rP) also termed the CNN family (124). These IGFBP-rPs

could be critical for the regulation of stromal and epithelial cell

growth in the prostate. An interesting protein is insulin-like growth

factor binding protein-related protein 1 (IGFBP-rP1)/IGFBP-7. It

was found to possess tumor suppressor effects through inhibiting

cell growth, and triggering apoptosis and senescence (160). In

contrast, another study indicated that it could promote glioma

cell growth and migration (161). IGFBP-7 resulted in the activation

of the translational repressor 4E-binding protein 1 (4E-BP1) and

triggered apoptosis in IGF-1R+ cells. It suppressed IGF-1R

downstream signaling, hence hindering protein synthesis, cell

growth, and survival (162). In vitro and in vivo studies revealed a

downregulation of IGFBP-5 in prostate cancer cells that inhibited

IGF cell growth. In benign prostatic hyperplasia (BPH), IGF-II and

IGF-1R were found to be overexpressed by stromal prostate cells.

Also, these cells expressed IGFBP-5 which is identified to potentiate

the IGF actions (163). Reduced expression of IGFBP-rP1 is

associated with carcinogenesis, especially in highly tumorigenic

and metastatic prostatic cells (164). IGFBP-rP1 functions as a

tumor suppressor in prostate cancer cells, as its overexpression

slowed down growth and proliferation rates (165). Also, prostatic

cell growth is regulated by IGFBP-rP2 and IGFBP-rP3. Several

factors can affect the expression of IGFBP-rP2. For instance, TGF-b
boosts the expression of IGFBP-rP2 in both normal and cancerous

prostate cells while IGF-I could decrease its expression. IGFBP-rP3

may act as a growth stimulator for prostate cancer cells given that it

is preferentially expressed in malignant cells (166). CyrH61/

IGFBPs-rP4 is localized in the mesenchyme of the benign

prostatic tissue and is downregulated in prostate cancer tissues as

well as in cancer cell lines (124, 167).

Our understanding of prostate tumorigenesis and regulation

has been expanded especially due to our understanding of the IGF

system. A high IGF-I to IGFBP-3 ratio was linked with an increased

risk of prostate cancer and could be used as a predictor for prostate
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cancer development (168). On the other hand, another study by

Saleh SAK et al. reported that changes in the serum levels of IGF-I

and IGFBP-3 were not considered pre-diagnostic risk factors for

prostate cancer development (142). Besides, serum levels of total

PSA and free/total PSA ratio were found to be higher in prostate

cancer patients (142). Also, PSA and IGF-II showed the power of

prognosis and differentiation between prostate cancer and

BPH (169).
6 The link between IGF and prostate
cancer metastasis

Bones are the most frequent metastatic site for prostate cancer,

with 70–80% of patients experiencing skeletal metastases. Prostate

cancer can metastasize to numerous organs, including the liver,

lymph nodes, lung, and bone. The vertebral column, ribs, skull,

and proximal ends of the long bones are among the well-vascularized

parts of the skeleton where prostate cancer cells spread frequently.

IGF-I and IGF-II, as well as type I and type II IGF receptors, are

expressed by bone cells (170). High levels of IGF-I in the primary

tumor environment seem to encourage cancer cells to spread to the

bone in vivo. Moreover, prostate cancer cell lines that highly

expressed IGF-1R were likely to develop larger bone mass (171–

173). Notably, IGFs influence cell-cell adhesion andmotility of cancer

cells through the integrin system such as E-cadherin (174–176). The

likelihood of metastasis is influenced by such interactions (177–179).

Prostate cancer cells can release mediators that change the balance

between osteoblast and osteoclast activities, leading to osteoblastic

metastases. IGF-I plays a critical role in bone formation and bone

resorption through the receptor activator of the nuclear factor-B

ligand (RANKL) system in bone (180). IGF-I upregulates the

expression of RANKL by bone marrow stromal cells, and

osteoblasts, which can bind to RANK on the surface of osteoclast

precursors. This ligand-receptor interaction activates NF-kB, which
stimulates the differentiation of osteoclast precursors to osteoclasts

(180–183). Also, metastatic prostate cancer cells release a urokinase-

type plasminogen activator that binds to the corresponding receptor

on the surface of osteoblasts. This could trigger the proteolysis of

IGFBPs and increase in the bioavailability of IGFs, thus stimulating

the proliferation of osteoblasts and cancer cells (Figure 2). A study by

Goya M. et al. reported the potential of KM1468, a monoclonal

antibody against IGF-I and IGF-II that inhibited the development of

new bone formation and the progression of existing bone tumors

(184). Also, IGF-I is secreted by the liver, which attracts circulating

cancer cells drain and promotes colonization, proliferation, and the

establishment of metastasis (185).

IGF-1R was found to control lymphatic metastasis of cancer by

inducing the production of VEGF, thus promoting angiogenesis

and lymphangiogenesis (186). This was supported by high levels of

VEGF in prostate cancer patients with lymph node metastases

(187). Androgen deprivation activated FOXO-1 and upregulated

VEGF production by inhibiting the IGF-1R pathway (188). By

activation of the IGF-1R/Akt/NF-kB pathway, bone-derived IGF-I

is the link between metastasized cancer cells during bone

metastasis (189).
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7 The relation between IGF family and
androgen-independent progression
Prostate cancer could progress to be castration-resistant. Several

mechanisms have been put forth to explain the progression including:

1) constitutive activation of the androgen receptor due to alternative

splicing of the androgen receptor; 2) epigenetic mutations of the

androgen receptor; 3) transactivation of the androgen receptor by

growth factors and cytokines; and 4) intracrine steroidogenic

pathways within the prostate tumor (190–193).

Another critical aspect of the IGF family is that they play a role

in the progression of androgen-independent prostate cancer by

promoting the growth and survival of prostate tumor cells.

Alternative stimulatory pathways that were activated after

androgen withdrawal, were found to trigger intracellular signal

transduction pathways by completely avoiding or activating the

androgen receptor. For example, non-ligand activation of androgen

receptors could be initiated by IGF-I, MAPK, and AKT contributing

to cell proliferation in an androgen-depleted environment (194).

Also, prostate cancer mouse models showed progression from

androgen-dependence to androgen-independence to be associated

with an increase in IGF-I and decrease in IGFBP-3, further

suggesting their role in cancer aggressiveness (128). In mice,

castration induced upregulation of IGFBP-5 that enhanced the

development of androgen independence (195).

The effective treatment for patients with advanced prostate

cancer is androgen ablation, leading to tumor regression (195).

This is because proliferation of prostate cancer cells is dependent on

androgens. The androgen receptor is known to bind to testosterone

and dihydrotestosterone, after which a conformational change and

interaction with specific DNA elements occur. The development of

androgen-independent prostate cancer takes place as a consequence
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of the lack of apoptosis that triggers tumor cell survival (196).

Furthermore, other mechanisms are associated with the

development of androgen-independent prostate cancer including

an increase in the sensitivity of the androgen receptor by

coactivators as well as enhancement of the signaling pathways by

other growth factors (197, 198). Unlike androgens, IGF-I activates

tyrosine kinase-associated surface receptors, leading to the

proliferation of prostate cancer cells. This is besides the effect of

IGF-I on enhancing the androgen receptor transcriptional activity

and its sensitivity to suboptimal stimulation by low androgen levels

(199). Metastatic and androgen-independent prostate cancer

specimens exhibited an increase in IGF-1R expression (126–128).

On the other hand, other studies indicated that reduced IGF-1R

expression is required to induce androgen independence,

proliferation, and metastasis (200, 201). It was suggested that

dysregulation of IGF-1R expression through KLF6 loss-of-

function may be an intrinsic mechanism for prostate cancer

progression to hormone independence. Also, the tumor

suppressor BRCA1 was identified to interact with the androgen

receptor in prostate cancer cells and regulate IGF-1R production

(202). Furthermore, BRCA1 can suppress IGF-1R promoter activity

in androgen receptor-negative prostate cancer cell lines but enhance

IGF-1R expression at the transcriptional level in androgen receptor-

positive prostate cancer cell lines (203).

Also, long-term androgen suppression may boost the resistance

of prostate cancer cells to apoptosis through the inhibition of PI3K/

AKT pathway (204). IGF-1R expression can be enhanced by

androgens via the activation of the ERK pathway (205).

Neuropeptides, including endothelin-1, vasoactive intestinal

peptide, and neurotensin, were previously identified to boost IGF

signaling and stimulate androgen-independent prostate cancer

(111, 206–208). Moreover, castration or anti-androgen treatment

induces the expression of IGFBP-2,3,4 and 5 (209, 210). This could
FIGURE 2

Involvement of IGF ligands, receptors, and binding proteins in prostate cancer. The left panel illustrates the interplay of IGF-I in cancer initiation and
progression of prostate cancer, while the right panel highlights the IGF-I effect in metastasis of prostate cancer cells to bone tissue.
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be due to an adaptative mechanism to enhance IGF-I mediated

mitogenesis, thus leading to androgen independence progression

(195, 195, 211). Also, prostate cancer samples and cell lines

exhibited growth inhibition when treated with diethylstilbestrol

(DES) (212). The expression of the growth-promoting IGFBP-6

was reported to be induced by DES treatment, thus, highlighting its

contribution to the effect of DES in androgen-independent prostate

cancer (213). Pre-clinical evidence supported the utilization of

insulin/IGF-targeting agents in combination with androgen

deprivation therapy for prostate cancer. This is attributed to the

effect of insulin on the production of androgens by prostate cancer

cells, which accelerated the emergence of castration-resistant

prostate cancer (214).
8 New drugs targeting the IGF family

For many years now, the gold standard of treatment for advanced

or metastatic prostatic cancer has been androgen deprivation therapy

(ADT) and second-generation androgen receptors signaling

inhibitors (41). Unexpected resistance to castration and recurrence

in the form of castration-resistant prostate cancer, for which there are

few therapy choices, are regrettably major events contributing to the

poor longevity of patients with prostatic cancer, even though these

therapies initially demonstrated several pros (105). A lot of research

has been done to design agents that target the IGF family and its

signaling pathway. For instance, some studies aimed at reducing IGF-

I levels or inhibiting the activity of IGF-IR and the downstream

signaling pathways. Some of these drugs exhibited an anti-neoplastic

activity (184, 215, 216). Antagonists of the growth hormone-releasing

hormone, or growth hormone receptor (e.g., pegvisomant), and

analogs of somatostatin (e.g. octreotide) resulted in a reduction of

IGF-I levels (217). For instance, combinatorial therapy using

octreotide and complete androgen blockage had beneficial results

in patients with prostate cancer (218). Also, pegvisomant treatment

halted the proliferation of prostatic cancer cells (219). As such, anti-

IGF-1R monoclonal antibodies (mAbs), human neutralizing IGF

antibodies, and tyrosine kinase inhibitors (ligand-gated IGF-R)

have been developed. Part of these drugs have been evaluated in

clinical studies regarding prostatic cancer either alone or in

conjunction with traditional therapy (220).
8.1 Monoclonal anti-IGF-1R antibodies

The primary approach entails employing anti-IGF-1R mAbs to

impede ligand-receptor interactions, thereby inducing the

internalization and subsequent degradation of IGF-1R. For the

treatment of malignant tumors, a number of therapeutic mAbs

targeting IGF-1R have been developed, including ganitumab (IgG1)

(139), cixutumumab (IgG1) (221–223), and figitumumab (IgG2) (222,

224, 225). The antibodies that have undergone evaluation in clinical

trials have demonstrated anti-tumor growth effects to a certain degree

and have been well tolerated by the majority of participants.

Cixutumumab and figitumumab have shown mixed results in

clinical trials, with some benefits in PSA levels but inconsistent
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overall survival improvements (221, 226, 227). A12, another mAb,

demonstrated promise in preclinical studies by inhibiting cancer

cell growth, but requires further research (228, 229). Ganitumab, a

unique mAb that avoids interfering with insulin signaling, showed

good tolerability but lacks clinical trials in prostate cancer patients

(139, 222). Other mAbs like BIIB022 are being explored in other

cancers with positive safety profiles (230). Overall, IGF-1R mAbs

hold promise for prostatic cancer treatment, but further research is

needed to optimize their efficacy and safety, particularly in

combination therapies, while exploring new mAbs with improved

targeting strategies.
8.2 Neutralizing antibodies for IGF

Monoclonal antibodies that neutralize IGF ligands inhibit

proliferative and pro-survival signaling, which are initiated by

IGF ligands. IGF-I/II neutralizing monoclonal antibodies

simultaneously inhibit multiple IGF signaling pathways but do

not affect insulin receptor-b (INSR), which regulates glucose

homeostasis (231). As a result, they do not increase the risk of

hyperglycemia compared to IGF-1R/INSR tyrosine kinase

inhibitors. Few neutralizing antibodies for IGF have been

developed, including xentuzumab (IgG1) and dusigitumab (IgG2).

Human antibody xentuzumab (BI 836845) specifically targeted

IGF-I and IGF-II. It exhibited potential in the treatment of breast

cancer and in the mitigation of resistance in prostate cancer. It

mainly functions by inhibiting IGF-I levels and impeding its effects.

The initial trials were met with acclaim (232–234). Dusigitumab

(MEDI-573) is an additional IGF signaling-targeting antibody,

whose metabolic impact appeared to be comparatively lesser in

nature when compared to alternative IGF-targeting therapies.

Although it exhibited anti-tumor properties, its efficacy might be

constrained by its relatively low binding affinity (235).
8.3 Tyrosine kinase inhibitors of IGF-1R

Linsitinib targets the insulin and IGF-1R receptors and

demonstrated promise in preclinical research but had poor efficacy

in clinical trials for prostate cancer among other malignancies.

Though it was well tolerated, neither the tumor response nor PSA

levels were improved. Though further research is needed, linsitinib

may be helpful in breaking through chemotherapy resistance (141,

236, 237). An alternative tyrosine kinase inhibitor, BMS-754807, has

shown promise in preclinical research by reducing the proliferation

and causing cell death in cancer cells (238). It also affected insulin

receptors, though, which could have an effect on blood sugar

regulation (239). Its safety and effectiveness in prostate cancer

patients have not yet been evaluated in clinical trials.
9 Conclusions

PCa remains a public health burden. The relationship between

the IGF family and prostate cancer is intricate as IGF signaling plays
frontiersin.org

https://doi.org/10.3389/fendo.2024.1396192
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Elemam et al. 10.3389/fendo.2024.1396192
a significant role in the development and progression of prostate

cancer. The activation of its downstream signaling pathways

promotes cell proliferation, migration, and invasion. Targeting

IGF signaling has been considered as a potential therapeutic

strategy for PCa. Researchers have explored various approaches to

inhibit IGF signaling using antibodies or small molecule inhibitors

against various components of the IGF signaling pathway.

Therefore, further understanding of the role of IGF signaling in

PCa shows promise and needs to be considered in the context of a

comprehensive treatment strategy.
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