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Background: Although the association between HHEX, IGF2BP2, and FTO

polymorphisms and the risk of GDM has been investigated in several studies,

the findings have been inconsistent across different populations. The study aimed

to investigate the association between genetic polymorphisms and GDM risk in a

Chinese population.

Methods: 502 control volunteers and 500 GDM patients were enrolled. IGF2BP2

rs11705701 and rs4402960, FTO rs9939609, and HHEX rs1111875 and rs5015480

were all genotyped using the SNPscan™ genotyping assay. The independent

sample t-test, logistic regression, and chi-square test were used to assess the

variations in genotype and allele and their relationships with the risk of GDM. The

blood glucose level, gestational week of delivery, and newborn weight were

compared using a one-way ANOVA.

Results: After adjusting for confounding factors, the results show that the rs1111875

heterozygous (OR=1.370; 95% CI: 1.040-1.805; P = 0.025) and overdominant

(OR=1.373; 95% CI: 1.049-1.796; P = 0. 021) models are significantly associated

with an increased risk of GDM, especially for the age ≥ 30 years group: heterozygote

(OR=1.646; 95% CI: 1.118-2.423; P=0.012) and overdominant (OR=1.553; 95% CI:

1.064-2.266; P = 0.022) models. In the age ≥ 30 years, the rs5015480 overdominant

model (OR=1.595; 95%CI: 1.034-2.459; P=0.035) and the rs9939609 heterozygote

model (OR=1.609; 95% CI: 1.016-2.550; P=0.043), allele (OR=1. 504; 95% CI: 1.006-

2.248; P = 0.047), dominantmodel (OR=1.604; 95%CI: 1.026-2.505; P=0.038), and

overdominant model (OR=1.593; 95% CI: 1.007-2.520; P = 0.047) were associated

with a significantly increased risk of GDM; Additionally, people with the TC genotype

of rs1111875 had a substantially higher 1-hour blood glucose level than TT genotype
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(P < 0.05). The results of the meta-analysis showed that the A allele of rs11705701

was associated with an increased risk of diabetes mellitus (P < 0.05).

Conclusion: The study indicates that the TC genotype of rs1111875 is linked to a

higher risk of GDM, particularly in women aged 30 years or older. Additionally,

rs5015480 and rs9939609 were significantly associated with GDM in the same

age group. These SNPs may therefore be more closely linked to GDM in

older mothers.
KEYWORDS

gestational diabetes mellitus, rs1111875, rs5015480, rs11705701, rs4402960,
rs9939609, case-control study
1 Introduction

Gestational diabetes mellitus (GDM) as diabetes diagnosed

during pregnancy that is not clearly overt diabetes. It is a

common disease in pregnancy that is determined by the first

diagnosis of hyperglycemia (1, 2). It is associated with

hypertensive disorders of pregnancy, macrosomia, cesarean

section, and neonatal complications (3). The prevalence of GDM

ranges from 1.8% to 25.1% globally (4). GDM is a multifactorial

complex metabolic disorder influenced by genetic and

environmental factors, similar to type 2 diabetes mellitus

(T2DM). Genetics is crucial to GDM and is not easily modifiable

through intervention (5). Studies have demonstrated that several

genes linked to T2DM risk are also related to GDM, and

polymorphisms in HHEX, IGF2BP2, and FTO have been linked

to decreased b-cell function and diabetes risk (6–11).

The hematopoietically expressed homeobox (HHEX) gene is

situated in the 270 kb linkage disequilibrium (LD) region of human

chromosome 10, q23.33. It plays a regulatory role in insulin

secretion and diabetes mellitus. The LD block comprises three

genes: the kinase family member 11 gene, the insulin- degrading

enzyme gene, and HHEX. The regions rs1111875 and rs5015480 are

closest to HHEX, which has been linked to diabetes mellitus (DM),

and are situated close to the LD region (12–15). Moreover, previous

studies have shown that polymorphisms in the insulin-like growth

factor 2 mRNA binding protein 2 (IGF2BP2) gene may be a risk

factor for obesity and T2DM (10, 16). IGF2BP2 belongs to a family

of messenger ribonucleic acid-binding proteins that regulate the

translation of IGF2 (17). IGF2BP2 promotes the release of insulin

and is essential for the growth and development of pancreatic b-
cells. Alpha-ketoglutarate-dependent dioxygenase, or FTO, is

involved in energy balance, and lipid and carbohydrate

metabolism. T2DM and obesity have been associated with

variations in the FTO gene (11, 18–20).

Some research works have investigated the relationship between

the risk of GDM and HHEX rs1111875 and rs5015480, IGF2BP2
02
rs11705701 and rs4402960, and FTO rs9939609 (21, 22).

Nevertheless, the outcomes have displayed variability. The

objective of this study was to examine the relationship between

gene polymorphisms (rs1111875 and rs5015480, rs11705701 and

rs4402960, and rs9939609) and the risk of GDM in the Chinese

population. Additionally, our objective was to examine the

connections between gene polymorphisms and clinical

parameters, such as glycemia, week of gestation, and

newborn weight.
2 Materials and methods

2.1 Study subjects

With a total of 1002 participants, the study involved 500

patients with GDM and 502 healthy pregnant women as controls.

The study protocol for this research was approved by the Ethics

Committee of Shunde Women and Children’s Hospital at

Guangdong Medical University (the ethical approval number:

2020072), and subjects were selected based on specific criteria:

(i) Han ethnicity; (ii) age ≥ 18 years; (iii) voluntary informed

consent; (iv) never diagnosed with diabetes; (v) no glucose-

lowering medication; and (vi) no pregnancy complications.

Participants were excluded if they had previously been diagnosed

with diabetes, were under 18 years of age, had pregnancy

complications, or were taking glucose-lowering medication.

A total of 1002 pregnant Chinese Han women provided voluntary

informed consent. According to the diagnostic criteria established

by the International Association of Diabetes and Pregnancy Study

Groups (IADPSG), pregnant women underwent an oral glucose

tolerance test (OGTT) between weeks 24 and 28 of gestation. In

cases where at least one glucose level measurement equals or

exceeds the threshold value, the subject was considered positive

for GDM. Subjects with GDM were identified through the

assessment of their blood glucose levels: fasting blood glucose
frontiersin.org
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(FBG) ≥ 5.1 mmol/L, or 1-hour postprandial glucose (1h-PG) ≥

10.0 mmol/L, or 2-hour postprandial glucose (2h-PG) ≥ 8.5 mmol/

L. Healthy controls were defined as individuals with normoglycemic

levels. The study was carried out in compliance with the principles

of the Declaration of Helsinki.
2.2 Data collection

In the study, general clinical information was compiled,

encompassing age, ethnicity, height, systolic blood pressure

(SBP), diastolic blood pressure (DBP), prepregnancy weight, and

parity (primipara or multipara). The prepregnancy body mass

index (pre-BMI, Kg/m2) was computed as the ratio of

prepregnancy weight (Kg) to the square of the height (m2). The

pre-BMI categorizes Chinese individuals into the following groups

based on their weight: Obesity is defined as having a BMI equal to

or greater than 28 Kg/m2, overweight falls within the range of 24

Kg/m2 to less than 28 Kg/m2, normal weight is classified between

18.5 Kg/m2 and less than 24 Kg/m2, and underweight is indicated

by a BMI of less than 18.5 Kg/m2.
2.3 SNP genotyping

Extraction of genomic DNA was conducted utilizing the

QIAamp DNA blood kit (Qiagen, Germany), followed by

genotyping of individual SNPs through the SNPscan method. The

resulting raw data were acquired using an ABI3730XL sequencer

and processed using GeneMapper 4.1 software (Applied

Biosystems, USA) by Genesky Technologies Inc. (Shanghai,

China). Rigorous quality control protocols were enforced to

ensure the precision of the genotyping results.
2.4 Statistical analyses

Statistical analyses were conducted using SPSS 20.0 software

(SPSS, Chicago, IL, USA). Continuous variables were compared

using an independent sample t-test, presenting the results as mean

± standard deviation. Discontinuous variables, such as Hardy-

Weinberg equilibrium (HWE) in the control group, were

analyzed using chi-square tests. The association between SNP and

GDM risk was evaluated through binary logistic regression analysis,

adjusting for potential confounders like pre-BMI, age, parity, and

blood pressure. The results were expressed as a odds ratio (OR) with

a 95% confidence interval (CI). We used one-way ANOVA to

analyze the correlation between SNP and blood glucose levels,

gestational week of labor, and neonatal weight. For significant

one-way ANOVA results, we continued with the least significant

difference (LSD) comparisons. Subgroup analyses for age and pre-

BMI were also performed. Heterogeneity was estimated using Q-

test and I2 test. No heterogeneity was defined as I2 < 50% and P >

0.1, STATA v.16.0 software (Stata Corporation, Texas, United

States) was used to perform heterogeneity analyses. A statistically

significant result was observed for bilateral P < 0.05.
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2.5 Meta-analysis

A systematic search was conducted across PubMed, Chinese

National Knowledge Infrastructure, and Google Scholar databases

using various combinations of the terms rs11705701, Gestational

diabetes mellitus (GDM), type 2 diabetes mellitus (T2DM), type 1

diabetes mellitus (T1DM), and prediabetes mellitus (Pre-DM, without

any restrictions. Inclusion criteria encompassed case-control or cohort

studies investigating the relationship between rs11705701 and GDM,

T2DM, T1DM, or Pre-DM, and providing adequate raw data. Studies

not meeting diagnostic criteria or exhibiting data deviating fromHWE

were excluded. Data extraction was overseen by two authors. The

meta-analysis, utilizing fixed or random effects models based on

heterogeneity levels, was conducted across six genetic models.

Publication bias was evaluated through Egger’s and Begg’s tests. All

statistical analyses were performed using STATA v.16.0 software

(Stata Corporation, TX, USA).
2.6 Prediction of transcription factors

The online tool PROMO (https://alggen.lsi.upc.es/home.html)

was utilized to investigate whether rs11705701 located in the

promoter region of the IGF2BP2 gene impacts the binding sites

of transcription factors (23, 24).
3 Results

3.1 General clinical characteristics of
the subjects

In this case-control research, 502 healthy controls and 500 GDM

patients were examined. The genotypes of FTO rs9939609, IGF2BP2

rs11705701 and rs4402960, and HHEX rs1111875 and rs5015480 were

studied. The clinical baseline data is shown in Table 1. In comparison

to the control group, the GDM group exhibited substantially higher

mean age, pre-BMI, SBP, DBP, and blood glucose levels (P < 0.05).

Furthermore, there was a significant difference (P < 0.05) in the parity

between the GDM group and the control group.
3.2 The association of SNPs with GDM risk

3.2.1 Overall analysis results
The HWE analysis and minor allele frequencies (MAF) for the

five SNPs in the control group are shown in Table 2. Except

rs11705701, the results were consistent with HWE (P > 0.05), so

no comparative analyses were carried out for this SNP. Using six

models (homozygous, heterozygous, allele, dominant, recessive, and

overdominant) the correlation between genotype and GDM was

assessed, and the (unadjusted and adjusted) OR and 95% CI were

computed for each SNP. Before adjustment, the results indicated

that the rs1111875 heterozygous (TC vs. TT: OR=1.349; 95% CI:

1.039-1.753; P = 0.025) and overdominant (TC vs. TT+CC:

OR=1.352; 95% CI: 1.047-1.744; P = 0.021) models were
frontiersin.org
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associated with an increased risk of GDM. After adjusting for pre-

BMI, age, DBP, SBP, and parity, the results showed that the

rs1111875 heterozygous (TC vs. TT: OR=1.370; 95% CI: 1.040-

1.805; P = 0.025) and overdominant (TC vs. TT+CC: OR=1.373;

95% CI: 1.049-1.796; P = 0.021) models were significantly associated

with an increased risk of GDM (Figure 1). Nevertheless, rs5015480,

rs4402960, and rs9939609 did not significantly correlate with the

GDM risk (P > 0.05, Figures 2, 3; Supplementary Table S1).

3.2.2 Stratified analysis results
The relationship between the four SNPs and the risk of GDM was

next examined using stratified analysis based on age or pre-BMI. In the

group with an age of 30 or above, before adjustment, the GDM risk was

significantly higher in the rs1111875 dominant (CC+TC vs. TT:

OR=1.685; 95% CI: 01.173-2.421; P = 0.005), overdominant (TC vs.

TT+CC: OR=1.566; 95% CI: 1.082-2.269; P = 0.018), heterozygote (TC
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vs. TT: OR=1.669; 95% CI: 1.143-2.438; P = 0.008) and allele (C vs. T:

OR=1.481; 95% CI: 1.106-1.983; P = 0.008) models (Figure 1); A

significantly higher risk of GDM was seen in the rs5015480

heterozygote (TC vs. TT: OR=1.581; 95% CI: 1.031-2.425; P = 0.036)

and overdominant (TC vs. TT+CC: OR=1.631; 95% CI: 1.066-2.494; P

= 0.024) models (Figure 2); There was no discernible association

between rs9939609, rs4402960 and the risk of GDM (P > 0.05,

Figure 3; Supplementary Table S1). After adjusting for pre-BMI, age,

SBP, the results of the rs1111875 heterozygote (TC vs. TT: OR=1.646;

95%CI:1.118-2.423; P = 0.012) and overdominant (TC vs. TT+CC:

OR=1.553; 95% CI: 1.064-2.266; P = 0.022), allele (C vs. T: OR=1.454;

95% CI: 1.079-1.958; P = 0.014) and dominant (CC+TC vs. TT:

OR=1.653; 95% CI: 1.142-2.392; P = 0.008) models remained

significantly associated with increased GDM risk (Figure 1); The

rs5015480 overdominant (TC vs. TT+CC: OR=1.595; 95% CI: 1.034-

2.459; P = 0.035) model showed a significantly increased GDM risk
TABLE 2 SNPs information and HWE test in the controls.

SNP GeneName Min/Maj Chr. position Region Function MAF HWE (P)

rs1111875 HHEX C/T chr10:94462882 3’-flanking / 0.256 0.101

rs5015480 HHEX C/T chr10:94465559 3’-flanking / 0.16 0.097

rs4402960 IGF2BP2 T/G chr3:185511687 intron2 / 0.246 0.15

rs11705701 IGF2BP2 A/G chr3:185544309 5’-flanking / 0.108 < 0.001

rs9939609 FTO A/T chr16:53820527 intron1 / 0.126 1.00
HWE, Hardy–Weinberg equilibrium; Min, minor allele; Maj, major allele; MAF, frequency of minor allele.
TABLE 1 Basic and stratified characteristic of participants of the study.

Variables Cases (%) Controls (%) t/c2 P

Age, year (mean ± SD), overall 31 ± 4 29 ± 4 -8.56 < 0.001

<30 27 ± 2 26 ± 3 -3.64 < 0.001

≥30 34 ± 3 33 ± 2 -3.14 0.002

pre-BMI, Kg/m2, overall 21.51 ± 3.10 20.53 ± 2.58 -5.42 < 0.001

<18.5 17.45 ± 0.84 17.60 ± 1.50 0.75 0.453

18.5 ≤ BMI < 24 20.96 ± 1.49 20.67 ± 1.41 -2.63 0.009

≥24 26.16 ± 2.84 25.83 ± 3.31 -0.60 0.548

SBP, mmHg, overall 117 ± 11 114 ± 10 -3.53 < 0.001

DBP, mmHg, overall 70 ± 8 68 ± 7 -3.23 0.001

FBP, mmol/L, overall 4.82 ± 0.64 4.50 ± 0.31 -9.75 < 0.001

1h-PG, mmol/L, overall 10.17 ± 1.60 7.66 ± 1.27 -26.22 < 0.001

2h-PG, mmol/L, overall 8.91 ± 1.60 6.69 ± 0.99 -25.85 < 0.001

Gestational week of labor, overall 38.8 ± 1.12 39.18 ± 2.38 3.20 0.001

Neonatal weight, g, overall 3222.94 ± 392.598 3164.01 ± 362.971 -2.47 0.014

Parity (n), overall 8.88 0.003

Primipara 210 (42) 258 (51.4)

Multipara 290 (58) 244 (48.6)
pre-BMI, pre-gestational body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBP, fasting blood glucose level; 1h-PG, 1 hour blood glucose level; 2h-PG, 2 hour blood
glucose level.
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(Figure 2). The rs9939609 heterozygote (TA vs. TT: OR=1.609; 95% CI:

1.016-2.550; P = 0.043), allele (A vs. T: OR=1.504; 95% CI: 1.006-2.248;

P = 0.047), dominant (AA+TA vs. TT: OR=1.604; 95% CI: 1.026-2.505;

P = 0.038) and overdominant (TA vs. TT+AA: OR=1.593; 95% CI:

1.007-2.520; P = 0.047) models showed a significantly increased GDM

risk (Figure 3); Nevertheless, rs4402960 did not significantly correlate

with the risk of GDM (P > 0.05, Supplementary Table S1). In additon,

In subjects less than 30 years of age, pre-BMI < 18.5, 18.5 ≤ pre-BMI

<24, and pre-BMI ≥ 24 groups, no significant correlation with GDM

risk was found for any SNP (P > 0.05, Figures 1-3; Supplementary

Table S1; Supplementary Figures S1–S3).
3.3 Heterogeneity analysis

To confirm that the aforementioned associations were related

to age rather than differences between different age groups, we

conducted a heterogeneity analysis across different age groups. We

found that after adjusting for confounding factors, the

heterogeneity among different age groups in various genetic
Frontiers in Endocrinology 05
models for rs1111875 and rs5015480 was reduced compared to

before adjustment (Figures 4, 5), especially for the overdominant

(TC Vs. CC+TT: I2 = 0.0%, P = 0.379) and heterozygous (TC Vs.

TT: I2 = 40.9%, P = 0.193) models of rs1111875 (Figure 4), where

no significant heterogeneity was observed. This strongly suggests

that the association of rs1111875 with an increased risk of GDM is

related to age, particularly in pregnant women aged 30 or older.

The high heterogeneity observed across different age groups for

other SNPs genetic models may be related to insufficient sample

size or other confounding factors that were not fully adjusted

(Figures 5, 6).
3.4 Association between genotype and
blood glucose level

In overall, no significant association was found between any

genotype and blood glucose levels in any SNP (Supplementary

Table S2). The 1-hour PG level of the TC genotype of rs1111875,

however, were considerably greater than those of the TT genotype
FIGURE 1

The associations between rs1111875 and GDM risk in different groups. *adjusted.
FIGURE 2

The associations between rs5015480 and GDM risk in different groups. *adjusted.
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in participants over 30 years of age (P < 0.05, Table 3). In the pre-

BMI < 18.5 group, those with the TC genotype of rs1111875 had a

substantially higher 2-hour postprandial glucose level than people

with the CC genotype (P < 0.05). Furthermore, people with the CC

genotype of rs5015480 had a substantially lower 2-hour

postprandial glucose level than people with the TT and TC

genotypes (P < 0.05, Table 3). Individuals with the CC genotype

of rs5015480 had a lower FBG level in the pre-BMI ≥ 24 group

than those with the TC and TT genotypes (P < 0.05, Table 3).

Furthermore, PG levels at 1 and 2 hours were considerably greater

in persons with the TA genotype of rs9939609 than in those with

the TT genotype (P < 0.05, Table 3). No significant association was

found between genotype and blood glucose levels in other groups

(P > 0.05, Supplementary Table S2).
Frontiers in Endocrinology 06
3.5 Association between genotype and
gestational week of labor

In all groups, there was no discernible relationship between any

genotype and the gestational week of labor (P > 0.05, Table 3;

Supplementary Table S2).
3.6 Association between genotype and
neonatal weight

In all groups, there were no significant differences between

genotypes and newborn weight (P > 0.05, Table 3; Supplementary

Table S2).
FIGURE 4

Heterogeneity analysis of various genetic models of rs1111875 among different age groups. (A) Unadjusted results, (B) Adjusted results.
FIGURE 3

The associations between rs9939609 and GDM risk in different groups. *adjusted.
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3.7 Rs11705701 meta-analysis results

We performed a meta-analysis of published research to gain a

better understanding of the relationship between rs11705701 and

diabetes because the control group in our study did not follow

HWE. Four studies were included in the final analysis: two studies

about rs11705701 and T2DM, one study about rs11705701 and

GDM, and one study about rs11705701 and prediabetes mellitus

(Pre-DM). The features of the research are displayed in

Supplementary Table S3. Figure 7 illustrates the associations

found in the overall analysis between the various models and

increased risk of diabetes mellitus. The dominant (AA+GA vs.

GG: OR=1.218; 95% CI: 1.088-1.364; P = 0.001), homozygous

(AA vs. GG: OR=1.472; 95% CI: 1.023-2.119; P = 0.037),

heterozygous (GA vs. GG: OR = 1.153; 95% CI: 1.024-1.298;

P = 0.019), and allele (A vs. G: OR=1.202; 95% CI: 1.106-1.307;

P < 0.001) models demonstrated associations with increased risk of
Frontiers in Endocrinology 07
diabetes. In other groups, there was no discernible difference

(P > 0.05, Figure 7). The funnel plot was shown to be

symmetrical (P > 0.05, Figure 8). Egger’s tests yielded consistent

results (all P > 0.05), indicating the absence of publication bias.
3.8 Transcriptional factor
prediction outcomes

To investigate if SNPs in the IGF2BP2 gene’s promoter affect

particular transcription factor binding locations, the PROMO database

was consulted. SNPs have an impact on the binding of pertinent

transcription factors, as seen in Figure 9. It was discovered that the

binding of GR-alpha and E2F-1 transcription factors was impacted by

rs11705701 G > A. It was discovered that the rs11705701 A allele binds

exclusively to the GR-alpha transcription factor, while the rs11705701

G allele preferentially binds to the E2F-1 transcription factor.
FIGURE 6

Heterogeneity analysis of various genetic models of rs9939609 among different age groups. (A) Unadjusted results, (B) Adjusted results.
FIGURE 5

Heterogeneity analysis of various genetic models of rs5015480 among different age groups. (A) Unadjusted results, (B) Adjusted results.
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4 Discussion

Variants in genetic composition can alter how encoded proteins

are expressed and function, which can have a broad range of

physiological effects. Thus, polymorphisms might be clinically

significant for a range of diseases (25). A higher risk of GDM has

been linked to alleles in HHEX, IGF2BP2, and FTO (22, 26). We

studied the Chinese population’s susceptibility to GDM using

HHEX rs1111875 and rs5015480, IGF2BP2 rs11705701 and

rs4402960, and FTO rs9939609. Figure 1 shows that there was a

considerable increase in the likelihood of developing GDM due to

the rs1111875 TC in HHEX. According to a recent meta-analysis,

the rs1111875 CC and CT genotype group had a 50% and 29%

higher risk of GDM than the TT genotype population, respectively

(27). Similar to our results, Benny et al. discovered that HHEX

rs1111875 was substantially related to GDM susceptibility (28). A

meta-analysis revealed that the HHEX rs5015480 C allele was
Frontiers in Endocrinology 08
linked to GDM susceptibility, and the same rs5015480

polymorphism was found to be similarly associated with T2DM

in a study of T2DM (29). Furthermore, we discovered that the

overdominant model in HHEX rs5015480 was significantly

associated with GDM in the age ≥ 30 years group.

The HHEX gene rs1111875 and rs5015480 have been identified as

typical loci linked with diabetes since GWAS started to validate

candidate gene research in various ethnic groups (12–15). The IDE,

KIF11, and HHEX genes are found on human chromosome 10 and are

positioned in the LD region at q23.33, which is home to the HHEX

gene. The HHEX-KIF-IDE region, which is closest to the HHEX gene,

has the C/T variants rs1111875 and rs5015480. These variants have

been linked to pancreatic embryonic development and may have an

impact on future insulin secretion. In this study, we observed a

significant association between HHEX SNPs and susceptibility to

GDM, particularly among individuals aged 30 years and older.

Furthermore, individuals with the TC genotype exhibited
TABLE 3 Association between genotype and blood glucose level, gestational week of labor and neonatal weight.

Groups SNP Genotype
FBG

(mmol/L)
1 h-PG
(mmol/L)

2 h-PG
(mmol/L)

Gestational week
of labor

Neonatal
weight (g)

age ≥ 30 rs1111875 TT 4.710 ± 0.421 9.261 ± 1.777a 8.159 ± 1.730 38.84 ± 1.991 3240.56 ± 362.961

TC 4.711 ± 0.407 9.815 ± 1.718a 8.528 ± 1.700 38.97 ± 1.638 3180.47 ± 436.814

CC 4.680 ± 0.389 9.562 ± 1.910 8.589 ± 1.907 38.37 ± 1.416 3130.29 ± 371.606

F 0.086 5.430 2.850 1.622 2.080

P > 0.05 < 0.05 > 0.05 > 0.05 > 0.05

pre-BMI
< 18.5

rs1111875 TT 4.524 ± 0.371 8.467 ± 1.770 7.425 ± 1.500 39.24 ± 1.361 3099.34 ± 345.266

TC 4.553 ± 0.638 8.718 ± 1.978 7.952 ± 1.734a 38.76 ± 3.848 3106.77 ± 320.460

CC 4.423 ± 0.281 7.589 ± 1.261 6.384 ± 1.424a 39.56 ± 1.810 2938.89 ± 446.443

F 0.289 1.530 4.478 0.786 0.980

P > 0.05 > 0.05 < 0.05 > 0.05 > 0.05

rs5015480 TT 4.524 ± 0.371 8.508 ± 1.877 7.504 ± 1.524a 39.23 ± 1.288 3103.83 ± 338.107

TC 4.527 ± 0.673 8.684 ± 1.722 7.910 ± 1.831b 38.47 ± 4.842 3101.84 ± 341.688

CC 4.653 ± 0.196 6.893 ± 0.913 5.820 ± 1.260ab 40.00 ± 2.708 2695.00 ± 284.429

F 0.132 1.739 3.320 1.475 2.847

P > 0.05 > 0.05 < 0.05 > 0.05 > 0.05

pre-BMI
≥ 24

rs5015480 TT 4.938 ± 0.470a 9.691 ± 1.921 8.174 ± 1.668 38.86 ± 1.349 3329.95 ± 338.066

TC 4.853 ± 0.547b 9.761 ± 2.139 8.358 ± 2.128 39.03 ± 1.577 3341.50 ± 463.048

CC 4.204 ± 0.102ab 9.598 ± 2.205 8.814 ± 1.865 38.20 ± 0.837 3374.00 ± 510.176

F 5.485 0.025 0.383 0.804 0.040

P < 0.05 > 0.05 > 0.05 > 0.05 > 0.05

rs9939609 TT 4.843 ± 0.410 9.443 ± 1.823a 8.036 ± 1.556a 39.00 ± 1.337 3313.61 ± 368.909

TA 4.996 ± 0.701 10.445 ± 2.332a 8.791 ± 2.397a 38.50 ± 1.606 3418.75 ± 421.960

AA 5.103 ± 0.849 10.690 ± 0.961 9.747 ± 1.190 39.00 ± 1.000 3176.67 ± 282.194

F 1.386 3.506 3.176 1.574 1.199

P > 0.05 < 0.05 < 0.05 > 0.05 > 0.05
a,bA p-value<0.05 indicates statistical significance.
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significantly higher 1-hour glucose levels compared to the TT

genotype. This finding suggests that genetic variations in the HHEX

gene may contribute to b-cell dysfunction, thereby influencing the

onset of diabetes mellitus. The HHEX rs1111875 is implicated in the

Wingless-type MMTV integration site (WNT) signaling pathway,

impacting susceptibility to diabetes. This SNP encodes transcription

factors that modulate gene expression in cellular processes, influencing

cell development and growth (30, 31). Similarly, among the Greek

Cypriots, the HHEX rs5015480 has been linked to altered insulin
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secretion, cellular function, and diabetes susceptibility. The HHEX

rs1111875 and rs5015480, have been associated with diabetes risk

across diverse populations, primarily due to their role in reducing b-cell
response and insulin secretion (30, 32–35). Importantly, HHEX gene

polymorphisms are believed to influence insulin production and

secretion (36, 37).

Dysregulation of IGF2BP2 has been linked to various metabolic

diseases and cancers (38, 39). Notably, the IGF2BP2 SNP is associated

with both T2DM and cancer (38). In 2007, Grarup et al. reported no
FIGURE 7

Meta-analysis for the association between the IGF2BP2 rs11705701 and GDM susceptibility. (A) Dominant model, AA+GA vs.GG (fixed effects mode);
(B) Recessive model, AA vs.GA+GG (random effects model); (C) Overdominant model, GA vs.AA+GG (fixed effects model); (D) Homozygote model:
AA vs. GG (random effects model); (E) Heterozygote model: GA vs. GG (fixed effects model); (F) Allele model, A vs. G (fixed effects model). OR, odds
ratio; CI, confidence interval; I-squared, measure to quantify the degree of heterogeneity in meta-analyses.
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association between IGF2BP2 gene variants and pancreatic cell

dysfunction in a Danish cohort (40). Subsequent research revealed

that IGF2BP2 variants diminish glucose-stimulated insulin secretion

in the initial phase of diabetes progression, indicating an impact on

pancreatic b-cell function (41–43). The IGF2BP2 rs11705701 G/A

variant, situated in the -1479 locus of the promoter region, has been

linked to reduced body fat and insulin resistance in Mexican

Americans, elevating the susceptibility to T2DM (44). Moreover,

this variant is associated with a heightened T2DM risk in the Russian

population, with allele A correlating with a truncated IGF2BP2
Frontiers in Endocrinology 10
protein in the adipose tissue of non-obese individuals (45).

Furthermore, the rs11705701 variant exhibits a strong association

with female prediabetic patients (46).While no significant association

was observed between IGF2BP2 rs11705701 and the risk of GDM in

the Polish population, it is linked to prolonged gestation and

enhanced neonatal health, as indicated by Apgar scores (47).

Collectively, these findings suggest a potential role for IGF2BP2

rs11705701 in diabetes development. Comparative analyses were

not conducted with the control group in our study due to non-

compliance with Hardy-Weinberg equilibrium. Nonetheless, through
FIGURE 8

Funnel plot of the odds ratios in the meta-analysis. (A) Dominant model, AA+GA vs.GG; (B) Recessive model, AA vs.GA+GG; (C) Overdominant
model, GA vs.AA+GG; (D) Homozygote model: AA vs. GG; (E) Heterozygote model: GA vs. GG; (F) Allele model, A vs. G.
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a meta-analysis of relevant previously published studies, we identified

a significant association between the rs11705701 A variant and an

increased risk of developing diabetes mellitus. Utilizing a

transcription factor prediction analysis website, we further

investigated the impact of rs11705701 variants on promoter

activity. Our analysis revealed specific binding patterns, with

rs11705701 G binding E2F1 and rs11705701 A binding GR-alpha

transcription factor. This suggests that IGF2BP2 rs11705701 may

regulate its transcriptional activity by modulating transcription factor

binding. Subsequent molecular biology experiments are warranted to

confirm these findings. Additionally, our results suggested that

IGF2BP2 rs4402960 was not associated with the risk of GDM,

consistent with recent studies and comprehensive quantitative

meta-analyses (48–50).

FTO proteins function within the nucleus to remove N6-

methyladenosine modifications from mRNA, thereby influencing

the splicing of genes crucial for adipogenesis (51). Notably,

variations located in the initial intron of the FTO gene have been

linked to elevated BMI and T2DM, with a 47 kb genomic segment

identified to harbor multiple SNPs associated with these conditions.

Among these, the rs9939609 variant has been extensively

researched (52). The precise mechanism through which this SNP

contributes to obesity remains elusive. Nevertheless, individuals

heterozygous for rs9939609 exhibit heightened levels of primary

FTO transcripts in the risk A allele compared to the T allele (53),

potentially resulting in increased FTO expression that promotes

adipogenesis. Notably, this latter association has not been
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documented in existing literature. The FTO rs9939609, situated in

the first intron of the gene, has been linked to a heightened risk of

GDM in Caucasian populations. Our study revealed a significant

association between carriers of the A allele and an increased risk of

GDM in individuals aged ≥ 30. Furthermore, the A allele was found

to be correlated with accelerated weight gain during pregnancy.

Additionally, our investigation demonstrated elevated 1-hour and

2-hour glucose levels in the OGTT among individuals with the TA

genotype compared to the TT genotype in the pre-BMI ≥ 24 group.

But some studies describing the absence of association of FTO

(rs9939609) and GDM risk (49, 50), this was consistent with our

overall analysis results. These genetic variations may potentially

impact FTO expression or enzyme activity, resulting in metabolic

alterations that disrupt glucose metabolism and induce insulin

resistance, consequently heightening the susceptibility to GDM.

The modest sample size of the GDM and control groups

necessitates validation of our observations in a larger cohort in

future studies. The scope of the study was limited to Chinese

individuals, underscoring the need for further research to confirm

our findings in diverse populations.
5 Conclusions

In conclusion, our study revealed an elevated risk of GDM

associated with the TC genotype of the HHEX gene rs1111875,

particularly among individuals aged ≥ 30. Additionally, rs5015480
FIGURE 9

IGF2BP2 rs11705701 G > A transcription factor prediction. rs11705701 G > A affects the binding of GR-alpha and E2F-1 transcription factors. (A) rs11705701
(reference); (B) rs11705701 (mutant).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1397423
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zeng et al. 10.3389/fendo.2024.1397423
and rs9939609 showed significant correlations with GDM in the

same age group. These findings suggest a potentially stronger link

between these specific SNPs and GDM among women of advanced

maternal age.
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detection of known transcription regulatory elements using species-tailored searches.
Bioinf (Oxford England). (2002) 18:333–4. doi: 10.1093/bioinformatics/18.2.333

24. Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM, et al. Identification
of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN.
Nucleic Acids Res. (2003) 31:3651–3. doi: 10.1093/nar/gkg605
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polimorfismos de un solo nucleótido (SNP) en genes codificantes de proteıńas y no
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