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The MTNR1B Rs724030 variant is
associated with islet function
and women waist-to-hip ratio in
healthy subjects
Sijie Zhang †, Wenxuan Bian †, Yan Wang †, Min Shen, Yu Qian,
Hao Dai, Shuai Zheng, Qi Fu, Kuanfeng Xu, Tao Yang*

and Hemin Jiang*

Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
Objective: This study aims to investigate the associations between MTNR1B

rs724030 A>G variant and prediabetes risk, along with their correlations with

clinical features, including plasma glucose and serum insulin levels during oral

glucose tolerance test (OGTT), islet function, insulin resistance, and plasma lipid

levels. In particular, we investigated whether there are sex dimorphisms in the

impact of this variant on islet function/insulin resistance.

Methods: We included 3415 glucose-tolerant healthy and 1744 prediabetes

individuals based on OGTT. Binary logistic regression was performed to

evaluate the relationships between rs724030 in MTNR1B and prediabetes

under the additive model. Additionally, multiple linear regression was utilized

to investigate the associations between this variant and glycemic-related

quantitative traits and lipid levels.

Results: While no association was observed between the rs724030 variant in

MTNR1B and prediabetes risk in the overall cohort (P > 0.05), we found the G

allele of this variant was associated with higher fasting and 30-minute plasma

glucose levels, decreased Insulinogenic Index (IGI), and oral disposition index

(DIo) (P = 0.009, 0.001, 0.001, and 0.007, respectively) in the normal glucose

tolerance (NGT) individuals with normal BMI levels. Furthermore, we also found

significant associations between this variant and IGI, corrected insulin response

(CIR), and DIo (All P < 0.001) in female individuals whose waist-to-hip ratio (WHR)

is greater than 0.85, with considerable heterogeneity (Phet = 0.009, 0.030, and

0.049, respectively) to male participants in the NGT individuals, but not in the

impaired fasting glucose (IFG)/impaired glucose tolerance (IGT) individuals.

Additionally, no association was observed between this variant and insulin

clearance (All P > 0.05).
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Conclusions: The MTNR1B rs724030 variant contributes to glycemic traits and

islet function, and its effects have sex dimorphisms in the NGT individuals after

stratifying by WHR. All these findings provide a basis for accurately assessing islet

function in healthy populat ions and offer a new perspective on

precision prevention.
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Introduction

The increasing prevalence of type 2 diabetes mellitus (T2DM)

has become a primary global public health concern in recent years.

In 2019, there were 463 million people with diabetes; by 2045, this

number is expected to rise by 51%, reaching 700 million (1).

Prediabetes is a condition in which plasma glucose levels are

elevated but not high enough to be diagnosed as diabetes.

According to the World Health Organization (WHO) criteria,

IGT (2-h glucose 7.8-11.0 mmol/L) and IFG (fasting glucose 6.1-

6.9 mmol/L) are used to define prediabetes (2). Previous studies

found that the prevalence of prediabetes is gradually increasing and

reached 38.1% in 2018 in China (3). Approximately 10% of

individuals with prediabetes progress to diabetes annually in the

U.S. Prediabetes is a significant risk factor for the development of

diabetes, cardiovascular events, and increased mortality (4).

Therefore, early detection and management through lifestyle

changes, medication, and regular monitoring can prevent or delay

diabetes onset and its complications.

Genome-wide association studies (GWAS) have been used to

identify links between human phenotypes and genetic variations.

Thousands of GWAS summary statistics are available, covering a

wide range of human traits and diseases. T2DM and prediabetes are

complex, multifactorial conditions influenced by both lifestyle risk

factors and genetic susceptibility (5). While GWAS has identified

various genetic variants associated with an increased risk of T2DM

across different populations (6, 7), studies specifically targeting

genetic variants linked to prediabetes remain limited, particularly in

Chinese populations. This study aims to contribute to addressing this

gap by exploring genetic variants associated with prediabetes risk.

From a pathophysiological perspective, major procedures in the

progression to T2DM include dysfunction of b-cells and insulin

resistance (8). Similarly, prediabetes is characterized by increased

inflammation and islet dysfunction (9), emphasizing the importance

of assessing islet function indicators in individuals with prediabetes.

Consequently, we also explored the associations between genetic

variations and clinical indicators of islet function in this study.

Melatonin receptor 1B (MTNR1B), a member of the G protein-

coupled receptor family encoded by the MTNR1B gene, was initially

identified as the regulator of glucose levels and insulin secretion
02
binding with melatonin (10). Over the past decade, GWAS studies

have identified several risk variants in MTNR1B associated with

impaired glucose regulation and related conditions. The leading

variant, rs10830963 (11), has been linked to T2DM (12), diabetic

peripheral neuropathy (13), gestational diabetes mellitus (14), HbA1c

(15), and insulin secretion (16). Similarly, rs2166706 has been

associated with elevated plasma glucose levels, reduced islet function,

and an increased risk of T2DM (17), while rs1447352 has been linked

to fasting plasma glucose levels (18). Another variant, rs724030, which

is in moderate linkage disequilibrium with rs10830963, rs2166706, and

rs1447352 (r² = 0.61, 0.23, and 0.23, respectively), has been associated

with T2DM (12, 19), HbA1c (15, 20), and islet function (16) in

European populations. However, the role of rs724030 in individuals

with prediabetes, a condition with a high risk of progressing to T2DM,

remains unexplored, particularly in East Asian populations. To address

this gap, we selected rs724030 as a representative locus to investigate its

genetic association with prediabetes risk and related clinical indicators.

Therefore, our study aimed to investigate the relationships between

rs724030 inMTNR1B and clinical features in both NGT and IFG/IGT

individuals among Chinese people, including plasma glucose and

serum insulin levels during OGTT, islet function, and islet resistance.

Furthermore, after stratifying byWHR, we explore sex dimorphisms in

the genetic effects of rs724030 in MTNR1B on islet function.
Materials and methods

Study design and participants

This study includes unrelated 3415 glucose-tolerant healthy and

1744 IFG/IGT individuals, and their clinical characteristics are

shown in Supplementary Table S1. This study included

participants from Nanjing, one of the 25 communities in the

REACTION study (21). Participants with a history of other

diseases, positive thyroid peroxidase, or thyrotropin receptor

antibodies were excluded. All participants measured plasma

glucose and serum insulin levels at fasting, 30, and 120 minutes

after a standard 75-g OGTT. Based on the WHO criteria (2), IGT

(2-h glucose 7.8–11.0 mol/L) and IFG (fasting glucose 6.1–6.9

mmol/L) are commonly used to define prediabetes. NGT is
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defined as fasting glucose <6.1 mmol/L and 2-h glucose < 7.8 mol/L.

The study population was determined to be Chinese Han by

questionnaire. All samples were collected with appropriate

informed consent from all participants and/or their guardians in

a written way. Approval for the study was granted from the relevant

ethics committees in the First Affiliated Hospital of Nanjing

Medical University. All participants provided written informed

consent at the time of recruitment.
Study measurements

The homeostasis model assessment of b-cell function (HOMA-

b), homeostasis model assessment of insulin resistance (HOMA-

IR), IGI, CIR, DIo, and Matsuda’s insulin sensitivity index

(ISIMatsuda) were calculated according to the formula, and

methods in Supplementary Table S4. Plasma glucose was

measured with the hexokinase method (AU5400, Olympus). An

insulin radioimmunoassay kit measured serum insulin levels

(BNIBT, China). The chemiluminescence method was used to

evaluate serum C-peptide levels and serum lipid levels such as

high-density lipoprotein cholesterol (HDL), low-density lipoprotein

cholesterol (LDL), total cholesterol (TC), and triglycerides (TG)

(RocheDiagnostics, Switzerland). In addition, a questionnaire was

used to obtain their basic information, including age, sex, height,

weight, waist circumference, and hip circumference.
Genotyping assay

Human genomic DNA was extracted using a standard method.

The SNP genotyping work was performed using a custom-by-design

48-Plex SNPscanTM Kit (Cat#:G0104; Genesky Biotechnologies Inc.,

Shanghai, China). This kit was developed according to patented SNP

genotyping technology by Genesky Biotechnologies Inc., which was

based on double ligation and multiplex fluorescence polymerase chain

reactions (PCR) (22). Genotyping was conducted without any

knowledge regarding the subject’s case or control status.

Concordance for duplicate samples, which accounted for 4% of the

total samples, was >99% for all assays. The genotype distribution in

healthy and pre-diabetic individuals was consistent with Hardy-

Weinberg equilibrium (P > 0.05).
Statistical analysis

Mean ± SD was used for normally distributed data and median

(interquartile range) for non-normal data. Values of serum insulin,

HOMA-b, HOMA-IR, IGI, CIR, DIo, and ISIMatsuda were log-

transformed. Under an appropriately adjusted additive model, a

binary logistic regression analysis was performed for the relationship

between rs724030 in MTNR1B and the IFG/IGT individuals. The

associations between the MTNR1B rs724030 variant and glycemic-

related quantitative traits were analyzed by multiple linear regression.

All the analyses were adjusted by age, sex, and BMI. All P-values were

two-sided, and P < 0.05 was considered significant. The heterogeneity
Frontiers in Endocrinology 03
was considered significant with I2 >75% and P<0.05. Statistical analyses

were performed using STATA 18.0.
Results

MTNR1B Rs724030 A>G variant is not
associated with the risk of IFG/
IGT individuals

Supplementary Table S2 shows no association between the

MTNR1B rs724030 variant and IFG/IGT risk in total individuals

(P > 0.05). Obesity is a significant risk factor for the dysregulation of

glucose metabolism. Therefore, we stratified participants by BMI

according to Chinese criteria (23). However, we did not find any

association between the MTNR1B rs724030 variant and IFG/IGT

risk in any of the BMI subgroups (P > 0.05).
MTNR1B Rs724030 A>G variant
significantly correlates with islet function
but not insulin resistance in the NGT
individuals with normal BMI Levels

After stratifying people by BMI, we analyzed OGTT-derived

indicators of glycemic-related traits in the NGT individuals and IFG/

IGT individuals. As shown in Table 1, theMTNR1B rs724030 variant is

associated with higher fasting and 30-minute plasma glucose levels in

the NGT individuals with normal BMI levels (BMI < 24kg/m2) (P =

0.009 and 0.001, respectively). We further investigate the associations

between this variant and islet function indices. In the NGT individuals

with normal BMI levels, the G allele of this variant is significantly

associated with decreased IGI and DIo (P = 0.001 and 0.007,

respectively) but not associated with insulin resistance indices. Except

for the similar correlation between the variant and IGI in individuals

who are overweight (24 ≤ BMI < 28kg/m2) in the NGT individuals (P =

0.035), no other significant relationships exist in both the NGT and

IFG/IGT individuals. Among individuals who are overweight in the

NGT individuals, although the variant was positively correlated with

glycated hemoglobin (HbA1c) levels (P = 0.003), this correlation was

lower with significant heterogeneity to the individuals with normal

BMI levels (Phet = 0.037). Similarly, among individuals who are obese

(BMI ≥ 28kg/m2) in the NGT individuals, this variant had a negative

association with fasting insulin levels and HOMA-b (P = 0.016 and

0.003), but these associations were also lower due to significant

heterogeneity to the individuals with normal BMI levels (Phet = 0.039

for fasting insulin levels, Phet = 0.022 for HOMA-b).
Significant sexual heterogeneities for the
effect size on the associations between
MTNR1B Rs724030 variant and islet
function after stratifying by the WHR in the
NGT individuals

We stratify all participants by WHR according to central obesity

diagnosis criteria in WHO consultation (24). We grouped WHR
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TABLE 1 The associations between the MTNR1B rs724030 variant and glycemic quantitative traits, islet function/insulin resistance, and serum lipid levels stratified by BMI.

IGT
b Padj Phet I2 (%)

GG

130

0.50 5.77 ± 0.51 0.010 0.715

1.43 10.27 ± 1.25 0.086 0.251

1.28 8.63 ± 1.23 0.034 0.614

0.49 5.82 ± 0.41 0.001 0.964

,12.24) 9.60(6.27,12.22) -0.031 0.222

3,70.01) 44.53(29.61,61.33) -0.055 0.100

1,88.70) 72.94(41.88,100.43) -0.007 0.827

,120.30) 80.12(57.54,118.22) -0.036 0.191

,14.17) 7.26(4.57,12.25) -0.085 0.053

,1.60) 0.83(0.47,1.51) -0.053 0.256

,3.10) 2.40(1.60,3.28) -0.030 0.266

,5.75) 4.19(2.97,5.60) 0.025 0.269

,1.58) 1.37(1.10,1.61) -0.009 0.615

,3.28) 2.94(2.38,3.49) 0.084 0.050

,5.57) 5.09(4.36,5.66) 0.051 0.349

,1.70) 1.37(1.03,1.87) 0.027 0.317

153
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Groups NGT
b Padj Phet

I2

(%)

IFG/

Traits AA AG GG AA AG

BMI<24kg/m2

n 648 946 385 223 36

Plasma glucose (mmol/l)

Fasting 5.27 ± 0.36 5.31 ± 0.35 5.32 ± 0.35 0.029 0.009** 5.74 ± 0.52 5.72 ±

30 min post OGTT 8.36 ± 1.42 8.51 ± 1.42 8.65 ± 1.41 0.153 0.001** 10.07 ± 1.43 10.12 ±

120 min
post OGTT

6.08 ± 0.97 6.05 ± 0.97 6.06 ± 0.97 -0.012 0.681 8.51 ± 1.24 8.48 ±

HbA1c(%) 5.61 ± 0.37 5.62 ± 0.38 5.62 ± 0.36 0.005 0.675 5.80 ± 0.35 5.79 ±

Serum insulin (pmol/l)

Fasting 9.44(7.20,12.66) 9.27(6.81,12.21) 9.22(7.11,11.87) -0.010 0.499 9.66(7.01,13.20) 6.86(9.40

30 min post OGTT 53.20(35.34,83.00) 50.93(34.19,78.80) 51.85(35.54,73.56) -0.032 0.093 46.94(32.32,73.29) 44.92(30.3

120 min
post OGTT

38.49(25.39,57.11) 37.11(23.58,58.22) 37.45(23.89,53.51) -0.018 0.374
70.59

(45.30,101.20)
60.99(42.7

Islet function

HOMA-b
106.88(79.75,150.73)

101.68
(76.22,145.35)

100.82
(77.69,140.63)

-0.028 0.082
89.17

(61.79,118.15)
87.70(61.0

IGI 8.74(15.12,26.52) 13.89(7.99,24.12) 13.62(7.61,21.35) -0.090 0.001** 8.98(5.08,14.72) 8.02(4.95

DIo 1.63(0.91,2.93) 1.54(0.82,2.66) 1.47(0.82,2.39) -0.080 0.007** 0.93(0.48,1.64) 0.89(0.5

Insulin resistance

HOMA-IR 2.23(1.66,3.00) 2.19(1.60,2.92) 2.18(1.65,2.88) -0.005 0.757 2.40(1.80,3.43) 2.37(1.7

ISIMatsuda 0.14(3.99,5.89) 3.89(0.14,6.16) 3.76(0.11,5.68) -0.104 0.105 3.90(2.94,5.49) 4.28(3.1

serum lipid levels

HDL 1.42(1.18,1.68) 1.40(1.19,1.62) 1.41(1.20,1.67) 0.005 0.652 1.36(1.15,1.58) 1.36(1.1

LDL 2.69(2.25,3.20) 2.69(2.24,3.20) 2.68(2.23,3.23) 0.008 0.741 2.82(2.20,3.30) 2.77(2.3

TC 4.78(4.22,5.40) 4.78(4.10,5.45) 4.76(4.16,5.52) 0.001 0.980 4.88(4.22,5.59) 4.87(4.2

TG 1.07(0.79,1.45) 1.04(0.78,1.41) 0.98(0.78,1.34) -0.022 0.123 1.21(0.89,1.75) 1.22(0.9

24≤BMI<28kg/m2

n 407 585 193 277 36
4
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TABLE 1 Continued

IGT
b Padj Phet I2 (%)

GG

0.52 5.86 ± 0.50 0.042 0.089 0.380 0.0

1.34 10.15 ± 1.47 0.007 0.918 0.428 0.0

1.33 8.68 ± 1.20 -0.038 0.541 0.433 0.0

0.43 5.87 ± 0.41 -0.027 0.173 0.325 0.0

,14.02) 11.17(8.44,14.02) -0.016 0.521 0.664 0.0

9,89.45) 55.78(35.28,85.18) -0.056 0.068 0.976 0.0

,112.75) 86.26(58.22,115.65) 0.022 0.428 0.496 0.0

,130.45)
100.00

(68.27,131.01)
-0.035 0.178 0.981 0.0

,18.30) 10.98(5.82,17.62) -0.053 0.182 0.588 0.0

,1.69) 1.04(0.52,0.48) -0.037 0.387 0.796 0.0

,3.67) 2.88(2.13,3.66) -0.009 0.737 0.569 0.0

,4.65) 3.31(2.57,4.19) 0.007 0.754 0.557 0.0

,1.44) 1.22(1.04,1.42) -0.008 0.581 0.956 0.0

,3.34) 2.84(2.32,3.41) -0.001 0.989 0.151 51.6

,5.58) 4.78(4.20,5.57) -0.011 0.833 0.408 0.0

,2.13) 1.55(1.19,2.00) -0.006 0.788 0.356 0.0

41

0.47 5.88 ± 0.54 -0.001 0.979 0.871 0.0

(Continued)
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Groups NGT
b Padj Phet

I2

(%)

IFG/

Traits AA AG GG AA AG

Plasma glucose (mmol/l)

Fasting 5.37 ± 035 5.37 ± 0.35 5.43 ± 0.31 0.025 0.075 0.839 0.0 5.77 ± 0.50 5.81 ±

30 min post OGTT 8.68 ± 1.34 8.71 ± 1.44 8.93 ± 1.36 0.108 0.060 0.537 0.0 10.13 ± 1.28 10.12 ±

120 min
post OGTT

6.30 ± 0.96 6.27 ± 0.95 6.23 ± 0.99 -0.023 0.563
0.830

0.0 8.72 ± 1.21 8.58 ±

HbA1c(%) 5.65 ± 0.34 5.67 ± 0.39 5.73 ± 0.36 0.044 0.003** 0.037* 77.0 5.93 ± 0.37 5.89 ±

Serum insulin (pmol/l)

Fasting 11.04(8.13,14.82) 10.26(8.01,13.46) 10.68(8.11,15.59) -0.019 0.342 0.733 0.0 11.04(8.28,14.93) 10.72(7.7

30 min post OGTT 68.17(46.29,108.60) 62.75(41.23,95.78) 64.71(42.69,96.27) -0.041 0.106 0.783 0.0 63.30(40.07,93.55) 57.67(39.0

120 min
post OGTT

48.34(30.63,60.17) 46.10(29.15,71.74) 54.27(30.47,86.07) 0.033 0.231
0.136

55.0
79.08

(49.93,115.75)
80.22(50.8

Islet function

HOMA-b
119.33(88.37,166.07)

111.95
(84.84,150.81)

115.47
(81.36,159.49)

-0.034 0.108
0.834

0.0
99.24

(71.63,136.35)
96.83(65.0

IGI 18.52(11.05,31.66) 16.98(9.88,29.01) 16.89(8.63,26.42) -0.074 0.035* 0.705 0.0 11.92(7.26,18.83) 11.02(6.5

DIo 1.69(0.91,3.12) 1.68(0.93,2.79) 1.51(0.79,2.52) -0.055 0.144 0.593 0.0 1.07(0.65,1.88) 1.08(0.5

Insulin resistance

HOMA-IR 2.64(1.95,3.57) 2.46(1.89,3.26) 2.62(1.89,3.75) -0.014 0.486 0.716 0.0 2.81(2.05,3.88) 2.75(1.9

ISIMatsuda 2.76(0.07,4.23) 2.53(0.07,4.92) 2.63(0.07,4.37) -0.075 0.419 0.803 0.0 3.40(2.55,4.39) 3.49(2.6

serum lipid levels

HDL 1.22(1.02,1.42) 1.24(1.05,1.46) 1.26(1.05,1.41) 0.012 0.316 0.636 0.0 1.20(1.04,1.41) 1.21(1.0

LDL 2.78(2.32,3.25) 2.73(2.22,3.25) 2.76(2.20,3.23) -0.032 0.318 0.318 0.0 2.81(2.34,3.35) 2.83(2.3

TC 4.77(4.19,5.32) 4.65(4.00,5.32) 4.77(3.99,5.42) -0.043 0.295 0.397 0.0 4.81(4.34,5.57) 4.85(4.2

TG 1.32(1.00,1.83) 1.25(0.90,1.75) 1.33(0.94,1.86) -0.018 0.376 0.935 0.0 1.51(1.16,2.26) 1.45(1.1

BMI≥28kg/m2

n 84 134 33 74 12

Plasma glucose (mmol/l)

Fasting 5.34 ± 0.38 5.44 ± 0.34 5.45 ± 0.33 0.056 0.104 0.454 0.0 5.90 ± 0.50 5.93 ±
3
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TABLE 1 Continued

IFG/IGT
b Padj Phet I2 (%)

AG GG

10.33 ± 1.51 10.90 ± 1.49 -0.062 0.660 0.354 0.0

8.72 ± 1.22 8.74 ± 1.25 0.115 0.346 0.563 0.0

5.92 ± 0.40 6.03 ± 0.38 0.030 0.419 0.494 0.0

12.14
(9.34,17.17.47)

13.25(10.44,16.06) 0.051 0.252 0.110 60.9

66.78(47.11,100.25) 72.74(44.55,92.12) -0.054 0.329 0.993 0.0

86.90(59.51,123.55) 94.34(66.55,129.90) 0.096 0.097 0.120 58.6

104.53
(78.60,142.60)

108.63
(77.00,158.21)

0.054 0.239 0.094 64.3

12.56(7.80,21.52) 13.26(6.99,20.61) -0.075 0.286 0.913 0.0

1.16(0.65,1.68) 1.07(0.53,1.57) -0.127 0.095 0.410 0.0

3.17(2.32,4.68) 3.64(2.72,4.25) 0.051 0.272 0.133 55.7

3.04(2.21,3.92) 2.86(2.40,3.68) -0.033 0.388 0.195 40.6

1.20(1.05,1.40) 1.23(1.03,1.44) 0.039 0.092 0.102 62.6

2.82(2.41,3.32) 2.79(2.40,3.43) -0.021 0.768 0.207 37.2

4.83(4.30,5.47) 4.74(4.13,5.40) -0.005 0.956 0.589 0.0

1.69(1.23,2.31) 1.62(1.31,2.02) 0.002 0.965 0.627 0.0

were logarithmically transformed. For serum lipid levels, linear regression analysis was used, adjusted
dy mass index; HbA1c, Hemoglobin A1c; OGTT, oral glucose tolerance test; HOMA-b, homeostasis
uda’s insulin sensitivity index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total
heterogeneity was considered significant with I2 > 75% and P < 0.05.
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Groups NGT
b Padj Phet

I2

(%)
Traits AA AG GG AA

Plasma glucose (mmol/l)

30 min post OGTT 8.73 ± 1.33 9.06 ± 1.29 9.25 ± 1.45 0.209 0.099 0.676 0.0 10.29 ± 1.39

120 min
post OGTT

6.39 ± 1.03 6.39 ± 0.93 6.43 ± 0.93 0.007 0.945
0.850

0.0 8.45 ± 1.48

HbA1c(%) 5.64 ± 0.44 5.71 ± 0.40 5.77 ± 0.38 0.044 0.259 0.335 0.0 5.94 ± 0.37

Serum insulin (pmol/l)

Fasting 13.66(9.98,18.77) 13.98(9.68,18.37) 11.65(8.32,15.84) -0.112 0.016*
0.039*

76.6 11.83(8.56,15.50)

30 min post OGTT 87.09(64.96,128.10) 87.72(57.62,124.90) 77.39(47.73,97.33) -0.079 0.140
0.409

0.0
77.12

(43.06,106.13)

120 min
post OGTT

60.06(36.92,97.93) 56.44(39.52,87.39) 48.78(38.54,76.10) -0.083 0.169
0.309

3.3 79.52(52.95,12.15)

Islet function

HOMA-b 153.30
(113.72,204.54)

148.42
(97.72,195.77)

124.73
(80.02,161.98)

-0.145 0.003**
0.022*

80.8
95.96

(74.92,136.07)

IGI 22.92(14.52,32.81) 20.99(13.29,28.89) 17.37(11.71,28.15) -0.120 0.072 0.685 0.0 14.62(8.10,22.10)

DIo 1.63(1.03,2.73) 1.56(1.07,2.41) 1.69(1.33,2.04) -0.008 0.910 0.346 0.0 1.23(0.74,1.95)

Insulin resistance

HOMA-IR 3.29(2.28,4.48) 3.38(2.38,4.50) 2.75(2.04,3.78) -0.101 0.034* 0.055 72.8 3.12(2.31,4.13)

ISIMatsuda 2.21(0.03,3.35) 2.30(0.05,3.34) 2.97(0.06,4.53) 0.287 0.188 0.086 66.0 3.11(2.44,3.92)

serum lipid levels

HDL 1.15(1.00,1.44) 1.20(1.01,1.35) 1.07(0.97,1.20) -0.032 0.238 0.207 37.1 1.15(1.01,1.37)

LDL 2.73(2.24,3.24) 2.73(2.27,3.32) 2.48(2.21,2.87) -0.034 0.632 0.577 0.0 2.78(2.24,3.54)

TC 4.69(3.99,5.18) 4.72(4.16,5.28) 4.40(3.85,5.01) -0.031 0.726 0.735 0.0 4.82(4.09,5.61)

TG 1.55(1.03,2.08) 1.47(1.06,2.14) 1.65(1.04,2.04) 0.027 0.597 0.356 0.0 1.63(1.24,2.29)

For glycemic quantitative traits, linear regression analysis was used, adjusted with age, sex, BMI. Values of serum insulin, HOMA-b, HOMA-IR, IGI, DIo, and ISIMatsuda

with age, sex, BMI, and TG was logarithmically transformed. NGT, normal glucose tolerance; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; BMI, bo
model assessment of b-cell function; IGI, insulinogenic index; DIo, oral disposition index; HOMA-IR, homeostasis model assessment of insulin resistance; ISIMatsuda, Mat
cholesterol; TG, triglyceride. All P values were two-tailed and P < 0.05 was been considered as significant. *P < 0.05; **P < 0.01. Phet, P values for heterogeneity. The
s
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TABLE 2 The associations between the MTNR1B rs724030 variant and islet function/insulin resistance in the NGT individuals stratified by WHR.

Female
b Padj Phet I2 (%)

AG GG

6
3.17)

105.58(80.74,150.23)
103.62

(78.50,147.02)
-0.037 0.068 0.836 0.0

29.27) 16.83(9.45,27.15) 14.81(8.45,26.96) -0.046 0.178 0.778 0.0

5
0.42)

164.50(97.93,255.50)
141.75

(89.01,260.15)
-0.057 0.046* 0.700 0.0

3.21) 1.77(1.00,3.01) 1.60(0.88,2.80) -0.028 0.436 0.884 0.0

3.03) 2.19(1.63,3.01) 2.29(1.71,2.97) -0.012 0.551 0.329 0.0

5.44) 3.63(0.10,5.77) 3.61(0.010,5.52) -0.015 0.860 0.873 0.0

,169.83) 111.35(81.50,152.72)
107.39

(81.22,153.17)
-0.044 0.043* 0.631 0.0

,30.97) 15.52(9.49,26.81) 15.22(8.71,22.97) -0.181 <0.001*** 0.009** 85.5

2
5.57)

155.15
(100.54,242.72)

143.30
(90.25,209.73)

-0.156 <0.001*** 0.030* 78.7

3.16) 1.64(0.86,2.68) 1.47(0.82,2.30) -0.151 <0.001*** 0.049* 74.1

3.51) 2.41(1.83,3.33) 2.30(1.73,3.32) -0.025 0.242 0.328 0.0

5.12) 2.86(0.07,4.88) 3.05(0.09,5.15) -0.149 0.116 0.466 0.0

stasis model assessment of b-cell function; IGI, insulinogenic index; CIR, corrected insulin response; DIo, oral disposition index; HOMA-IR,
and P < 0.05 was been considered as significant. *P < 0.05; **P < 0.01; ***P < 0.001. Phet, P values for heterogeneity. The heterogeneity was
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Groups Male
b Padj

Traits AA AG GG AA

WHR ≤ 0.85

HOMA-b 104.14
(70.08,139.70)

97.10(73.10,125.66) 88.73(68.37,117.52) -0.049 0.360
116.3

(84.34, 15

IGI 12.74(6.20,22.09) 10.26(6.33,16.78) 9.42(4.59,17.38) -0.074 0.430 16.42(9.55

CIR
125.77

(76.31,209.87)
101.07

(69.22,166.89)
102.08

(54.20,159.88)
-0.088 0.242

165.3
(103.98,2

DIo 1.34(0.62,2.87) 1.20(0.69,2.10) 1.24(0.71,2.03) -0.013 0.898 1.73(0.96

HOMA-IR 2.33(1.50,3.11) 2.14(1.57,2.68) 1.92(1.38,2.59) -0.065 0.201 2.29(1.76

ISIMatsuda 4.13(0.24,6.55) 4.32(0.20,6.88) 5.03(0.35,8.11) -0.048 0.803 3.40(0.11

WHR>0.85

HOMA-b 109.41
(80.58,163.71)

108.04
(79.35,155.64)

102.51
(75.19,156.65)

-0.028 0.250 119.20(88.84

IGI 15.34(8.96,26.21) 15.13(8.51,26.17) 14.61(8.13.23.02) -0.040 0.319 19.85(11.55

CIR
152.07

(89.36,238.96)
143.21

(85.79,229.91)
134.60

(77.98,202.05)
-0.056 0.102

198.1
(114.02,2

DIo 1.42(0.79,2.71) 1.46(0.79,2.56) 1.51(0.87,2.28) -0.038 0.383 1.75(1.02

HOMA-IR 2.45(1.86,3.46) 2.54(1.84,3.44) 2.55(1.88,3.60) 0.007 0.785 2.47(1.81

ISIMatsuda 2.99(0.08,5.19) 3.16(0.09,5.25) 2.57(0.07,4.94) -0.047 0.651 3.38(0.08

Data are expressed as median (interquartile range). NGT, normal glucose tolerance; WHR, waist-to-hip ratio; HOMA-b, homeo
homeostasis model assessment of insulin resistance; ISIMatsuda, Matsuda’s insulin sensitivity index; All P values were two-tailed
considered significant with I2 > 75% and P < 0.05.
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according to 0.85 and assumed that individuals withWHR greater than

0.85 had a higher risk of abdominal obesity. As shown in Table 2, in the

NGT individuals, significant associations were found between this

variant in MTNR1B rs724030 and IGI, CIR, and DIo (All P < 0.001)

in female individuals whose WHR are more remarkable than 0.85, and

these associations had significant heterogeneity (Phet = 0.009, 0.030,

and 0.049, respectively) to the corresponding male subgroup. This

suggests that the effect of this variant on islet function exhibits sex

dimorphism, with differing effect sizes between males and females. In

the NGT individuals, this variant did not correlate with islet function/

resistance indices among individuals whose WHR is less than or equal

to 0.85. We also found no associations between this variant and related

indices in the IFG/IGT individuals as shown in Table 3.
MTNR1B Rs724030 A>G variant is not
associated with insulin clearance in the
NGT individuals

We calculated the insulin clearance rate according to the

method of a previously published article (25). Endogenous insulin
Frontiers in Endocrinology 08
clearance during the OGTT was assessed by CpAUC120/

InsAUC120 (25). We found that the MTNR1B rs724030 variant

was not significantly associated with insulin clearance(All P > 0.05),

as shown in Supplementary Table S3.
Discussion

During the last ten years, several studies have demonstrated

that different variants in MTNR1B are associated with an

increased risk of T2DM. For instance, Chambers, J.C. et al.

found that the G allele of rs2166706 in MTNR1B is associated

with an increased risk of T2DM in individuals of Asian Indian

ancestry (17). Later, B. F. et al. found that the T allele of

rs1387153 in MTNR1B can increase the risk of T2DM in

individuals of European ancestry (26). Over the next few years,

the researchers successively identified the association between

the G allele of rs10830963 in MTNR1B and the increased risk of

T2DM among people of different ethnicities (27, 28). Our study

found no association between theMTNR1B rs724030 variant and

the risk of predibetes, at least in the Chinese population. The
TABLE 3 The associations between the MTNR1B rs724030 variant and islet function/insulin resistance in the IFG/IGT individuals stratified by WHR.

Groups Male
b Padj

Female
b Padj Phet

I2

(%)Traits AA AG GG AA AG GG

WHR ≤ 0.85

HOMA-b 79.93
(51.07,98.83)

70.53
(52.41,96.77)

61.76
(36.54,109.91)

-0.025 0.814
95.86

(64.61,132.14)
95.06

(68.65.135.05)
89.00

(68.85,120.93)
-0.017 0.614 0.941 0.0

IGI
6.81

(3.83,11.88)
5.17

(3.56,10.11)
5.07

(3.97,11.21)
0.025 0.863

9.40
(5.04,15.98)

9.40
(5.49,17.13)

8.33
(4.93,13.76)

-0.055 0.319 0.616 0.0

CIR
61.93

(31.85,94.25)
55.30

(38.38,88.24)
52.13

(30.24,99.55)
0.025 0.838

87.03
(52.89,141.26)

89.45
(56.45,138.94)

76.02
(44.71,118.18)

-0.072 0.124 0.463 0.0

DIo
0.74

(0.40,1.43)
0.64

(0.38,1.46)
0.72

(0.62,1.56)
0.085 0.625 0.93(0.49,1.97)

0.96
(0.55,1.65)

0.83
(0.47,1.46)

-0.038 0.505 0.508 0.0

HOMA-IR 2.40
(1.63,3.05)

2.05
(1.58,2.56)

1.88
(1.06,3.20)

-0.072 0.483 2.57(1.80,3.53)
2.62

(1.81,3.39)
2.61

(1.91,3.49)
-0.017 0.607 0.614 0.0

ISIMatsuda 4.81
(3.32,6.12)

5.11
(3.93,6.51)

5.29
(3.33,7.18)

0.036 0.617 3.90(2.99,5.31)
3.77

(2.95,5.27)
3.70

(2.69,4.87)
-0.006 0.848 0.597 0.0

WHR>0.85

HOMA-b 91.92
(67.34,126.87)

89.45
(61.22,123.02)

92.45
(59.96,125.62)

-0.033 0.291
101.75

(72.88,134.50)
96.58

(68.45,131.23)
93.83

(70.19,135.70)
-0.013 0.624 0.626 0.0

IGI
10.69

(6.37,18.12)
10.21

(5.65,16.57)
9.65

(5.02,17.77)
-0.099 0.055

12.69
(7.25,19.57)

10.79
(6.86,17.67)

10.96
(6.06,17.63)

-0.072 0.070 0.685 0.0

CIR
92.48

(57.12,145.28)
84.71

(48.99,138.04)
78.34

(49.96,144.28)
-0.062 0.148

108.04
(66.82,167.30)

94.68
(62.04,152.12)

94.02
(53.64,145.13)

-0.068 0.051 0.918 0.0

DIo
1.02

(0.53,1.69)
0.90

(0.55,1.63)
1.01

(0.47,1.69)
-0.076 0.169 1.13(0.69,1.78)

1.09
(0.68,1.74)

1.04
(0.53,1.71)

-0.079 0.068 0.962 0.0

HOMA-IR 2.82
(2.14,3.98)

2.59
(1.93,3.82)

2.88
(2.00,3.88)

-0.018 0.574 2.78(1.91,3.79)
2.74

(2.00,3.62)
2.75

(2.00,3.64)
0.015 0.576 0.430 0.0

ISIMatsuda 3.38
(2.61,4.43)

3.77
(2.70,5.03)

3.37
(2.63,4.90)

0.031 0.249 3.28(2.66,4.62)
3.43

(2.66,4.62)
3.39

(2.71,4.40)
-0.002 0.916 0.337 0.0
frontier
Data are expressed as median (interquartile range). IFG, impaired fasting glucose; IGT, impaired glucose tolerance; WHR, waist-to-hip ratio; HOMA-b, homeostasis model assessment of b-cell function; IGI,
insulinogenic index; CIR, corrected insulin response; DIo, oral disposition index; HOMA-IR, homeostasis model assessment of insulin resistance; ISIMatsuda, Matsuda’s insulin sensitivity index; All P values
were two-tailed and P < 0.05 was been considered as significant.. Phet, P values for heterogeneity. The heterogeneity was considered significant with I2 > 75% and P < 0.05.
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increased risk of prediabetes likely arises from the combined

influence of genetic and environmental factors. A single genetic

variation may be difficult to fully explain the risk, highlighting

the need to consider gene-environment interactions.

MTNR1B is a glycemic-related gene. Genetic variants in

MTNR1B associated with fasting plasma glucose levels are

increasingly known across ethnic groups (29). Previous studies

have established that some SNPs in MTNR1B are associated with

higher fasting plasma glucose levels, such as the rs1387153 T allele

(30), the rs10830963 G allele (31), the rs1447352 G allele (18),

rs2166706 G allele (17). In our study, after stratifying people by

BMI status, we also found that the minor (G) allele of the variant

in MTNR1B rs724030 was associated with a per-allele increase of

0.029 (95%CI 0.007–0.050) mmol/L and 0.153 (95%CI 0.067–

0.240) mmol/L in fasting plasma glucose levels (P = 0.009) and 30-

minute plasma glucose levels (P = 0.001), respectively, in the NGT

individuals with normal BMI levels. It demonstrated that studies

of continuous glycemic traits in the NGT individuals can improve

the understanding of the mechanisms involved in b-cell function
and glucose homeostasis. However, we found no association

between this variant and 120-minute plasma glucose levels in all

participants. Among individuals who are overweight and obese in

the NGT individuals, we found no association between this variant

and glycemic-related traits. At the same time, no associations were

found in the IFG/IGT individuals. Therefore, we suggest that the

G allele of rs724030 in MTNR1B may have a possible association

with higher plasma glucose levels in populations with normal

glucose tolerance and with normal BMI levels but not in

populations in the prediabetic state. It may be a potential risk

factor for abnormal glucose metabolism in healthy individuals in

the future but needed to be further verified. HbA1c reflects the

average plasma glucose levels over the past three months and

indicates long-term glycemic status, unlike fasting plasma glucose

(32). As previously shown, rs1387153 (33) and rs10830963 (34) in

MTNR1B are associated with increased HbA1c levels. However,

we found no association between rs724030 and HbA1c levels in all

subgroups, the individals we studied were elderly subjects based

on OGTT or ethnic heterogeneity may contribute to the

inconsistent results.

Melatonin, a neurohormone, regulates the circadian rhythm

by transmitting photoperiodic information from the eyes to the

brain. Melatonin signaling is mainly mediated by two high-affinity

receptors, MT1 and MT2, encoded by theMTNR1A andMTNR1B

genes, respectively (35). MT2-mediated melatonin signaling could

indirectly regulate glucose levels and insulin secretion through the

brain control center of the circadian clock (30). In rodent and

human islets, MTNR1B is expressed and co-localizes with insulin.

Researchers have demonstrated that treating the pancreatic beta-

cells with melatonin can worsen insulin secretion and that

exogenously administered melatonin inhibits insulin secretion in

rodents (36). MTNR1B is identified to inhibit glucose-stimulated

insulin secretion through binding with melatonin and decreasing

cAMP levels (10). Consistent with previous studies, herein, in the

NGT individuals, we observed that subjects carrying the minor

(G) allele of the variant in MTNR1B rs724030 tend to have lower

IGI and DIo levels. These two indicators can measure b-cell
Frontiers in Endocrinology 09
function adjusted for insulin sensitivity and predict the

development of diabetes over ten years (37). Previous studies

have also demonstrated that the rs10830963 G allele in MTNR1B

is associated with decreased insulin secretion measured as CIR,

AUCIns/AUCGluc (38), peak insulin response, acute insulin

response (AIR), disposition index (DI) (16). Similarly, Palmer,

N.D. et al. also found that rs1387153 T allele in MTNR1B affects

insulin secretion pathways reflected by AIR and disposition index

(DI) (39). It demonstrated that variants inMTNR1B can influence

b-cell function. In our study, we found that the G allele of

rs724030 in MTNR1B was associated with decreased IGI (P =

0.001) and DIo (P = 0.007) in the NGT individuals, especially in

those NGT participants with normal BMI levels. It indicates that

this indicator can reflect the deterioration of b-cell function and

predict the possibility of impaired plasma glucose regulation.

However, similar association wasn’t found in obese subgroups in

the NGT individuals, and no associations in the IFG/

IGT individuals.

It is well known that obesity has continued to increase for

three decades worldwide (40) and has become a tremendous

public health concern globally. Obesity can be categorized as

general and abdominal obesity, while abdominal obesity has

been established to be associated with T2DM (41). Among the

conventional indicators of obesity, waist circumference and WHR

are used to reflect abdominal obesity, and BMI is used to reflect

general obesity. Previous studies have identified that increased

waist circumference and WHR is associated with higher T2DM

risk (42). Probably because the distribution of abdominal fat

correlates with increased insulin resistance. Consistent with

previous observations, in the NGT individuals, we found that

the minor (G) allele of the variant in MTNR1B rs724030 is

associated with decreased IGI, CIR, and DIo, especially in

female subjects with WHR greater than 0.85. Moreover, this

correlation was specific due to the significant heterogeneity in

the corresponding male subgroup. Possible explanations for this

finding include the following: Differences in sex hormone levels,

such as estrogen and testosterone, may influence fat distribution,

with women tending to accumulate fat in the abdomen, hips, and

thighs. Additionally, men and women differ in insulin secretion,

sensitivity, and glucose metabolism, which could result in sex-

specific effects of the same SNP. Lastly, variations in diet, exercise,

and lifestyle habits between men and women may amplify the

SNP’s sex-specific effects through gene-environment interactions.

At the same time, we did not find any association between this

variant and islet function/islet resistance indices in the IFG/IGT

individuals after stratifying by WHR. We hypothesize that

abnormal glucose regulation may obscure the effects of other

factors on islet function, such as genetic variants.

The strengths of this study included that OGTT was used to

recognize the status of glucose regulation in every group population,

which allowed us to identify the association between the variant and

postprandial indices. More importantly, this is the first study to

investigate the associations of this variant with clinical features and

islet function/resistance in the Chinese Han population. The present

study also has some inevitable limitations. For example, findings of this

study are unlikely to be explained by a single genetic variant alone. A
frontiersin.org
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limitation of this study is the lack of consideration for potential

confounding environmental factors, such as diet, physical activity,

and other lifestyle behaviors, which are known to significantly

influence glucose levels and insulin resistance. While we focused on

genetic associations, the absence of detailed data on these variables

limits our ability to fully disentangle genetic effects from environmental

influences. Future studies should integrate comprehensive assessments

of lifestyle factors to provide a more holistic understanding of the

interplay between genetics and environment in determining metabolic

outcomes. While this study primarily focuses on the analysis of

MTNR1B gene variants and their associations with prediabetes risk,

we acknowledge the limitation of not including variants from other

genes that may also contribute to prediabetes risk. Future studies

including a broader range of genetic variants would provide a more

comprehensive understanding of the genetic architecture underlying

prediabetes susceptibility.

In conclusion, we found that the MTNR1B rs724030 variant is

correlated with the increase of fasting and 30-minute plasma

glucose levels in the NGT individuals with normal BMI levels.

Importantly, we also found that this variant is associated with the

impairment of islet function measured as IGI and DIo in the same

subgroup. Moreover, the current study provides, for the first time,

insights into the sex dimorphisms of the effects of the MTNR1B

rs724030 variant on impairing islet function after stratifying by

WHR in the NGT individuals. These discoveries provide a basis for

accurately assessing islet function in healthy Chinese populations

and offer a new perspective on precision prevention. Future studies

must further explain the BMI-specific differences and sex

dimorphisms in this variant’s impact on islet function.
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