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Causal relationships of familial
hypercholesterolemia with the
risk of multiple vitamin
deficiencies: a Mendelian
randomization study
Cheng Zhang1†, Gang Wei2†, Huan Zhou1* and Lin Liu1*

1National Drug Clinical Trial Center, The First Affiliated Hospital of Bengbu Medical University,
Bengbu, Anhui, China, 2Beijing Key Laboratory of Diabetes Research and Care, Department of
Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University,
Beijing, China
Background: The causal relationship between familial hypercholesterolemia (FH)

and various vitamin deficiencies has not yet been elucidated. Therefore, this

study investigated the cause-and-effect relationship between FH and the risk of

multiple vitamin deficiencies in humans.

Methods: Mendelian randomization (MR) analysis was performed by extracting

six datasets for FH, FH with ischemic heart disease (IHD), and vitamin deficiency

(vitamin A, thiamine, other B-group vitamins, and vitamin D) from the FinnGen

study, covering a total of 329,115; 316,290; 354,932; 354,949; 355,411 and

355,238 individuals, respectively.

Results: FH was suggestively associated with higher odds of thiamine deficiency

[inverse variance weighted odds ratio (ORIVW) 95% confidence interval (CI): 1.62

(1.03, 2.55), P = 0.036] and vitamin D deficiencies [ORIVW CI: 1.35 (1.04, 1.75), P =

0.024], low-density lipoprotein receptor (LDLR) rs112898275 variant, rs11591147

and rs499883 in proprotein convertase subtilisin/kexin 9 (PCSK9), rs9644862 in

cyclin-dependent kinase inhibitor 2 B antisense RNA1 (CDKN2B-AS1), and

rs142834163 in dedicator of cytokinesis 6 (DOCK6) and rs115478735 in ABO

blood group (ABO) strongly influenced the risk of thiamine deficiency, while the

rs7412 variant in apolipoprotein E (APOE) mostly influenced the risk of vitamin D

deficiency. FH with IHD was suggestively associated with higher odds of vitamin

D deficiency (ORIVW, weighted median [WM][95%CI]: 1.31 [1.05, 1.64]; 1.47 [1.10,

1.97]) (P = 0.018; 0.010) without any single significant SNPs observed.

Conclusion: FH was positively associated with increased risks of thiamine and

vitamin D deficiencies, revealing a prospective and unfortunate complication

of FH.
KEYWORDS
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Introduction

Vitamins are a cluster of organic substances that sustain the

growth, reproduction, and homeostasis of the human body (1).

They exist as fat-soluble (vitamins A, D, E, and K) and water-

soluble (vitamins B and C) vitamin forms (2). Except for vitamin D,

which can be synthesized by humans, the other vitamins are

obtained from food intake and gut microbiota (2, 3). Vitamin

deficiency is common worldwide at all ages (4). Minor vitamin

deficiencies are insidious and often overlooked in the clinic, but can

have severe negative effects (4). The most common examples of

these effects include xerophthalmia, anemia, a high incidence rate of

infectious diseases (vitamin A), beriberi (thiamine or vitamin B1),

rickets, osteomalacia, and a possible association with increased

infectious diseases (vitamin D) (4). Globally, vitamin A deficiency

occurs in nearly 30% of children <5 years of age. The morbidity of

thiamine deficiency is 20%–90%, and the regional epidemic rate of

vitamin D deficiency is 5.5–85.1% (5–7). Vitamin deficiency has

become an important public health issue due to its high prevalence

and undesirable endpoints (8).

Familial hypercholesterolemia (FH) is a congenital mal-

transportation of lipids bearing homozygous or heterozygous

family mutated genes, which is marked by a superelevation of

plasma low-density lipoprotein cholesterol (LDL-C) levels (9). This

overload can genetically accelerate vitamin D deficiency (10).

Additionally, it has been reported from observational investigation

that vitamins D, B6, and B12 deficiencies occurred in hyperlipidemic

patients, with vitamins B6 significantly negatively associated with

total cholesterol and non-HDL levels (11). Hence, patients with FH

are likely complicated with multiple vitamin deficiencies, spanning

the entire course of disease. However, the known Mendelian effect of

high LDL-C levels on vitamin D deficiency has significant pleiotropy

(10); meanwhile, the observational investigation has the sample size

of only 60 (including 40 hyperlipidemic patients and 20 healthy

controls), and the subjects of only males from Jordanian (11).
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Therefore, the Mendelian model of FH can be applied to assess the

future risk of multiple vitamin deficiencies to ensure its prevention in

the background of FH.

Mendelian randomization (MR) design assessed the possible

causal relationship between FH and the risk of multiple vitamin

deficiencies, including vitamin A, thiamine, other B-group vitamins,

and vitamin D.
Materials and methods

Figures 1, 2 show the graphical abstract and an overview of the

study design, respectively. AnMR design based on public summary-

level data derived from genome-wide association studies (GWASs)

was adopted to evaluate the possible causal relationship between FH

and ischemic heart disease (IHD) with the risk of multiple vitamin

deficiencies (vitamin A, thiamine, other B-group vitamins, and

vitamin D).
Instrumental variable selection

Genetic variants of FH (ICD10: E7800) and FH with IHD were

obtained from a recently published GWAS of European ancestry

(FinnGen) (N = 329,115; 316,290) (Supplementary Table S2).

Summary datasets are available on the following websites (https://

storage.googleapis.com/finngen-public-data-r9/summary_stats/

finngen_R9_E4_FH.gz and https://storage.googleapis.com/

finngenpublic-data-r9/summary_stats/finngen_R9_E4_FH_

IHD.gz). In the MR analysis, IVs were chosen on the basis of

specific criteria. Single nucleotide polymorphisms (SNPs)

associated with FH and FH with IHD were selected at a genome-

wide significance level of P < 5×10−8. When the r2 of SNPs was <

0.001 within a 10000 kb window, the SNP with a more significant P-

value was retained from the analysis. SNPs not available in the
FIGURE 1

Graphical abstract of this study.
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vitamin deficiency datasets were either replaced with proxy SNPs in

high linkage disequilibrium (LD, r2 > 0.9) or discarded. Finally,

palindromic SNPs were discarded based on their allele frequencies.

The use of strong instruments is key to improving the accuracy and

efficiency of estimating causal effects in the MR model. However, if the

genetic variation is only weakly linked to the exposure variable, it may

introduce bias in the estimates of the MR model, which is commonly

referred to as weak instrument bias (12). We further assessed the

strength of genetic variants by computing the F-statistic (F = b2/SE2)
for each SNP, ensuring that the F-statistic exceeded 10 (12, 13). In this

study, the minimum F-statistic observed was 30.85, suggesting strong

instruments and consequently a low likelihood of bias from weak

instruments. Supplementary Table S1 provides an overview of these data.
Outcome data source

Genetic variants of multiple vitamin deficiencies (vitamin A

(ICD10: E50), thiamine (ICD10: E51), other B-group vitamins

(ICD10: E53), and vitamin D (ICD10: E55)) were obtained from

FinnGen (N = 354,932; 354,949; 355,411; and 355,238, respectively).

The summary dataset is available on the website (https://

storage.googleapis.com/finngen-public-data-r9/summary_stats/

finngen_R9_E4_VIT_A_DEF.gz; https://storage.googleapis.com/

finngen-public-data-r9/summary_stats/finngen_R9_E4_THIA_

DEF.gz; https://storage.googleapis.com/finngen-public-data-r9/

summary_stats/finngen_R9_E4_VIT_B_DEF.gz; https://

storage.googleapis.com/finngen-public-data-r9/summary_stats/

finngen_R9_E4_VIT_D_DEF.gz). Supplementary Table S2

provides detailed information.
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Statistical analyses

The MR method was used to explore the causal associations

between genetically predicted differences per standard deviation

(SD) increases in FH and the risk of vitamin deficiency by reporting

odds ratios (ORs). The conventional inverse-varianceweighted (IVW)

and weighted median (WM) methods were used in the primary

analysis (14). Cochran’s Q test using the IVW model was applied to

quantify heterogeneity (15). TheMR-Egger regressionmodelwas used

to determine unknown pleiotropic effects. A non-zero intercept from

MR-Egger indicates that the IVW estimate may be invalid due to

horizontal pleiotropy (16). Sensitivity analysis based on theMR-Egger

regression model and leave-one-out sensitivity analysis were

performed (16). Furthermore, the PhenoScanner database was

searched to assess the association of the selected SNPs with possible

pleiotropy at a genome-wide significance level of P <5×10−8 (17, 18).

To strengthen the reliability of the results, this study assessed the

statistical power of significant associations. This calculation

determined the probability of detecting a true effect in this MR

study, considering the specified sample size and effect size (19, 20).

All statistical analyses were conducted using R software (R 4.0.5,

The R Foundation for Statistical Computing) and the

“TwoSampleMR” package (21). The Bonferroni correction is a

conservative method for probability thresholding to control the

occurrence of false positives. To account for multiple testing, the

Bonferroni correction threshold of P-value < 6.25 × 10-3 (0.05/8 [2

exposures and 4 outcomes]) was prespecified. Significance was

determined at a P-value < 6.25 × 10-3, while the P-values between

6.25 × 10-3 and 0.05 was considered suggestive (22, 23). For analyses of

heterogeneity and pleiotropy, P-value < 0.05 indicated significant (22).
FIGURE 2

Flowchart of the Mendelian randomization analyses of familial hypercholesterolemia and the risk of multiple vitamin deficiencies. FH,
familial hypercholesterolemia.
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Results

Genetic variants associated with
familial hypercholesterolemia

The genetic tool extraction identified 13 SNPs related to FH,

and 10 SNPs related to FH with IHD (all P < 5×10−8, r2 < 0.001,

10000 kb) (Supplementary Table S1).
Cause-and-effect relationship of familial
hypercholesterolemia with multiple
vitamin deficiencies

The primary results of IVW and WM estimated the causal

relationship between FH/FH with IHD and multiple vitamin

deficiencies. The outcomes of IVW model suggested positive

genetic causal associations between FH and deficiencies of

thiamine and vitamin D, respectively (OR [95%CI]: 1.62 [1.03,

2.55]; 1.35 [1.04, 1.75]) (P = 0.036; 0.024). Similarly, the outcomes

of IVW and WM models suggested positive genetic causal

association between FH with IHD and vitamin D deficiency (OR

[95%CI]: 1.31 [1.05, 1.64]; 1.47 [1.10, 1.97]) (P = 0.018;

0.010) (Table 1).

In addition, no causal relationships showed between FH and the

risks of deficiencies in vitamin A and other B-groups vitamins, and

between FH with IHD and the risks of deficiencies in vitamin A,

thiamine, and other B-group vitamins (P > 6.25 × 10-3) (Table 1).
Frontiers in Endocrinology 04
Sensitivity analysis of familial
hypercholesterolemia with multiple
vitamin deficiencies

Sensitivity analysis was conducted on the suggestive exposure-

outcome associations obtained to verify their reliability. No

significant heterogeneity (P = 0.52) and horizontal pleiotropy

(P = 0.40) were observed in the correlation analysis between FH

and thiamine deficiency. No significant heterogeneity (P = 0.88) and

horizontal pleiotropy (P = 0.28) were observed in the correlation

analysis between FH and vitamin D deficiency. No significant

heterogeneity (P = 0.55) or horizontal pleiotropy (P = 0.62) was

observed in the correlation analysis between FH with IHD and

vitamin D deficiencies (Table 2).

The leave-one-out analysis was used to analyze single instrumental

variable influencing the causal effects of FH/FH with IHD on multiple

vitamin deficiencies. Leaving rs112898275, rs115478735, rs11591147,

rs142834163, rs499883, and rs9644862 out respectively abrogated the

correlation of FH with thiamine deficiency (b = -0.32103, 0.141933,

-0.50812, 0.508043, 0.144529, 0.115318) (Figure 3A; Supplementary

Table S1). Leaving rs7412 out, the correlation of FH with vit D

deficiency did not remain (b = -0.42272) (Figure 3B; Supplementary

Table S1). However, the correlation between FHwith IHD and vitamin

D deficiency remained even after removing any single

SNPs (Figure 3C).

Moreover, the statistical power of FH and thiamine/vitamin D

deficiencies were 50%/49%, and FH with IHD and vitamin D

deficiency was 49%.
TABLE 1 Inverse variance-weighted and weighted median analyses of familial hypercholesterolemia and risk of multiple vitamin deficiencies.

Exposure Outcome

Inverse variance-
weighted method

Weighted median method

SNPs, n OR
(95%CI)

P-value SNPs, n OR
(95%CI)

P-value

Familial hypercholesterolemia
Vitamin A deficiency

13
0.68

(0.42, 1.12)
0.13 13

0.93
(0.48, 1.77)

0.82

Vitamin thiamine deficiency
13

1.62
(1.03, 2.55)

0.036 13
1.61

(0.85, 3.06)
0.15

Deficiency of other B
group vitamins

13
0.91

(0.73, 1.13)
0.38 13

0.90
(0.68, 1.21)

0.49

Vitamin D deficiency
13

1.35
(1.04, 1.75)

0.024 13
1.21

(0.86, 1.72)
0.28

Familial hypercholesterolemia,
with ischemic heart disease Vitamin A deficiency

10
0.99

(0.65, 1.51)
0.96 10

1.01
(0.58, 1.77)

0.97

Vitamin Thiamine deficiency
10

1.40
(0.94, 2.07)

0.10 10
1.56

(0.92, 2.65)
0.10

Deficiency of other B
group vitamins

10
0.96

(0.79, 1.16)
0.67 10

0.95
(0.73, 1.22)

0.67

Vitamin D deficiency
10

1.31
(1.05, 1.64)

0.018 10
1.47

(1.10, 1.97)
0.010
fro
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Discussion

This study is the first to evaluate the causal effect of FH on the

development of multiple vitamin deficiencies. The results of the MR

analysis suggested positive associations between FH and thiamine

and vitamin D deficiencies. Unlike FH, FH with IHD was only

positively associated with higher odds of vitamin D deficiency.

Significant associations were further tested using a leave-one-out

sensitivity analysis of the mechanism. The typical signals are

depicted in Figure 4.
Cause-and-effect relationship of familial
hypercholesterolemia with
thiamine deficiency

Rs112898275 is a SNP in the low-density lipoprotein receptor

(LDLR) gene shown in the Phenoscanner database. LDLR is 45 kb
Frontiers in Endocrinology 05
long, is located on the short arm of chromosome 19p13.2, and

includes 18 exons and 17 introns (24–26). LDLR gives rise to the

LDLR protein comprising 860 amino acids harboring a 21-amino

acid signal peptide (26). The LDLR protein is processed in the

endoplasmic reticulum (ER), where the signal peptide is cleaved; the

cleaved protein is then transformed into a mature 160-kDa (839

amino acids) glycoprotein by glycosylation (25). Mature LDLR is a

transmembrane receptor located on most cellular surfaces and

includes LDL receptor type A (LA) repeats, an epidermal growth

factor precursor (EGFP), a transmembrane section, and a

cytoplasmic tail with at least one NPxY theme (25, 27). The LA

repeats bind to LDL-C on the cell membrane, and EGFP facilitates

the combination of LDLR with proprotein convertase subtilisin/

kexin 9 (PCSK9) on the hepatocellular surface (primary) and in the

trans-Golgi network (TGN) (secondary), and liberation of bound

LDL-C in the endosome, whereby LDLR/PCSK9 and released LDL-

C are targeted for lysosomal degradation and non-adherent LDLR

returns to the cell surface for reutilization (27, 28). LDLR
TABLE 2 Cochran’s Q test, MR–Egger intercept and MR-Egger regression of familial hypercholesterolemia and risk of multiple vitamin deficiencies.

Exposure Outcome

Cochran’s
Q test†

MR-Egger intercept‡ MR-Egger regression

P-value b SE P-value SNPs, n b SE P-value

Familial hypercholesterolemia Vitamin A deficiency 0.60 0.06 0.11 0.61 13 -0.63 0.53 0.26

Vitamin thiamine deficiency 0.52 0.09 0.10 0.40 13 0.11 0.48 0.83

Deficiency of other B
group vitamins 0.58

-0.03 0.05 0.53
13

0.03 0.23 0.89

Vitamin D deficiency 0.88 0.07 0.06 0.28 13 0.02 0.28 0.94

Familial
hypercholesterolemia,
with ischemic heart disease

Vitamin A deficiency 0.52 0.10 0.15 0.54 10 -0.37 0.60 0.56

Vitamin thiamine deficiency 0.64 -0.003 0.14 0.98 10 0.34 0.55 0.55

Deficiency of other B
group vitamins

0.84 -0.02 0.07 0.83 10 0.01 0.26 0.96

Vitamin D deficiency 0.55 0.04 0.08 0.62 10 0.12 0.31 0.71
fro
†The Cochran’s Q test is a statistical test for heterogeneity.
‡The intercept term from the MR–Egger regression method is a statistical test of horizontal pleiotropy.
FIGURE 3

(A) Leave-one-out sensitivity and Mendelian randomization analyses based on the inverse-variance weighted (IVW) model for determining the effects
of familial hypercholesterolemia on the risk of thiamine deficiency. (B) Leave-one-out sensitivity and Mendelian randomization analyses based on the
inverse-variance weighted (IVW) model for determining the effects of familial hypercholesterolemia on the risk of vitamin D deficiency. (C) Leave-
one-out sensitivity and Mendelian randomization analyses based on the inverse-variance weighted (IVW) model for determining the effects of familial
hypercholesterolemia with ischemic heart disease on the risk of vitamin D deficiency.
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mutagenesis accounts for > 90% of mutations in FH (29). The

inverse b-coefficients of rs112898275 lead us to hypothesize that

increased LDLR rs112898275 in patients with FH diminishes LDLR

reutilization or adhesion to PCSK9.

Rs11591147 and rs499883 are SNPs in the proprotein

convertase subtilisin/kexin 9 (PCSK9) gene (30). PCSK9 is located

on the small arm of chromosome 1p32 and has a length of 25 kb, 12

exons, and 11 introns (28). The main organ producing PCSK9 is the

liver, followed by the kidneys and intestines (28). PCSK9 initially

synthetizes the inactive 692-amino acid PCSK9 protein with a signal

peptide (amino acids 1–30) (31). The PCSK9 protein is processed in

the ER, where the signal peptide is removed and cleavage occurs

autocatalytically at the VFAQ152-SIP site (28, 31). The cleaved

mature protein is then delivered to the Golgi apparatus in

eukaryotic cells (28, 32). Later, when dispersed in plasma, the

catalytic domain (amino acids 153–421) of the mature PCSK9

protein links with EGFP (amino acids 314–355) of the LDLR on

the cellular surface of liver cells (primary) and in the TGN

(secondary) by protein-protein communication (28, 33). LDLR/

PCSK9 travels into lysosomes from endosomes for degradation,

resulting in inadequate LDLR recycling to the cytomembrane to

eliminate LDL-C (25). The two contrary false expressions of PCSK9

include loss-of-function (LOF), which decreases cholesterol, and

gain-of-function (GOF), which increases cholesterol levels (34).

Among FH mutations, < 1% are GOF mutations in PCSK9; the

remaining >99% are non-GOF (29). The rs11591147 (p.Arg46Leu)

is located in exon 1 of PCSK9; this LOF-mutation site impairs

lysosomal degradation by reducing by 15% the connectivity of

PCSK9 to LDLR, thereby combating high LDL-C (25, 28, 32, 35,

36). Meanwhile, rs499883 is an intronic SNP in PCSK9 that

positively regulates PCSK9 expression via an unknown

mechanism (30). Hence, decreased rs11591147 (p.Arg46Leu) and

increased rs499883 in patients with FH leads to increased PCSK9

levels, which strengthens the binding of PCSK9 to LDLR for

lysosomal degradation, resulting in insufficient LDLR for recycling.
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Rs9644862 is a SNP in the cyclin-dependent kinase inhibitor 2 B

antisense RNA1 (CDKN2B-AS1) gene (known as antisense non-

coding RNA in the INK4 locus (ANRIL), p15AS, PCAT12,

CDKN2BAS , CDKN2B-AS , NCRNA00089) gene (37–39).

CDKN2B-AS1 is located on the short arm of human chromosome

9p21.3 and has 21 exons (40, 41). CDKN2B-AS1, a product of

CDKN2B-AS1, is a 3.8 kb non-coding RNA (lncRNA) (40, 41).

CDKN2B-AS1 protects against neuronal apoptosis by increasing

glial cell-derived neurotrophic factor (GDNF) levels and preventing

neuronal apoptosis by absorbing micro-RNA (miR)-133 (42).

Rs142834163 is a SNP in the dedicator of cytokinesis 6 (DOCK6)

gene, as shown in the Phenoscanner database.DOCK6 (also known as

AOS2 or ZIR1) is located on chromosome 19p13.2 and contains 51

exons (43). DOCK6 encodes the 2047 amino acid DOCK6 protein

(44). DOCK6 belongs to the DOCK family of guanine nucleotide

exchange factors (GEFs), which promote the exchange of guanosine

diphosphate (GDP) with guanosine triphosphate (GTP) to regulate

Rho GTPase activity (45). DOCK6 has two DOCK homology region

(DHR) domains with phospholipid-binding and membrane-

targeting activity in DHR-1 and GEF in DHR-2 (46). During

neurodevelopment, DOCK6 plays a role in neurite outgrowth, axon

growth, and regeneration by exchanging GDP with GTP for ras-

related C3 botulinum toxin substrate 1 (RAC1) and cell division cycle

42 (CDC42), which control lamellipodia and filopodia morphology,

respectively (46–48).

Rs115478735, a SNP in ABO, is strongly associated with plasma

proteins of the immunoglobulin superfamily, including leucine-rich

repeat protein 2 (ISLR2) and protein-tyrosine sulfotransferase 2

(TPST2) (49). ISLR2 (also known as LINX) is a type I transmembrane

protein and a subset of the leucine-rich repeat and immunoglobulin

(LIG) family of proteins comprising five tandem leucine-rich repeats

(LRRs), an immunoglobulin (IG) domain, a transmembrane domain,

and a short cytoplasmic tail (50). ISLR2 uniquely determines axon

extension, guidance, and branching by interacting with Trk receptor

tyrosine kinases (RTKs) to regulate their activities (51). ISLR2 interacts
FIGURE 4

Representative signaling pathways involved in the associations between familial hypercholesterolemia and multiple vitamin deficiencies. ApoE,
apolipoprotein E; PCSK9, proprotein convertase subtilisin/kexin 9; CDKN2B-AS1, cyclin-dependent kinase inhibitor 2B antisense RNA1; LOF, loss of
function; GOF, gain of function; LDLR, low-density lipoprotein receptor.
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with and enhances Rho-kinase activity to rebuild the cytoskeleton during

neuronal development (50). TPST2 is a tyrosyl protein sulfotransferase

(TPST), a membrane-bound enzyme that catalyzes the protein-tyrosine

sulfation in the cellular TGN by transferring a sulfuryl group from 3’-

phosphoadenosine 5’-phosphosulfate (PAPS) to tyrosine residues (52).

Tyrosine sulfation plays an elusive role in neuronal growth and

maintenance (52).

In the central nervous system (CNS), LDLR is predominantly

located in neurons, astrocytes, and oligodendrocytes and blocks

neuronal pyroptosis by hindering ROS-NLRP3 inflammasome

activation (53). In animal models, the absence of LDLR increases

ROS generation, vulnerability to amyloid-b (Ab)-induced
neurotoxicity, and caspase-1-dependent gasdermin D (GSDMD)

cleavage, and leads to neuronal pyroptosis (53, 54). Besides,

shortage of LDLR can also increases blood LDL levels for more

LDL oxidation (25, 55). Therefore, patients with FH who lack LDLR

naturally develop neuronal dysfunction and elevation of serum

oxidized low-density lipoprotein (ox-LDL) levels.

Thiamine is a water-soluble vitamin; Thiamine is present in

meat, beef, pork, legumes, whole grains, and nuts; however, milled

rice and grains contain small amounts of thiamine because the

processing involved in creating these food products removes

thiamine. Additionally, food products such as tea, coffee, raw fish,

and shellfish contain thiaminases that destroy thiamine (56). Intake

thiamine, in cationic form of T+, is hydrolyzed by intestinal

phosphatase into free form, following absorbed by small intestine

(57, 58). Thiamine diphosphate (TDP), also named as Thiamine

pyrophosphate (TPP), which is derived from T+ by thiamine

pyrophosphokinase-1 (TPK1), is the main active form of

Thiamine, playing as a co-enzyme for glucose, amino acid, and

lipid metabolism (57, 58). Thiamine favors neuronal function by

serving as a site-specific antioxidant, and promotes energy

production by utilizing carbohydrates (59). At the same time,

TPP prevents atherosclerosis by reducing macrophage uptake of

ox-LDL via antagonizing macrophage P2Y6 receptor (60). In

patients with FH, Thiamine may be required to not only repair

secondary neuronal damage but also decrease macrophage uptake

of excessive ox-LDL, both of which caused by a lack of LDLR.

Thiamine deficiency begins when demand exceeds supply, and poor

intake intensifies this damage. The effects of decreased rs112898275

and rs11591147, combined with increased rs115478735,

rs142834163, rs499883, and rs9644862 on thiamine deficiency

requires further investigation.
Cause-and-effect relationship of familial
hypercholesterolemia with vitamin
D deficiency

Rs7412 is a SNP in the apolipoprotein E (APOE) gene (61).APOE

resides on chromosome 19p13.32 and is 3,612 bp in length, including

four exons and three introns (62). The liver is the dominant expresser

of ApoE, which is less abundant in the brain, spleen, kidneys, gonads,

adrenal glands, and macrophages (61). APOE originally generates the

317-amino acid apoE precursor, including an 18-amino acid signal
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peptide (62). Cleavage of this 18-amino acid signal peptide and

glycosylation results in the conversion of the precursor into a

mature 299-amino acid, 34,200-kDa protein (61). Apo appears in

chylomicrons, very low-density lipoprotein (VLDL), intermediate-

density lipoprotein (IDL), LDL, high-density lipoprotein (HDL), and

lipoprotein (a) (Lp(a)), and connects to each corresponding receptor

to clear them (61). ApoE has a 22-kDa receptor-binding amino-

terminal domain (amino acids 1–191) near residues 136–150 and a

10-kDa lipid-binding carboxyl-terminal domain (amino acids 216–

299) (63). The three subtypes—apoE2 (Cys112; Cys158), apoE3

(Cys112; Arg158), and apoE4 (Arg112; Arg158)—result from the

APOE*e2, APOE*e3 and APOE*e4 alleles, with rs7412 in exon 4

contributing to codon 158 (64–66). ApoE2 from rs7412

(p.Arg176Cys), deforms the salt bridge in the structure to reduce the

positive potential in the receptor-binding region, which reduces the

affinity of apoE2 to the LDLR, VLDL receptor (VLDLR), and LDLR-

related protein (LRP) (61). In contrast, apoE2 rs7412 (p.Arg176Cys)

prevents the hydrolysis of triglycerides in VLDL to form VLDL

remnants (IDL) as LDL precursors by inhibiting lipoprotein lipase

(LPL) on the capillary endothelium (61). This mutation accounts for

nearly 8% of the population and results in an LDLR affinity of < 2% of

normal, which represents as negativity for b-coefficient with LDL-C in

FH, consistent with the findings of this study (67, 68). Thus, decreased

rs7412 (p.Arg176Cys) in patients with FH increases LDL-C levels

through the joint effects of apoE2 adhesion and VLDL hydrolysis.

Moreover, apoE2 is correlated with low bone mass and bone mineral

density (BMD), as reflected by biomarkers of high bone resorption,

including a reduced serum ratio of osteoprotegerin/receptor activator

of nuclear factor kappa B (NFkB) ligand (OPG/RANKL) in men and

high serum C-terminus col lagen peptide and urinary

deoxypyridinoline levels in postmenopausal women (69, 70).

Vitamin D is a fat-soluble vitamin; the two most important

members are exogenous vitamin D2 derived from ergosterol in

plants and fungi, and endogenous vitamin D3 derived from 7-

dehydrocholesterol (7-DHC) in the skin (71). 7-DHC stored in the

human epidermis is irradiated with ultraviolet B (UVB) rays (290–315

nm) in sunlight to produce the vitamin D3 precursor. Both vitamins

D2 and pre-D3 are synthesized as blood biomarkers of 25

hydroxyvitamin D (25OHD) in the liver, mainly through equal

catalysis by 25 hydroxylase (CYP2R1) (71). Subsequently, 25OHD is

converted into the active form of 1,25-dihydroxyvitamin D (1,25 (OH)

2D) by 25OHD-1a hydroxylase (CYP27B1) or into the inactive form of

24,25-dihydroxyvitamin D (24,25(OH)2D) by 24-hydroxylase

(CYP24) in the kidney (71, 72). Circulating 1,25 (OH)2D is

transported by vitamin D-binding protein (DBP) to target organ

tissues such as the intestine, kidneys, and bones (71). After binding

with the vitamin D receptor (VDR) in these tissues, 1,25 (OH)2D

regulates the transcription of target genes, thereby playing a classic role

in calcium balance (71). An animal model fed a high-fat and high-

cholesterol diet showed that the reduced production of vitamin D

could be attributed to the alleviated CYP2R1 expression in the liver

induced by increasing circulating cholesterol, glucose, and insulin levels

(72). Thus, vitamin D deficiency may occur due to elevated LDL-C

levels and bone resorption in patients with FH. The effect of rs7412

(p.Arg176Cys) on vitamin D deficiency require further examination.
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Advantages and limitations

This study has several advantages. First, this is the first human-

based study to analyze the cause-and-effect relationship between FH

and the risk of multiple vitamin deficiencies. Second, FH showed

significant harmful effects on thiamine and vitamin D deficiencies.

Third, the results of the leave-one-out sensitivity analysis confirmed

the causal relationships between FH and the risk of thiamine and

vitamin D deficiencies. Moreover, the SNPs contributing to

thiamine and vitamin D deficiencies in FH were identified.

However, this study has several limitations. First, Although

Bonferroni correction was used to control the occurrence of false

positives in the analysis, type I error may be increased by the sample

overlapping of exposures and outcomes, both of which were from

Finngen consortium in this study, leading to bias in classic MR

methods, thus these findings should be interpreted with caution.

Second, the causal association between rs112898275 and thiamine

deficiency has not been reported yet. The effect of rs112898275 in

LDLR region on thiamine deficiency was hypothesized. The actual

contribution of rs112898275 in LDLR region for the association

between FH and thiamine deficiency will be studied in the future.

Third, MR analysis can only calculate the specific OR value without

determining the hazard ratio (HR). Future longitudinal studies

should use log-rank tests and Cox regression models for HR.

Fourth, FH showed no deficiencies in other neurotropic B,

vitamin B6, and vitamin B12 (59), The mechanism, which differs

from that of vitamin thiamine deficiency in FH, requires

clarification in the future. Fifth, another mutation in FH, ApoB,

did not exert an important effect on thiamine and vitamin D

deficiencies. Future studies are needed to elucidate this

mechanism, which is distinct from those of LDLR and PCSK9.

Sixth, only causal associations between FH with IHD and vitamin D

deficiency were detected, and the prominent locus was not

identified by leave-one-out sensit ivity analysis . More

comprehensive measures are needed to elucidate profound

mechanisms that differ from that of FH. Finally, the FinnGen

GWAS database has not yet released data on other vitamins such

as vitamins C, E, and K, and folic acid, which will be analyzed in

the future.
Conclusion

FH was positively associated with increased risks of thiamine

and vitamin D deficiencies, thus revealing a prospective and

unfortunate complication of FH.
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