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Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion

of pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis with a

short median overall survival of 6-12 months and a low 5-year survival rate of

approximately 3%. It is crucial to remove PanIN lesions to prevent the

development of invasive PDAC, as PDAC spreads rapidly outside the pancreas.

This review aims to provide the latest knowledge on PanIN risk, pathology,

cellular origin, genetic susceptibility, and diagnosis, while identifying research

gaps that require further investigation in this understudied area of precancerous

lesions. PanINs are classified into PanIN 1, PanIN 2, and PanIN 3, with PanIN 3

having the highest likelihood of developing into invasive PDAC. Differentiating

between PanIN 2 and PanIN 3 is clinically significant. Genetic alterations found in

PDAC are also present in PanIN and increase with the grade of PanIN. Imaging

methods alone are insufficient for distinguishing PanIN, necessitating the use of

genetic and molecular tests for identification. In addition, metabolomics

technologies and miRNAs are playing an increasingly important role in the field

of cancer diagnosis, offering more possibilities for efficient identification of

PanIN. Although detecting and stratifying the risk of PanIN poses challenges,

the combined utilization of imaging, genetics, and metabolomics holds promise

for improving patient survival in this field.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is predicted to

become the second leading cause of death in North America and

Europe within the next ten years. This is mainly due to the lack of

early diagnosis, effective treatment options, and the increased

burden of cancer (1–4). Unfortunately, 85% of patients with

PDAC are diagnosed as advanced tumors with concomitant

metastases due to a lack of symptoms and early biomarkers.

Although the median survival of patients with advanced PDAC

has increased from 6 months to 12 months, the 5-year survival rate

remains less than 3% (5–7). To reduce the mortality rate of patients

with PDAC, early diagnostic biomarkers need to be discovered and

early diagnosis realized.

The current significant consensus is that PDAC develops from

precursor lesions known as pancreatic intraepithelial neoplasias

(PanINs). In 2016, Voltaggio et al. analyzed intraepithelial neoplasia

in multiple anatomical sites from risk factors and pathobiology; she

described three primary intraepithelial neoplasia, all of which are

non-invasive (8). Intraductal papillary mucinous neoplasms

(IPMNs) and mucinous cystic neoplasms (MCNs) are

macroscopic lesions, while PanINs are microscopic lesions

characterized as flat or papillary, non-invasive epithelial tumors.

The amount of mucus varies, and the degree of cytological and

structural atypia varies as well. PanINs are classified into low-grade,

moderate-grade, and high-grade lesions based on the degree of

structural and cytological dysplasia (9). High-grade dysplasia is

most likely to develop into invasive carcinoma (10). Additionally,

the genes mutated in PanIN lesions are identical to those altered in

PDAC, which helps to establish that PanIN can indeed develop into

invasive cancer. Therefore, studying the progression of PanIN is

crucial to early diagnose and treat of PDAC.

Telomere shortening and activating point mutations in the

KRAS gene are among the earliest genetic alterations observed in

PanIN. KRAS alterations hold promise as a biomarker for precursor

lesions, but cannot provide information on the grade of the lesion

(11, 12). Inactivating mutations in the p16/CDKN2A gene begin to

appear in PanINs with low to moderate dysplasia, while inactivating

mutations in the oncogenes SMAD4 and TP53 occur only in

PanINs with high-grade dysplasia, indicating that they are “late”

events (9, 13). Moreover, miR-21 and miR-155 have been found to

be overexpressed in PanINs compared to normal pancreatic ductal

cells (14). The identification and treatment of PanINs may be

effective in preventing the progression of fatal PDAC (15).
2 Pathology of PanIN

PanIN is a common lesion found in the pancreas. In the past,

due to the lack of strict diagnostic criteria, leading to various

descriptions such as ductal hyperplasia, metaplasia, proliferation,

dysplasia, neoplasia, and carcinoma in situ lesions, which have

increased the difficulty of correct understanding of PanIN (16–18).

However, current knowledge about PanIN is much clearer and

more precise.
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PanIN originates in the pancreas’s small ducts and is a

microscopic neoplastic lesion in the smaller pancreatic ducts,

usually less than 5 mm in diameter, and typically associated with

centrilobular atrophy of the pancreatic lobules. Currently,

morphological grading of PanINs is performed based on the

degree of cytoarchitecture and nuclear heterogeneity and is

classified into three types, PanIN 1, PanIN 2, and PanIN 3.

PanIN 1 lesions are typically flat or papillary, with columnar

epithelium and basally oriented round nuclei, and are rich in

mucin. PanIN 2 is papillary with dysplastic nuclei, such as

loss of polarity, nuclear crowding, cell enlargement, and

hyperpigmentation. PanIN 3 is papillary, micropapillary, or

cribriform, and possesses many features of invasive carcinomas,

such as severe nuclear atypia, a general loss of nuclear polarity,

significant epithelial outgrowth into the lumen, significantly

reduced or absent mucin, and the presence of dystrophic cupped

cells (19). Although PanIN 3 has been considered a ductal

carcinoma in situ, it is still a non-invasive lesion bounded by the

basement membrane.

While some researchers have suggested that PanIN is only a

reactive chemosis lesion, the presence of cancer-associated gene

mutations in most PanIN lesions indicates that PanIN is a

neoplastic lesion. Similar to PDAC, the prevalence of PanINs also

increases with age (20). In a study by Andea et al., the frequency and

clinical characteristics of PanIN in PDAC and benign pancreas were

compared. The results showed that the frequency of PanIN lesions

was 82% in patients with PDAC, which was significantly higher

than the 54% found in benign pancreata. Additionally, there was a

progressive increase in the frequency of overall PanIN lesions (16%,

60%, and 82%, respectively) and PanIN 3 (0%, 4%, and 40%,

respectively) from normal pancreas to pancreatitis and PDAC

(21). These findings indirectly support the hypothesis that PanIN

lesions have a precancerous role. PanIN 1 is more commonly found

in benign pancreas, PanIN 2 is more frequently observed in

pancreatic tumor tissue, and PanIN 3 is almost exclusively

detected in PDAC (21).

A recent study of PanIN lesions in 173 significant autopsy cases

without PDAC or IPMN revealed that the number of PanIN 3 lesions

was positively correlated with PanIN 1 or PanIN 2. PanIN 3 is a

multifocal lesion that primarily involves interlobular and intralobular

ducts, along with higher-grade extralobular fibrosis. PanIN 3 is more

likely to occur in diabetic and elderly patients (22). Additionally, 71%

of the PanIN 3-containing pancreases showed cystic changes and

lower-grade PanIN lesions. Furthermore, in mouse models of PDAC,

full-spectrum PanIN has been observed before tumorigenesis (23).

The above evidence supports that PanIN is a precancerous lesion of

PDAC. This perspective is further supported by tumor recurrence at

the surgical margin containing unresectable PanIN 3 lesions (24).

Christine et al. performed single-cell sequencing on tumor cells

collected through laser cutting microscopy and confirmed the

evolutionary relationship between PanIN and PDAC, with a subset

of PDAC originating from adjacent PanIN, which provides

persuasive evidence that PDAC originates from PanIN (25, 26).

Notably, PanIN 1 shows a low rate of progression to high-grade

disease, and the probability of progression to invasive cancer from a

single PanIN is only 0.86% (27). Therefore, given the prevalence of
frontiersin.org

https://doi.org/10.3389/fendo.2024.1401829
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pian et al. 10.3389/fendo.2024.1401829
these asymptomatic low-grade PanIN lesions, distinguishing between

PanIN 2 and PanIN 3 is clinically critical.
3 Cellular origin of PanIN

The cellular origin of PDAC remains a topic of various

hypotheses. The current perspective is that PDAC is a disease

localized to the exocrine glands of the pancreas. The exocrine cells

of the pancreas mainly include the acinar cells that secrete

digestive enzymes, the ductal cells that transport the enzymes to

the gut, and the central acinar cells that connect the acinar cells to

the ductal cells (28). Therefore, PDAC may originate from acinar

cells, ductal cells, or central acinar cells (Figure 1). Furthermore,

primary cilia are believed to play a significant role in modulating
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growth factor signaling pathways. In PDAC and PanIN, a key

characteristic is the arrest of ciliogenesis. This suggests that

primary cilia may also be involved in the progression of PanIN

lesions (29).

Despite the classification of tumors based on their histological

appearance, morphologic features do not necessarily predict cellular

origin. Histological analysis indicates that pancreatic intraepithelial

neoplasia (PanIN) may originate from ductal epithelium cells,

hence its name (17). Conversely, mouse models of PDAC

development suggest that in addition to ductal cells, PanIN may

also develop from central acinar cells or acinar cells (30–32). The

tumor microenvironment significantly influences the emergence of

pancreatic carcinogenesis, facilitating the interconversion of various

cell types. Therefore, the cellular origin of PanIN remains a

controversial topic to date.
FIGURE 1

Cellular origin of PanIN. PanIN does not appear to arise de novo, but instead derived from the neoplastic transformation of normal cells. PanIN arises
from various cell types within the exocrine compartment of the pancreas, including ductal, acinar, and central acinar cells, as well as stem cells.
These cell populations serve as the source for the development of PanIN lesions.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1401829
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pian et al. 10.3389/fendo.2024.1401829
3.1 PanIN originates from ductal cells

For a long time, the pancreatic duct has been considered as the

cellular origin of PDAC due to its similarity to duct-like

morphology (33, 34). However, this hypothesis was challenged

when genetic mouse models confirmed that acinar cells may also

be a cellular source of PDAC (35–37). A fusion of the cytokeratin 19

promoter (specifically active in pancreatic ductal cells) with mutant

KRAS failed to induce PanIN or PDAC, which negates the

possibility of a ductal origin of PanIN (38). Nevertheless, recent

analysis of somatic variants in human PDAC and precursor lesions

has confirmed that PanIN is a disease that can spread through the

entire ductal system, suggesting that PanIN may still originate from

ductal cells. In patients, multiple discrete PanIN lesions often

represent a single neoplasm that has spread along the ductal

system (32). Therefore, the hypothesis of ductal cells as the origin

of PanIN has been proposed once again. KRAS mutation in

pancreatic ducts accelerates PDAC’s progression in a mouse

model of chronic obstructive pancreatitis (39). A recent study

utilizing tamoxifen-dependent CreERT2 mediated recombination

mice (Hnf1b: CreERT2; KrasG12V) suggests that ectopic expression

and elevated levels of oncogenic mutant KRAS in pancreatic ducts

generate early and late PanIN as well as PDAC (40). However, this

doesn’t necessarily mean that only ductal cells are the original cells

of PanIN, as more evidence suggests the diversification of its

origin cells.
3.2 PanIN originates from acinar cells

Acinar cells are a crucial type of pancreatic constituent cells that

have been found to be the predominant origin cells for KRASG12D-

induced PanINs in various studies. Acinar cells are the main type of

pancreatic constituent cells. When oncogenic Kras is activated in

combination with chronic inflammation, a high-fat diet, or

mutations in tumor suppressor genes (SMAD4/DPC4 and P53),

adult acinar cells lead to the transformation of PanIN lesions into

PDAC (41–43). During embryonic development in mouse models,

the pancreatic lineage expresses endogenous KRAS oncogene,

which can replicate human PanIN and PDAC in a faithful

manner. When endogenous KRASG12V oncogene is expressed in

embryonic acinar/centroacinar cells in mice, they produce PanIN

and PDAC. These findings suggest that PDAC may originate from

acinar/centroacinar cells or their precursors that differentiate into

duct-like cells (30).

Studies have shown that changes in the transcriptional network

of acinar cells can affect early events induced by KRASG12D (35, 37,

44). In mice expressing KRASG12D but lacking MIST1, an acinar-

restricted transcription factor, severe exocrine pancreatic defects

occur, and the initiation and progression of PanIN are greatly

accelerated (44). Since Mist1 is not expressed in centroacinar cells

or duct cells, these findings suggest that altering the acinar Mist1

transcriptional network has a profound effect on the development

of PanIN. Kopp et al. conducted a comparison of the propensity of

ductal/centroacinar cells and acinar cells to form PanIN in response

to oncogenic KRAS. To induce recombination of the KRASG12D
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allele in ductal/centroacinar cells or acinar cells, they used Sox9CreER

or Ptf1aCreER mice, respectively. Their findings showed that all

Ptf1aCreER;KrasG12D mice displayed abundant PanIN, in contrast,

only 57% of Sox9CreER;KrasG12D mice displayed a small amount of

PanIN (45).

Guerra et al. created a PanIN model of LSL-KrasG12V;Elas-tTA/

tetO-Cre mice that allows controlled temporal expression of

KRASG12V oncogene in acinar and central acinar cells. Between 1

and 3 months of age in this mice, acinar-ductal metaplasia was

observed. The metaplastic acinar structures comprised highly

proliferative cells that included both acinar cells and duct-like cells.

The Notch, TGF-b, and EGF signaling pathways are typically

maintained at high levels in PDAC, providing cells with growth

and survival advantages. Metaplastic acinar structures expressed

Notch target genes, and exhibited mosaic expression patterns for

ErbB2, and pERK. This expression pattern was similar to that of

PanIN, which means that both follow similar molecular pathways.

Thus, it is possible that KRASG12D-induced PanIN may originate

from acinar cells undergoing acinar-ductal metaplasia (46). TGF-a

has been found to induce transdifferentiation of acinar cells into

ductal cells, further supporting the notion that acinar cells can

develop ductal properties and potentially be the origin of PanIN

(47). The ductal origin of PanIN is also possible, although this is more

unusual (48).
3.3 PanIN originates from central
acinar cells

The ductal phenotype of PanIN and other PDAC precursor

lesions such as IPMN and MCN, suggests that pancreatic ducts are

the origin of pancreatic cancer (49). However, recent evidence

emerging from mouse models and lineage tracing studies

challenges the notion that the pancreatic duct is the exclusive

origin of PDAC. A significant amount of evidence suggests that

PDAC may also originate from centroacinar-acinar cells through

the ADM process or the expansion of centroacinar cells (28, 30, 37).

Centroacinar cells, located at the interface of acinar and terminal

duct cells, are considered candidates for pancreatic progenitor cells.

Centroacinar cells are much like duct cells, with only subtle

differences in the characteristics of the apical membrane.

Centroacinar cells are a ductal cell type located at the center of

acini, with active Notch signaling, and expression of the endocrine

differentiation regulator Sox9 (50). SOX9 is a transcription factor

required for the maintenance of the pancreatic progenitor pool and

for determining pancreatic endocrine and exocrine cell fates (51–

53). Wang et al. discovered that SOX9 was expressed in central

acinar cells, ductal epithelial cells, PDAC and its precursor lesions,

but was rarely expressed in other pancreatic tumors (54). When co-

expressed with oncogenic KRAS, SOX9 mutant mice accelerated the

formation of PDAC precursor lesions (45). Pten is expressed in

pancreatic ducts, central acinar cells, and pancreatic islets. Stanger

et al. discovered that mice with pancreas-specific deletion of Pten

exhibit extensive ductal metaplasia with developed PanIN lesions

and malignant transformation. They further found that

centroacinar cells are highly proliferative before the onset of
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metaplasia, and this hyperproliferative state exists at an even greater

level after metaplastic changes. Ductal metaplasia in Pten mutant

mice does not arise from acinar cells, concluding that centroacinar

cells are instrumental in initiating the process of metaplasia (28).

However, more research is necessary to support the evidence that

PanIN can originate from central acinar cells. A subset of central

acinar cells exhibit several markers, such as SOX9, HES1, and

ALDH1B1, which are known to play significant roles in the

development of PDAC and are also associated with cancer stem

cells. This has led to the hypothesis that a subset of central acinar

cells may function as cancer stem cells.
3.4 PanIN originates from cancer
stem cells

In human PDAC primary xenografts and pancreatic cancer cell

lines, a subpopulation of cells with potent tumor initiation or cancer

stem cells (CSCs) has been identified by scholars (55–58). CSCs

contribute to PDAC initiation and metastasis, are pluripotent,

self-renewing, and tumor-forming, and responsible for resistance to

chemotherapy and radiotherapy. CSCs account for less than 1% of all

pancreatic cancer cells, and their origin remains uncertain. However,

it is currently believed that they may emerge from transformed stem/

progenitor cells or terminal cell dedifferentiation (59). The

reactivation of embryonic programs and the expression of genes

related to self-renewal are common to both stem cells and cancer

(60–62). Terminally differentiated cells in the adult pancreas also

display a high degree of plasticity. Efforts have been made to

transform acinar cells into the endocrine lineage, particularly b
cells. Pancreatic acinar cells are prone to dedifferentiate into

duct-like cell phenotypes in response to stresses such as injury or

inflammation. This evidence well demonstrates the ability of terminal

cells to dedifferentiate and retrograde (63–66).

Currently, there is limited research on PDAC CSCs. CD133,

CD24, CD44, EPCAM, and ESA are currently considered the most

comprehensive biomarkers for pancreatic CSCs (67, 68). The

CD133 pancreatic CSCs co-express the CXCR4 receptor play a

crucial role in tumor metastasis (58). Animal experiments have

confirmed a highly tumorigenic subpopulation of CD44 co-express

CD24, EpCAM, and CD133 pancreatic cancer cells that exhibit the

biological properties of CSCs, making them often resistant to chemo

and radiotherapy (55). In addition to cell surface markers, the

cellular molecule ALDH1, which catalyzes the oxidation of

intracellular aldehydes and transforms retinol to retinoic acid, has

also been identified as a pancreatic ductal adenocarcinoma stem cell

marker (67). The ABCG autofluorescent vesicular cell subset in

PDAC has potent CSCs properties with distinct tumorigenic

potential (69). C-Met is also critical in the biology of pancreatic

CSCs (55). The double corticoid-like kinase DCLK1 and the G

protein-coupled receptor LGR5 containing leucine-rich repeats are

also markers of pancreatic CSCs (68). Additionally, 26S proteasome

activity, CD90, and side group (SP) are also included in biomarkers

of CSCs (70–73).

Although the majority of studies suggest that PDAC arises from

PanIN, relatively few investigations have focused on PanIN CSCs.
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A subpopulation of cells containing high levels of DCLK1 and

acetylated aTubulin (AcTub) are present in mouse ADM and

PanIN, these cells display unique sphere-forming capacities

similar to CSCs. AcTub+/DCLK1+ cell subpopulation in ADM

and PanIN epithelium is acinar cell-derived, and these cells have

been shown to enhance clonogenic capacity in vitro and have high

metastatic potential in vivo, both factors are crucial for the

development and progression of PanIN (74, 75). Additionally,

oncogenic KRAS effectively initiates PanIN development in the

DCLK1-expressing cell subset, and deletion of DCLK1 greatly

reduces PanIN formation (75). However, it remains to be further

clarified and characterized whether these are subpopulations of

acinar cells specifically produced by precancerous lesions

and PDAC.
5 Genetic susceptibility and gene
mutation of PanIN

Currently, over 90% of invasive PDAC cases are recognized as

having KRAS mutations (76, 77). Additionally, the most frequent

tumor suppressor genes - CDKN2A, TP53, SMAD4, and BRCA2 -

have been found to be inactivated in PDAC (76). Interestingly,

CDKN2A acts as an inhibitor of copper oxidation and is inactivated

in both PanIN and PDAC. This suggests that copper-iron

dysregulation may also occur in PanIN, though this remains

unstudied. Whether copper-iron imbalances could serve as

diagnostic markers for PanIN, and the potential role of copper

metabolism disorders in the progression from PanIN to PDAC, are

important questions that still need to be explored. In addition to

these, other oncogenes like BRAF, AKT2, MYB, and EGFR, and

tumor-suppressor genes including MAP2K4, TGFBR1, STK11,

TGFBR2, ACVR1B, FBXW7, ACVR2A, and EP300 can also be

mutated in a few PDAC cases (76). Epigenetic changes can also alter

gene function in PDAC, and changes in microRNA expression also

seem to contribute to cancer development and progression. Since

PanIN - the most common precursor lesion of PDAC - is

challenging to detect using current imaging techniques, genetic

and molecular analysis of PanIN becomes even more crucial. PanIN

acquires genetic and epigenetic alterations during its development

that allow it to progress into aggressive PDAC (76). Studies have

shown that low-grade PanIN increases with age, while high-grade

PanIN is present in aggressive PDAC (78). A family history of

PDAC poses a significant risk, with patients having a genetic

susceptibility to PDAC often exhibiting multiple levels of PanIN

in their pancreas (79). Furthermore, individuals with a family

history of PDAC are at a greater risk of developing PDAC

themselves (80). Several genes that predispose to familial

aggregation of PDAC include BRCA2, CDKN2A/p16, STK11/

LKB1, PRSS1, MLH1, FANCG, and PALB2 (81–83). Although

genetic susceptibility to PDAC can’t be entirely explained by

susceptibility gene mutations, by understanding the genetic

makeup of PanIN using genetic and molecular analysis,

important insights into PDAC can be obtained to facilitate the

development and advancement of diagnosis and treatment.

Therefore, estimating the evolutionary history of PanIN using
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genetic and molecular mutations may provide better opportunities

for early screening and diagnosis of pancreatic cancer (Figure 2).
5.1 Gene mutations that occur early
in PanIN

According to studies, multiple genetic alterations found in

PDAC are also present in PanIN, and their frequency increases

with PanIN grade (84). Recently, genomic DNA samples obtained

by microdissection from PDAC and related PanIN 2 and PanIN 3

lesions in ten pancreatic cancer patients were subjected to exome

sequencing analysis. The results showed that all adjacent lesions

originated predominantly from a common ancestral source, with

most somatic mutations present at the PanIN 2 stage or earlier (85).
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Laser microdissection technology combined with pyrosequencing

was also used by Michael Goggins et al. to perform more detailed

genetic testing of the early development of PanIN. They found that

almost all early development of PanIN requires somatic mutation,

with KRAS mutation initiating PanIN formation in genetically

engineered mouse models (86). More than 99% of PanIN 1

lesions contain KRAS mutation, while early sporadic p16/

CDKN2A, GNAS or BRAF mutations may further promote

PanIN development based on KRAS mutation (86). Based on the

view that PanIN 2 is the first true precancerous stage of PDAC,

some scholars have screened 30 potential early diagnostic genes in

this stage, including HNF3, S100P, TFF1, CDC37, AGR2, PI15,

CST3, LGALS4, and PCOLN3, which have received attention.

However, there is much more to PanIN than early genetic and

molecular changes that remain to be explored in depth (87).
FIGURE 2

Molecular changes occurring in the progression from PanIN to PDAC. The transition from PanIN to PDAC is often accompanied by several
molecular changes that are commonly observed. These include alterations in KRAS, MUC5AC, P16, MUC1, TP53, DPC4, and BRCA2. Furthermore,
the figure provided low-frequency molecular mutations that have also been identified during this progression.
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5.1.1 The earliest genetic changes
Undoubtedly, genetic mutations play a crucial role in the

development of PDAC. However, there is controversy

surrounding whether the transition from PanIN to PDAC

requires the gradual accumulation of mutations. Patients’

mutation loads show great heterogeneity. KRAS oncogene

activation and ERBB2 amplification are the earliest genetic

changes observed in PanIN (78).

Among PDAC and PanIN, the primary and most important

gene under study is KRAS. A meta-analysis showed that the

frequency of KRAS mutations in PanIN lesions increased with the

lesion grade in PDAC patients, while in those with chronic

pancreatitis, the proportion of KRAS-harboring PanIN lesions

was relatively low and independent of their grade (84). Recent

research confirmed that the oncogene KRAS dose is a key factor in

PDAC, with two-thirds of PDAC patients increasing the dose of

KRASG12D (also known as KRASiGD). Researchers found that after

the initial KRAS mutation, cancer evolution requires an increased

dose of oncogenes by amplifying mutated KRAS or other oncogenes

such as YAP1 or NFKB2, through analyses of human PanIN lesions.

Different mouse models showed that an increased dose of

oncogenes depends on inactivated tumor suppressors. For

example, TP53 or CDKN2A homozygous inactivation make

tumors prone to KRASiGD, while YAP1 or NFKB2 amplification

results from loss of heterozygous CDKN2A. Integrated cell

phenotypes revealed that KRAS mutation and KRASiGD were

related to epithelial-tumor mesenchymal transformation and

dedifferentiation degrees. Nevertheless, KRAS dose remains an

overlooked research area in PDAC and PanIN relative to KRAS

mutation. Thomas et al. argue that the carcinogenic dose should be

seen as a basic and important process, reminding researchers from a

new perspective that KRASiGD plays a vital role in the formation of

PDAC and PanIN (88, 89).

The ERBB2 protein is responsible for encoding the tyrosine

kinase growth factor receptor, a key factor in activating and

inducing cell proliferation. As a result, ERBB2 is a potent

oncogene and its overexpression is an early and significant factor

in the development of pancreatic cancer. In fact, research has shown

that ERBB2 overexpression is present in 82% of PanIN 1A lesions

and 100% of PanIN 3 lesions (90). Moreover, ERBB2 plays a critical

role in mediating growth factor-related signal transduction in

pancreatic duct lesions, making it a target for potential therapies.

5.1.2 changes in low-frequency mutations
associated with senescence

Apart from the well-established driver mutations of PDAC,

such as KRAS, TP53, CDKN2A, and SMAD4, there are numerous

genes with low-frequency mutations that may play a functional role

in promoting tumor development (91). Low-frequency mutations

acquired at an early stage could be critical in tumorigenesis. Among

the genes with low-frequency mutations in PDAC, ARID1A is one

of the most frequently mutated epigenetic regulatory factors in

many cancers. A mouse model study analyzing the transcriptome of

individual PanIN revealed that Arid1a knockout effectively reduced

KRAS-induced senescence in PanIN lesions (91). Cellular
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senescence is a major rate-limiting step in KRAS-driven PanIN

progression. Thus, with a significant attenuation of senescence,

ARID1A knockout can accelerate PanIN progression (91, 92).

The telomere, a unique structure located at the end of a

chromosome, plays a crucial role in maintaining chromosome

stability. Severe telomere shortening may result in human

chromosome instability, which is necessary for developing most

human epithelial cancers (93). Nevertheless, telomere shortening

alone is unlikely to induce tumor formation; instead, it sets the

foundation for chromosome abnormalities. Notably, telomere

length was significantly reduced in 91% of PanIN 1A lesions,

indicating that telomere shortening is likely the most common

early genetic abnormality in PDAC progression models (93).

However, some studies have suggested that this phenomenon may

be a result of the activation of the oncogene stress-induced aging

process and cannot serve as an initiating factor for PanIN (94).
5.2 Activation of cell fate regulatory
signal pathway

The use of genetically engineered mouse models has

significantly advanced the study of PanIN and PDAC. By

continuously monitoring the signaling pathways involved in

pancreatic carcinogenesis using these models, researchers have

been able to gain a better understanding of the mechanisms

driving PDAC precursor progression. Activation of numerous cell

fate regulation signaling pathways occurs during PanIN and PDAC

and plays a crucial role in PDAC development (Figure 3).

5.2.1 Activation of Hedgehog pathway
During embryonic life, Hedgehog signaling is critical for

pancreatic development, and abnormal activation of this pathway

may be a feature of human PanIN (95). Some studies have found

that the Hedgehog pathway is abnormally activated in both human

PanIN and PDAC (95, 96). Transfection of HPDE cells with Gli1, a

downstream mediator of Hedgehog, led to the upregulation of

foregut epithelial transcripts (97). Abnormal Hedgehog signaling

may contributes to the production of intestinal phenotype in the

pancreatic epithelium and increasing neoplastic potential.

5.2.2 Activation of Notch pathway
The Notch signaling pathway plays a key role in cell fate and

differentiation decisions, and its early activation in cancer indicates

that it plays an important role in cancer initiation and

transformation (98). Although the origin of PDAC remains

unclear, Notch signaling activation during PanIN initiation is

believed to be a key step in PanIN transformation, as activated

Notch signaling and KRAS have a synergistic effect on inducing

PanIN formation. Notch signaling renders acinar cells sensitive to

KRASG12D-driven PanIN initiation, and the coactivation of Notch

and KRAS promotes ADM to accelerate the formation of induced

PanIN (99).

Notch receptors, NOTCH1 and NOTCH2, are expressed in

pancreatic acinar cells and ductal cells, respectively. NOTCH2
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deficiency, but not NOTCH1 deficiency, can eliminate PanIN

progression, delay the development of PDAC, and prolong

survival. NOTCH2 expression is observed during PanIN and

PDAC development, and its activation may be necessary for

PanIN progression (98). HES1, a key downstream target of the

Notch signaling pathway, plays a vital role in acinar cell integrity

and cell damage plasticity (100).

Myc amplification supports the early role of PanIN progression

in precursor lesions (101). Recently, quantitative proteomic screens

identified Myc expression in PanIN 3 lesions, Myc amplification

supports its early role in PanIN progression (101, 102). During

PanIN progression, Myc expression increases under the regulation

of NOTCH2. Furthermore, under active Notch signaling, Myc and

Ras signaling cooperate to promote tumor progression. MIST1, a

basic helix-loop-helix transcription factor, is only expressed in
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terminally differentiated pancreatic acinar cells (103). In

pancreatic acinar cells lacking MIST1, the EGFR, NOTCH, and

KRAS pathways coordinate to accelerate PanIN formation. Shi et al.

demonstrated that KRASG12D mice exhibit severe pancreatic

exocrine deficiency in the absence of MIST1, which could be

rescued by ectopic expression of Mist1 in acinar cells. The

development of PanIN was significantly accelerated in the

pancreas of Mist1KO; KrasG12D mice. In vitro studies have shown

thatMist1KO acinar cells can easily converted to ductal phenotypes

and activate EGFR and Notch signal pathways (104).

5.2.3 IL-17
IL-17 is a potent pro-inflammatory cytokine that is closely

associated with the formation, growth, and metastasis of a variety of

malignancies (105). Activated IL-17 induces DNA damage and
FIGURE 3

Signaling pathways regulating PanIN. Schematic representations of signaling pathways implicated in PanIN, namely Hedgehog, Wnt, EGF, Notch, and
IL-17, are depicted. Certain interactions between these signaling pathways are indicated.
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pancreatic inflammation, further promoting tumorigenesis in the

context of KRAS mutation (106, 107). Notably, there is a positive

correlation between IL-17 and NOTCH expression. The IL-17 axis

upregulates NOTCH activity through the classical NF-kB pathway,

synergistically promoting the production and development of

PanIN and PDAC (108).

Moreover, IL-17 has been found to induce the production of

pancreatic CSCs (109). In the presence of oncogenic KRAS, IL-17

induces transcription of DCLK1 and ALDH1A1 (a marker of

embryonic stem cells) through classical pathway activation, and

directly upregulates DCLK1 expression in pancreatic cancer cells in

a dose-dependent manner (110). Hence, IL-17 regulates the

development of stem cell features of pancreatic cancer cells by

increasing the expression of DCLK1, ALDH1A1, and other stem

cell markers.
5.3 Stemness-related genes

There is a hypothesis that PanIN could potentially arise from

CSCs. While the origin of these cells is not entirely clear, there is a

shared characteristic between stem cells and CSCs in terms of their

expression of genes associated with self-renewal (60, 61). Therefore,

alterations in genes related to stemness may signify an early genetic

change in the development of PanIN.

5.3.1 SOX9
SOX9 is expressed in multipotent pancreatic progenitor cells

and is required for the maintenance of multipotent progenitors in

early pancreatic epithelial cells (111). Recent studies have

demonstrated that Sox9 is a determinant of ductal cell fate

downstream of Notch in the adult pancreas, and is essential for

the differentiation and maintenance of ductal cells (112). In the

presence of pancreatitis, SOX9 does not contribute to the

development of ADM but is critical for its progression into

PanIN. The expression of SOX9 is high in low-grade PanIN

lesions, while it is comparatively low in high-grade PanINs and

PDAC. This pattern suggests that SOX9 plays a critical role in

initiating PDAC (113).

5.3.2 ATDC
Ataxia-telangiectasia group D-complementing (ATDC), also

known as tripartite motif 29 (TRIM29), is a member of the TRIM

protein family, highly expressed in various cancers and associated

with prognosis and survival rates (114). In the presence of

KRASG12D expression, ATDC is required for acinar to ductal

transdifferentiation in primary acinar cell cultures, as well as in

the progression of ADM to PanIN, prompted by cerulein.

Additionally, ATDC is required for KRASG12D-induced

progression of PanIN and PDAC formation. Therefore, ATDC

may play a key role in the reprogramming of pancreatic epithelial

cells induced by carcinogenic KRAS.

ATDC activates the b-catenin signaling pathway, leading to the

transcriptional activation of SOX9 through TCF4 binding to

essential sites in the SOX9 promoter (115). The ATDC-b-catenin-
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SOX9 signaling axis is critical for the development of pancreatic

neoplastic precursors, and in the absence of ATDC, pancreatic

neoplastic precursors do not form (116).

5.3.3 DCLK1
DCLK1 is known as a marker of pancreatic progenitor cells and

is involved in the development of various gastrointestinal tumors

(117). Studies have shown that both mouse and human PanIN and

PDAC express DCLK1, and DLK1 may mark tumor-initiating cells

in a variety of tumor types (118, 119). In the ApcMin model,

pedigree tracing of Cre/lox revealed that cells expressing DCLK1 in

intestinal adenoma were responsible for continuous production of

tumor cells. Bailey et al. confirmed that DCLK1-positive cells

exhibited unique morphology, gene expression patterns, and

enhanced “PanIN sphere” formation ability, indicating that

DCLK1 may mark a subset of cells with stemness properties in

PanIN. However, this requires further confirmation through

pedigree tracking (120). Furthermore, pancreas-specific DCLK1

knockout mice showed delayed progression of PanIN lesions (121).

In addition, other factors can interact with DCLK1 and affect

the progress of PanIN. G9a, a specific methyltransferase, G9a

deficiency attenuates PanIN progression in LSL-KrasG12D;Pdx1-

Cre (KC) mice and prolongs the survival time. Further studies

have found that G9a plays an important role in the malignant

transformation of low-grade PanIN (122). G9a deficiency reduced

the number of DCLK1-positive cells and ERK phosphorylation in

PanIN lesions, but the mechanism is unclear. Several studies suggest

that G9a may be associated with MAPK activation and the

clonogenic capacity of DCLK1-positive cells in the pancreas of

KC mice. The direct binding of Dclk1 to KRAS protein is the key

factor in the activation of MAPK in pancreatic cancer cells (121),

indicating the functional interaction of G9a, DCLK1, and MAPK

pathways in KRAS-driven PDAC (122).
5.4 Gene mutation in the late stage
of PanIN

In the early stages, PanIN’s molecular characteristics are

relatively simple, and the likelihood of developing invasive PDAC

is low. However, high-grade PanIN (PanIN 3) is more uncertain

and complex due to severe nuclear atypia, lumen necrosis, and

marked epithelial sprouting, which indicates the development of

PDAC (123). At present, high-grade PanIN is not only the main

precursor lesion of PDAC but also an ideal target for early detection

(124). Unfortunately, clinical and imaging methods cannot detect

high-grade PanIN, and thus molecular detection methods are

critical (125, 126).

Maitra et al. utilized immunohistochemistry to examine the

protein expression of genes related to PDAC progression in 55

PanIN lesion tissue microarrays. Their findings revealed that

molecular abnormalities in PanIN were not random and were

typically classified as “early” changes (such as prostate stem

antigen and MUC5 expression, or P16 loss), “intermediate”

changes (such as cyclin D1 expression), and “late” changes (such
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as P53, proliferating antigen, and MUC1 expression, or Smad4/

Dpc4 loss) (127). However, further experiments involving

sequencing and pedigree tracking have raised questions about

these results. Using tumor sequencing, adjacent PanIN lesions,

and normal tissues from 10 PDAC patients, Murphy et al.

discovered that the tumors were genetically identical to the

adjacent PanIN lesions for over 50% of the genetic mutations.

While there were some variations in molecular mutations in each

sample, the overall results indicated that the adjacent PanIN and

tumor originated from a common ancestor and that most of the

somatic mutations in the tumor occurred in PanIN 2 or earlier.

Furthermore, PanIN 2 contains as many mutations as PanIN 3 and

tumor tissue, indicating that PanIN 2 can potentially progress into a

tumor even in the absence of PanIN 3. In addition, precancerous

lesions may require epigenetic modifications, aneuploidy, or

changes based on the expression of certain proteins to develop

into invasive tumors (85). For instance, the proteins gal-1, annexins

A4 and A5, ANXA4, vimentin, and laminin, which exhibit

differential expression in PanIN 3, are also dysregulated in PDAC

(102, 128). C-myc was identified as an important regulatory protein

in the dysregulated protein network in PanIN 3 tissue, which

supports the pathological and genomic progression model of

PanIN to PDAC from a proteomic perspective (129–131).

Hosoda et al. conducted an analysis of 17 high-grade PanIN

lesions in 15 patients and 16 low-grade PanIN lesions in 10 patients,

revealing a presence of KRAS oncogenic mutations in 94% of both

high and low-grade PanIN lesions. Meanwhile, in high-grade PanIN

lesions, 29% exhibited RNF43 mutations, 18% displayed CDKN2A

mutations, and 12% had mutations in GNAS and TP53.

Additionally, one high-grade PanIN lesion was found to have

mutations in PIK3CA, TGFBR2, and ARID1A (124). Though

mutations in RNF43 and GNAS were also observed in low-grade

PanIN lesions, no mutations in CDKN2A or TP53 were detected.

In the development of non-invasive pancreatic duct lesions, the

inactivation of the P16 gene has been found to be a contributing

factor (132). Analysis via immunohistochemistry of lesional tissues

from 70 patients with pancreatic diseases demonstrated that loss of

P16 expression occurred in pancreatic tissue with pancreatic duct

dysplasia, preceding P53 and DPC4 inactivation. P16 expression

inversely governs the expression of P21 and P53, both of which play

an important role in cell cycle regulation and the onset and

development of PanIN. As such, assessments based on

immunohistochemistry can enhance the efficiency of PanIN

diagnoses (133–135). While the early identification of high-grade

PanIN may facilitate timely treatment, studying PanIN 2 may

provide greater clinical diagnostic value and impede the

progress ion of PanIN 2 into high-grade PanIN and

aggressive PDAC.
6 Diagnosis of PanIN

Research has shown that almost 90% of PDAC is diagnosed

after spreading beyond the pancreas, more than 50% of PDAC

patients have systemic metastases, and only 15-20% of patients are

eligible for surgical resection upon diagnosis (136, 137). Early
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detection of invasive cancer improves prognosis, but the most

significant advancement in survival could come from identifying

pre-malignant tumors, which elevates the importance of PanIN to

the top of early diagnosis (138). In the WHO classification,

carcinoma in situ corresponds to high-grade PanIN (PanIN 3)

without invasive carcinoma. Carcinoma in situ is neither metastatic

nor invasive, and it causes some abnormalities that are considered

secondary clinical manifestations. PanIN can be diagnosed through

histopathological methods, diagnostic imaging such as computed

tomography (CT) and magnetic resonance imaging (MRI), serum

tumor marker detection, gene diagnosis, circulating tumor DNA

biopsy, and circulating tumor cell testing (Figure 4) (139–141).
6.1 Diagnosis using imaging methods

Histopathology is considered the most accurate and reliable

gold standard among all cancer diagnostic methods. However,

obtaining sufficient material for biopsy can be challenging, and

the invasive nature of tissue collection can affect diagnostic

accuracy. The sensitivity of CT and MRI is limited by the size of

the tumor. Spiral CT has a sensitivity of only 72% in detecting small

pancreatic masses, and MRI performs similarly (142, 143).

Endoscopic ultrasonography (EUS) has been found to have

higher diagnostic efficiency than CT and MRI, and EUS-guided fine

needle aspiration (EUS-FNA) is particularly superior to

histopathological diagnosis. However, EUS is an invasive

procedure with potential complications like bleeding and

pancreatitis. Endoscopic retrograde cholangiopancreatography

(ERCP) is another option to diagnose PanIN, but it carries a

postoperative risk of inducing pancreatitis and requires strict

candidate selection (144).

Recently, serial pancreatic-juice aspiration cytologic

examination (SPACE) has emerged as an advanced method for

malignancy diagnosis (145–149). Nakahodo et al. retrospectively

compared various imaging methods in patients with high-grade

PanIN undergoing surgery and found that focal pancreatic

parenchymal atrophy on CT/MRI and a hypoechoic stenotic

pattern on EUS are important for the early diagnosis of PDAC,

especially in the diagnosis of high-grade PanIN (150, 151). A

comprehensive approach should be utilized to improve the

diagnosis of PanIN, given the limitations of current imaging

techniques and diagnostic methods.
6.2 Molecular diagnostic markers

Currently, early detection strategies for PDAC are primarily

focused on pancreatic cystic fluid, pancreatic fluid, and plasma

samples, but development of universal methods for early detection

of PDAC is still necessary. The sensitivity, specificity, and accuracy

of tumor marker CA19-9 in the diagnosis of PDAC are 83.1%, 73%,

and 75%, respectively, but it is not suitable for early detection of

PDAC due to its low value in predicting early stages of PDAC (152,

153). Genetic testing can provide a more sensitive diagnostic

approach than conventional methods. Detection of KRAS
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mutations in the patient’s pancreatic fluid or plasma can offer

stronger evidence for the diagnosis of PDAC, although its presence

alone is not sufficient for such diagnosis (154). In addition, the

protein encoded by GPC in cancer exosomes can be used as a

potential marker for non-invasive diagnosis and screening tools by

ctDNA biopsy diagnosis (141).

At present, there are few specific biomarkers can distinguish

between low-grade PanIN, high-grade PanIN, and PDAC directly.

MAbDas-1, a monoclonal antibody against the colonic epithelial

antigen, has shown promise as a highly specific marker for

precancerous lesions located in the upper gastrointestinal tract.

Moreover, MAbDas-1 is capable of distinguishing between low- and

high-risk IPMN lesions (155). Through the study of cystic fluid

from 169 patients with pancreatic cystic lesions, Das et al. found

that the Das-1 ELISA exhibited a sensitivity of 88%, specificity of

99%, and accuracy of 95% for high-risk lesions (156). Expression of

Das-1 was not identified in 56 normal pancreatic ducts or 95 low-

grade PanIN lesions; however, it was markedly raised in high-grade

PanIN and PDAC. As such, mAbDas-1 proves highly specific for

advanced PanIN and PDAC and could aid in preoperative

diagnoses, as well as clinical risk stratification (157).
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Using a PDAC genetically engineered mouse model, Dieter

et al. employed cathepsin-activatable near-infrared probes

combined with flexible confocal fluorescence laser microscopy to

differentiate normal pancreatic tissue, low-grade PanIN, high-grade

PanIN, and early PDAC (158). This method offers a promising

approach to early diagnosis of PDAC with greater accuracy

compared to traditional diagnostic methods.
6.3 Metabonomics techniques

Metabolomics techniques offer a promising approach for the

detection and identification of cancer by facilitating the

comprehensive analysis of trace metabolites in biological fluids and

tissues (159–161). Notably, the metabolomic profiles of PDAC

patients are distinct from that of healthy controls (161–163).

Potential metabolic signatures can be identified by using nuclear

magnetic resonance (NMR) spectroscopy combined with

multivariate and univariate statistical analysis and screening for

differential metabolites including glucose, amino acids, carboxylic

acids, and coenzymes (164, 165). However, due to its relatively low
FIGURE 4

Diagnosis of PanIN. PanIN can be diagnosed using various approaches, including histopathological methods, diagnostic imaging, serum tumor
marker detection, metabonomics techniques, and the assessment of aberrant miRNA expression. These diagnostic modalities collectively contribute
to the accurate identification and characterization of PanIN lesions.
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sensitivity, NMR should be combined with other techniques like GC-

MS and LC-MS to improve biomarker identification for early clinical

detection and diagnosis of PDAC (165, 166). By effectively combining

these techniques, researchers can maximize the potential of

metabolomics as a diagnostic tool for PDAC.
6.4 MiRNA

MicroRNAs (miRNAs) are a class of small non-coding RNAs

that are closely associated with cancer progression (167). Abnormal

expression of miRNAs is believed to be an early event in pancreatic

carcinogenesis (168). MiRNAs are implicated not only in PDAC

progression but also in the process from PanIN to cancer. MiR-21

activates KRAS signaling via the transcription factor ELK1,

promoting tumor cell proliferation, migration, and invasion

(169). MiR-224 overexpression activates normal fibroblasts into

tumor-associated fibroblasts, thereby increasing drug resistance in

tumor cells (170). These studies demonstrate the significant impact

of miRNA on promoting disease progression. Moreover, miRNAs

are abundant and stable in serum, making them a promising marker

for clinical diagnosis of PDAC (171–173). Several studies have

identified specific miRNAs in PanIN, including miR-10, miR-16,

miR-21, miR-100, and miR-155, which are not found in normal

pancreatic ducts (174). Additionally, miR-196b has been identified

as a potential biomarker for differentiating PanIN 3 from low-grade

PanIN, thus facilitating screening of high-risk cancerous lesions and

assisting in clinical treatment selection.
Conclusion

PanIN can arise from multiple cell types and progress to PDAC

through various signaling pathways driven by genetic mutations.

Typically, this process involves a transition from low-grade to high-

grade PanIN, which presents an opportunity to block invasive

cancers. Although PanIN is recognized as a precursor lesion,

there is often a greater focus on diagnosing PDAC, indicating a

lack of understanding of PanIN. By utilizing genetic testing and

non-invasive biomarkers to diagnose PanIN and determine its

grade, early intervention can be achieved, leading to improved

patient outcomes. Therefore, it is critical to conduct in-depth

research into the mechanisms underlying PanIN, as this has

significant clinical implications. The current challenge is to

accurately grade PanIN lesions and develop effective

treatment strategies.

Preventing the progression of PanIN2 to PanIN3 and the

subsequent transition from PanIN3 to PDAC is crucial, yet no

established treatment exists. High-risk patients are typically advised
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to adopt healthier lifestyle choices, such as quitting smoking,

maintaining a balanced diet, and engaging in regular physical

activity. Some studies suggest that non-steroidal anti-

inflammatory drugs, metformin, and other agents may help

reduce the risk of progression from PanIN to PDAC.

Additionally, in cases of high-grade PanIN with a significant risk

of progression, surgical resection may be considered. In conclusion,

the management of PanIN remains an evolving field, with treatment

strategies likely to evolve as new research emerges.
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