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associated fatty liver disease
and sub-clinical carotid
atherosclerosis: a
mediation analysis
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and Mei Tu1*

1National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University,
Longyan, Fujian, China, 2Fuqing City Hospital Affiliated with Fujian Medical University, Fuqin,
Fujian, China
Background: Limited research has been conducted to quantitatively assess the

impact of systemic inflammation in metabolic dysfunction-associated fatty liver

disease (MAFLD) and sub-clinical carotid atherosclerosis (SCAS). The systemic

immune-inflammation index (SII), which integrates inflammatory cells, has

emerged as a reliable measure of local immune response and systemic

inflammation Therefore, this study aims to assess the mediating role of SII in

the association between MAFLD and SCAS in type 2 diabetes mellitus (T2DM).

Method: This study prospectively recruited 830 participants with T2DM from two

centers. Unenhanced abdominal CT scans were conducted to evaluate MAFLD,

while B-mode carotid ultrasonography was performed to assess SCAS. Weighted

binomial logistic regression analysis and restricted cubic splines (RCS) analyses

were employed to analyze the association between the SII and the risk of MAFLD

and SCAS. Mediation analysis was further carried out to explore the potential

mediating effect of the SII on the association between MAFLD and SCAS.

Results: The prevalence of both MAFLD and SCAS significantly increased as the

SII quartiles increased (P<0.05). MAFLD emerged as an independent factor for

SCAS risk across three adjusted models, exhibiting odds ratios of 2.15 (95%CI:

1.31–3.53, P < 0.001). Additionally, increased SII quartiles and Ln (SII) displayed

positive associations with the risk of MAFLD and SCAS (P < 0.05). Furthermore, a

significant dose-response relationship was observed (P for trend <0.001). The

RCS analyses revealed a linear correlation of Ln (SII) with SCAS and MAFLD risk

(P for nonlinearity<0.05). Importantly, SII and ln (SII) acted as the mediators in the

association between MAFLD and SCAS following adjustments for shared risk

factors, demonstrating a proportion-mediated effect of 7.8% and 10.9%.
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Conclusion: SII was independently correlated with MAFLD and SCAS risk, while

also acting as a mediator in the relationship between MAFLD and SCAS.
KEYWORDS

systemic immune-inflammation index, metabolic dysfunction-associated fatty liver
disease, sub-clinical carotid atherosclerosis, hepatic steatosis, carotid intima-
media thickness
Introduction

Cardiovascular disease (CVD) has emerged as a significant

chronic ailment over the past century, gaining greater prominence

in recent decades due to the rapid escalation of obesity and diabetes

(1). Particularly concerning is its status as the primary cause of

mortality among individuals with type 2 diabetes mellitus (T2DM).

Subclinical carotid atherosclerosis (SCAS), a lipid-driven

multifactorial inflammatory condition that manifests in the carotid

artery wall, exhibits progressive thickening of the carotid intima-

media thickness (cIMT) and the development of atherosclerotic

plaques. Additionally, SCAS has increasingly gained recognition as

an independent prognostic indicator for future cardiovascular events

in T2DM (2, 3). Metabolic dysfunction-associated fatty liver disease

(MAFLD) is a multi-system inflammatory disease first described in

an international expert consensus in 2020, highlighting the

bidirectional interplay between fatty liver and metabolic alterations

(4). Remarkably, MAFLD exhibits not only an augmented

susceptibility to liver-related events but also a diverse range of

extrahepatic manifestations, including obesity, T2DM, and CVD (5).

Compelling evidence substantiates a substantial association

between MAFLD and an elevated propensity for CVD morbidity

and mortality (6, 7). The underlying mechanisms that link MAFLD

to an increased risk of CVD primarily involve heightened

inflammation, insulin resistance, oxidative stress, and

perturbations in hepatic metabolites (8, 9). Specifically, MAFLD

has garnered substantial attention for its role in promoting systemic

inflammation through hepatic steatosis-secreted inflammatory

proteins such as interleukin-6, C-reactive protein, fibrinogen,

monocyte chemoattractant protein-1, and tumor necrosis factor-

alpha (10). These inflammatory proteins augment the uptake of

plasma-derived lipoproteins by macrophages, forming foam cells

laden with lipids and initiating the development of atherosclerotic

lesions by activating the adaptive immune system (11, 12).

The systemic immune-inflammation (SII) index integrates

inflammatory cells like neutrophils, platelets, and lymphocytes,

which can effectively reflect the local immune response and

systemic inflammation. It was initially reported in 2014 (13) and

has since been validated as an inflammatory marker in studies

involving hepatic steatosis (14, 15) and atherosclerosis (16, 17). It is

widely acknowledged that effective measures to quantify systemic
02
inflammation caused by MAFLD play a pivotal role in assessing its

contribution to the formation and progression of atherosclerosis

toward CVD. This knowledge is essential for developing

appropriate prevention and treatment strategies tailored to

address the specific role of MAFLD-induced inflammation in

CVD. However, to date, limited studies have quantified the role

of systemic inflammation in MAFLD and SCAS. The mediating

analysis is a novel research approach employed to quantify the

mediating effect of a variable on the association between the

independent variable and a dependent variable. This type of

analysis helps understand the causal relationships between

variables and the internal mechanisms underlying those

relationships. Hence, this study conducted a mediation analysis to

assess the mediating role of SII in the association between MAFLD

and SCAS in T2DM.
Materials and study design

Study population

This real-world cross-sectional study utilized prospectively

collected data from the National Metabolic Management Center

at Longyan First Affiliated Hospital of Fujian Medical University

and Fuqing City Hospital Affiliated with Fujian Medical University.

A consecutive recruitment approach was employed to enroll

participants with T2DM aged over 18, who were admitted

between January 2023 and December 2023. Prior to their

enrollment, written informed consent was diligently obtained

from all participants, aligning with the ethical guidelines set forth

by the Ethical Committee of Longyan First Affiliated Hospital of

Fujian Medical University. Throughout the study, adherence to the

principles outlined in the Declaration of Helsinki was ensured,

governing the conduct of all procedures. Exclusion criteria were

diligently applied to ensure the appropriate selection of participants.

Specifically, individuals were excluded if they met any of the

following conditions: 1. Concurrent presence of acute and chronic

infections, acute diabetes complications, or experiencing acute

stress states. 2. Coexistence of systemic diseases that may impede

immune system function (e.g., blood, rheumatic diseases, and

malignant tumors). 3. Current usage of medications known to
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potentially induce liver steatosis or interfere with the blood system

(e.g., propylthiouracil, estrogens, tamoxifen, methimazole, and

glucocorticoids). 4. Heavy alcohol consumption, defined as a daily

intake of ≥ 40 g for men and ≥ 20 g for women, persisted for more

than 5 years. 5. Presence of other liver comorbidities capable of

inducing liver steatosis (e.g., viral hepatitis, autoimmune liver

disease, or hereditary liver disease). 6. a history of cerebrovascular

disease. 7. Pregnancy status or inadequate data availability.

Following the recruitment process, a total of 830 participants with

T2DM were included in the final analysis. Subsequently, all enrolled

participants were conducted with non-enhanced CT and B-mode

carotid ultrasonography to facilitate the identification and

assessment of MAFLD and SCAS.
Exposure variable assessment

MAFLD served as the exposure variable. The definition ofMAFLD

in T2DM adhered to the latest expert consensus statement. This

definition emphasized the identification of hepatic steatosis through

various methods such as imaging techniques, blood biomarkers, or

liver histology (18). After enrollment, all participants underwent non-

enhanced abdominal CT scans to evaluate hepatic steatosis utilizing the

CT liver-spleen attenuation measurement (CTL-S). This CT index is

specifically developed for accurately assessing hepatic steatosis (fatty

liver). The CTL-S was derived by dividing the mean liver attenuation by

the mean spleen attenuation. A mean CTL-S value below 1.0 was

indicative of hepatic steatosis. Two experienced radiologists were

involved in the CTL-S measurement process to ensure consistency

and reduce inter-operator variability.
Assessment of mediator

SII is identified as the primary mediator, offering valuable

insights into local immune response and systemic inflammation.

SII was derived through the formula: platelet count x neutrophil

count/lymphocyte count, a calculation method consistent with

previous relevant research studies (13). These blood cells count

was determined utilizing the Coulter LH 780 Analyzer (Beckman

Coulter Ireland, Galway, Ireland).
Outcome variable assessment

SCAS is identified as the outcome variable in this study. As

established in previous reviews, SCAS was defined as the presence of

cIMT exceeding 1.0mm or the presence of arterial plaque, either

independently or in combination (19). Carotid artery evaluations

were performed using carotid ultrasonography with an L12–5 MHz

ultrasound probe, encompassing the common carotid artery,

internal carotid artery, external carotid artery, and carotid

bifurcation. The average intima-media thickness (IMT) of the

distal vascular wall at the proximal end of the carotid artery

glomus was calculated to determine the carotid intima-media

thickness (cIMT). Carotid plaque was defined as a focal structure
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that protruded at least 0.5 mm into the arterial lumen, exhibited

greater than 50% thickness compared to the surrounding IMT, or

had an IMT exceeding 1.5 mm (20). All procedures were executed

by skilled ultrasonologists following the standardized measurement

protocol endorsed by the Society for Vascular Medicine (21).
Study covariates

Multivariable models were constructed to adjust for the

potential confounding variables that may influence the association

between MAFLD and SCAS. Comprehensive demographic data,

including sex, age, diabetic duration, smoking and drinking status,

waist circumference (WC), systolic blood pressure (SBP), and

diastolic blood pressure (DBP), was meticulously collected by

trained research personnel and recorded in the information

collecting system. The laboratory assessments encompassed a

wide range of measurements, including serum levels of creatinine,

alanine aminotransferase, aspartate aminotransferase (AST), uric

acid (UA), fasting plasma glucose (FBG), serum insulin levels,

triglyceride, total cholesterol (TC), low-density lipoprotein

cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c),

and hemoglobin A1c (HbA1c). Biochemical parameters were

conducted using an auto-biochemical analyzer (Roche Diagnostics

Corporation). HbA1c levels were assessed through high-

performance liquid chromatography with a D10 set (Bio-Rad).

Homeostatic model assessment of insulin resistance (HOMA-IR)

was calculated using the formula: fasting serum insulin (µU/ml) x

FBG (mmol/l)/22.5.
Statistical analysis

Continuous variables were reported as means ± standard

deviation (SD), while discrete variables were presented as

frequency tables (N, %). To assess differences among the SII

quartiles, ANOVA or the K-W test was utilized for continuous

variables. The chi-square or Fisher exact test was employed to

compare categorical variables. The relationships between the SII,

cIMT, and CTL-S were assessed using Spearman correlation

analysis. Subsequently, these associations underwent further

scrutiny through weighted multivariable regression analyses

within three distinct models. Model 1 encompassed adjustments

for age, gender, diabetic duration, smoking, and drinking. In Model

2, additional adjustments were made considering cardiometabolic

variables including SBP, DBP, WC, BMI, HbA1c, TG, TC, HDL-c,

LDL-c, UA, and HOMA-IR. Model 3 featured supplementary

adjustments for liver functional variables such as ALT and AST.

Weighted logistic regression was employed to determine odds ratios

(OR) and 95% confidence intervals (CI) for the correlations

between SII quartiles and the risks of MAFLD and SCAS.

Moreover, restricted cubic spline (RCS) analyses were carried out

to explore the relationship between Ln (SII) and the risk of MAFLD

and SCAS. Given the non-uniform distribution of SII data, the Ln

(SII) was utilized to render the statistical analysis more appropriate.

Mediation models using bootstrapping calculations were then
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employed to evaluate the direct impact of MAFLD on SCAS risk, as

well as the indirect effect mediated by SII and Ln (SII). Finally,

sensitivity analyses were performed, focusing on the associations as

mentioned above in men to account for potential variations in SII

categorizations and further enhance the robustness of the study

findings. All statistical analyses were executed using R language

4.2.3 software. The significance level was set at P < 0.05 (two-tailed).
Result

Clinical characteristics of participants
based on SII quartiles

A total of 830 individuals with T2DM were recruited, with

50.5% being male and an average age of 53.0 ± 8.3 years. The

prevalence of MAFLD and SCAS were found to be 47.2% and
Frontiers in Endocrinology 04
62.4%, respectively. Table 1 provides a comprehensive overview of

the clinical characteristics among participants based on SII

quartiles. Significant differences were observed across the SII

quartiles in variables such as WC, BMI, SBP, DBP, TG, TC,

HDL-c, LDL-c, UA, HOMA-IR, cIMT, and CTL-S, as well as the

prevalence of SCAS and MAFLD. Notably, higher SII quartiles were

associated with elevated cIMT values and decreased CTL-S values

compared to the lower quartiles (P < 0.05). Moreover, there was a

notable increase in the prevalence of both MAFLD and SCAS as the

SII quartiles increased (P < 0.05).
Association between SII, cIMT, and CTL-S

Figure 1 depicts the association between SII, cIMT, and CTL-S,

as analyzed using Spearman correlation analysis. The results

showed that CTL-S was negatively correlated with SII (r=-0.407,
TABLE 1 Clinical characteristics of participants according to SII quartile.

Characteristics Overall

SII quartile

P valueQ1 (<281.1) Q2
(281.1–413.6)

Q3
(413.7–552.5)

Q4 (>552.5)

Age (year) 53.0 ± 8.3 52.9 ± 9.1 52.8 ± 7.5 53.2 ± 8.6 53.2 ± 7.9 0.253

Male, n(%) 435 (52.4) 108 (52.2) 105 (50.5) 101 (48.6) 121 (58.5) 0.205

Duration (year) 5.3 ± 3.2 5.4 ± 3.5 5.2 ± 2.9 5.1 ± 3.2 5.4 ± 3.0 0.659

BMI (kg/m2) 24.5 ± 3.0 22.3 ± 2.4 23.6 ± 2.1 25.3 ± 2.0 27.0 ± 3.1 <0.001

WC (cm) 85.8 ± 7.0 80.8 ± 4.6 83.3 ± 4.3 87.4 ± 5.6 91.8 ± 7.3 <0.001

SBP (mmHg) 133.9 ± 17.5 129.8 ± 13.0 127.9 ± 14.5 137.5 ± 10.9 140.6 ± 16.3 <0.001

DBP (mmHg) 82.1 ± 6.7 77.4 ± 6.8 78.3 ± 7.8 84.8 ± 10.4 88.1 ± 6.9 <0.001

HbA1c (%) 8.7 ± 1.1 8.5 ± 1.0 8.7 ± 0.9 8.7 ± 1.5 8.9 ± 0.9 0.089

TG (mmol/L) 2.18 ± 1.36 1.97 ± 1.45 2.26 ± 0.98 2.37 ± 1.48 2.12 ± 1.34 <0.001

TC (mmol/L) 5.19 ± 1.20 4.87 ± 1.23 5.24 ± 1.13 5.28 ± 1.17 5.39 ± 1.16 <0.001

HDL-c (mmol/L) 1.11 ± 0.25 1.17 ± 0.23 1.18 ± 0.17 1.08 ± 0.10 0.97 ± 0.11 <0.001

LDL-c (mmol/L) 3.57 ± 0.95 3.30 ± 0.96 3.63 ± 0.88 3.70 ± 0.98 3.65 ± 0.94 <0.001

UA (umol/L) 354 ± 87 324 ± 70 330 ± 72 376 ± 79 385 ± 87 <0.001

Creatinine (umol/L) 70.2 ± 13.2 70.4 ± 13.2 70.7 ± 12.5 69.3 ± 13.9 70.8 ± 13.0 0.639

ALT (IU/L) 33.9 ± 8.7 33.8 ± 9.0 34.0 ± 8.4 33.4 ± 8.5 34.3 ± 8.9 0.814

AST (IU/L) 31.8 ± 6.3 31.2 ± 5.6 32.4 ± 5.2 31.8 ± 6.1 31.7 ± 5.2 0.764

HOMA-IR 5.37 ± 2.72 4.65 ± 2.44 4.67 ± 2.26 5.86 ± 2.22 6.32 ± 2.51 <0.001

Drinking, n(%) 260 (31.3) 68 (32.9) 64 (30.8) 66 (31.7) 62 (30.0) 0.929

Smoking, n(%) 273 (32.9) 73 (35.3) 66 (31.7) 64 (30.8) 70 (33.8) 0.763

cIMT (mm) 0.96 ± 0.17 0.81 ± 0.16 0.90 ± 0.14 1.02 ± 0.11 1.10 ± 0.14 <0.001

CTL-S 1.05 ± 0.23 1.21 ± 0.18 1.15 ± 0.22 0.96 ± 0.14 0.85 ± 0.17 <0.001

MAFLD, n(%) 392 (47.2) 65 (31.4) 81 (38.9) 114 (54.8) 132 (63.8) <0.001

SCAS, n(%) 518 (62.4) 94 (45.4) 114 (54.8) 141 (67.8) 169 (81.6) <0.001
BMI, body mass index; WC, waist circumference; HbA1c, Glycated hemoglobin; UA, uric acid; TG, triglyceride; TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-
density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; HOMR-IR, homeostasis model assessment insulin resistance; cIMT, carotid intima-media thickness;
MAFLD, metabolic dysfunction-associated fatty liver disease; SCAS, Sub-clinical carotid atherosclerosis; SII, systemic immune-inflammation index.
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P<0.001) and CTL-S (r=-0.507, P<0.001). Conversely, a positive

association was observed between SII and cIMT (r=0.424, P<0.001).

To further investigate these correlations, weighted multiple linear

regression analyses were conducted. As outlined in Table 2. As

outlined in Table 2, CTL-S remained negatively correlated with SII

(b=-0.147, P<0.001) and cIMT (b=-0.243, P<0.001) even after

conducting full adjustments in Model 3. Similarly, the positive

correlation between SII and cIMT persisted (b=0.168, P<0.001).
Correlation of MAFLD with SCAS and their
association with SII

In all three models, MAFLD contributed an independent variable

for SCAS risk. The ORs for SCAS risk were 4.79 (95%CI: 3.30–6.97, P

< 0.001) in Model 1, 2.12 (95%CI: 1.29–3.48, P < 0.001) in Model 2,

and 2.15 (95%CI: 1.31–3.53, P < 0.001) in Model 3, respectively.

Table 3 presents the findings of weighted binomial logistic regression

analysis for the correlations of SII with SCAS and MAFLD risk. The

results showed that higher quartiles of SII were positively associated

with increased SCAS and MAFLD risk compared to the first quartile,

across all three models (P<0.05). Meanwhile, Ln (SII) was
Frontiers in Endocrinology 05
independently correlated with increased SCAS and MAFLD risk (P

< 0.05). In the fully adjusted Model 3, the ORs for SCAS and MAFLD

risk were 2.26 (95% CI: 1.23–4.13, P=0.008) and 2.11 (95% CI: 1.14–

3.92, P=0.017), respectively. Similar results were also observed when

translating Ln (SII) into SII to increase by 1SD in this analysis.

Additionally, a significant dose-response relationship was observed

across all three models (P for trend <0.001). As shown in Figure 2, the

RCS analyses demonstrated a linear correlation of Ln (SII) with SCAS

and MAFLD risk in Model 3 (P for nonlinearity >0.05).
Diagnostic value of SII for MAFLD
and SCAS

The diagnostic performance of SII for MAFLD and SCAS

was assessed by the ROC curves analysis. The results indicate

that SII exhibits a favorable diagnostic value for MAFLD and

SCAS. The AUCs (95%CI) of SII for identifying MAFLD and

SCAS were 0.847 (0.819–0.874) and 0.741(0.708–0.774). The

optimal cut-off values of SII were 518.8 (sensitivity: 52.7%,

specificity: 87.2%) for SCAS and 399.1 (sensitivity: 84.7%,

specificity: 79.7%) for MAFLD.
The mediating effect of SII and Ln (SII)

Figure 3 displays the mediation analysis examining the role of

SII and Ln (SII) in the association between MAFLD and SCAS. The

findings indicate that a significant positive indirect effect of MAFLD

associated with SCAS through SII and Ln (SII) was observed after

adjustment for Model 3. The proportion mediated effect was 7.8%

for SII (P<0.001), and 10.9% for Ln (SII) (P<0.001).
Sensitivity analysis

As shown in Supplementary Tables 1, 2, similar results were

obtained when sensitivity analysis was performed in men. The

findings revealed an inverse correlation between CTL-S and SII

(b=-0.160, P<0.001), as well as CTL-S (b=-0.264, P<0.001). Similarly,

the positive correlation between SII and cIMT remained consistent

(b=0.159, P<0.001). Meanwhile, Ln (SII) exhibited an independent
FIGURE 1

Spearman correlation analysis for the association among SII, cIMT,
and CTL-S. SII, Systemic immune-inflammation index; cIMT, Carotid
intima-media thickness; CTL-S, CT liver-spleen
attenuation measurement.
TABLE 2 Multivariate linear regression analysis for the independent associations among SII, cIMT and CTL-S.

Independent
variables

Dependent
variables

Model 1 Model 2 Model 3

b P value b P value b P value

SII cIMT 0.323 <0.001 0.189 <0.001 0.168 <0.001

SII CTL-S -0.306 <0.001 -0.159 <0.001 -0.147 <0.001

cIMT CTL-S -0.374 <0.001 -0.255 <0.001 -0.243 <0.001
Model 1: adjusted for age, gender, diabetic duration, smoking, and drinking.
Model 2: further adjustments for cardiometabolic variables, such as systolic blood pressure, diastolic blood pressure, waist circumference, body mass index, glycated hemoglobin, triglycerides,
total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, and homeostatic model assessment of insulin resistance.
Model 3: additional adjustments for liver functional variables like alanine aminotransferase and aspartate aminotransferase.
SII, Systemic immune-inflammation index; cIMT, Carotid intima-media thickness; CTL-S, CT liver-spleen attenuation measurement.
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correlation with increased SCAS and MAFLD risk (P < 0.05). In the

fully adjusted Model 3, the ORs for SCAS and MAFLD risk were

1.79(95% CI: 1.24–2.59, P=0.002) and 1.35 (95% CI: 1.17–1.56,

P<0.001), respectively. Furthermore, the proportion mediated

effects of SII and Ln (SII) were 9.9% (P<0.001) and 13.8%

(P<0.001) in men (Supplementary Figure 1).
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Discussion

This study involved prospective recruitment of participants from

two centers to investigate the mediating role of SII in the association

between MAFLD and SCAS in individuals with T2DM. The study

made several noteworthy findings. There was a notable increase in the
TABLE 3 Binomial logistic regression analysis for the correlations of SII with SCAS and MAFLD risk.

Variable
Model 1 Model 2 Model 3

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

SCAS

Q1 Ref. (1.0) Ref. (1.0) Ref. (1.0)

Q2 1.43(1.23–1.88) <0.001 1.12(1.09–1.16) <0.001 1.16(1.10–1.23) <0.001

Q3 2.91(1.87–4.51) <0.001 1.27(1.04–1.54) 0.018 1.20(1.09–1.32) <0.001

Q4 3.73(1.60–8.70) 0.002 3.01(2.01–4.52) <0.001 2.44(1.66–3.56) 0.001

Per SD increase 2.80 (2.26–3.47) <0.001 1.94(1.39–2.71) <0.001 1.87(1.34–2.60) <0.001

Ln (SII) 2.54(1.75–3.69) <0.001 2.43(1.08–5.48) 0.032 2.26(1.23–4.13) 0.008

P for trend <0.001 <0.001 <0.001

MAFLD

Q1 Ref. (1.0) Ref. (1.0) Ref. (1.0)

Q2 1.65(1.11–2.46) 0.013 1.27(1.14–1.40) <0.001 1.13(1.07–1.21) <0.001

Q3 2.58(1.74–3.94) <0.001 1.96(1.22–3.16) 0.006 1.76(1.08–2.86) 0.024

Q4 4.06(3.38–4.89) <0.001 3.26(1.43–5.52) <0.001 2.98(1.98–4.49) <0.001

Per SD increase 2.68(1.82–3.98) <0.001 2.08(1.23–3.37) 0.003 1.85(1.30–2.62) <0.001

Ln (SII) 3.82(2.14–6.87) <0.001 2.92(1.59–5.35) 0.001 2.11(1.14–3.92) 0.017

P for trend <0.001 <0.001 0.001
Model 1: adjusted for age, gender, diabetic duration, smoking, and drinking.
Model 2: further adjustments for cardiometabolic variables, such as systolic blood pressure, diastolic blood pressure, waist circumference, body mass index, glycated hemoglobin, triglycerides,
total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, and homeostatic model assessment of insulin resistance.
Model 3: additional adjustments for liver functional variables like alanine aminotransferase and aspartate aminotransferase.
SII, Systemic immune-inflammation index; MAFLD, Metabolic dysfunction-associated fatty liver disease; SCAS, Subclinical carotid atherosclerosis.
BA

FIGURE 2

Restricted cubic spines analysis for the correlation between Ln (SII) and MAFLD risk (A), as well as SCAS risk (B) after adjusting for Model 3. SII,
Systemic immune-inflammation index; MAFLD, Metabolic dysfunction-associated fatty liver disease; SCAS, Subclinical carotid atherosclerosis. Model
3: adjusted for age, gender, diabetic duration, smoking, drinking, systolic blood pressure, diastolic blood pressure, waist circumference, body mass
index, glycated hemoglobin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid,
homeostatic model assessment of insulin resistance, alanine aminotransferase, and aspartate aminotransferase.
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prevalence of both MAFLD and SCAS as the SII quartiles increased.

MAFLD emerged as an independent factor for SCAS risk across three

adjusted models, while increased SII quartiles and Ln (SII) displayed

positive associations with the risk of MAFLD and SCAS. Additionally,

SII and ln (SII) served as pivotal mediators in establishing the

association between MAFLD and SCAS. Notably, sensitivity analysis

unveiled consistent results in men.

MAFLD represents a systemic inflammatory liver ailment

imposing substantial clinical and economic burdens due to its

pronounced hepatic and extraneous ramifications like CVD (22, 23).

SCAS was considered a predictor of future CVD events. This

investigation unveiled that MAFLD was an independent risk factor

for SCAS, presenting a heightened odds ratio of 2.15 (95% CI: 1.31–

3.53). The established correlation betweenMAFLD and escalated SCAS

risk underscores the imperative of addressing this co-occurrence within

clinical realms. Recent studies emphasize the significant impact of

systemic inflammation instigated by MAFLD on endothelial damage,

inflammatory cell activation, and smooth muscle cell proliferation,

which can directly intertwine with atherosclerosis (24, 25). Advanced

methodologies like single-cell RNA sequencing and high-dimensional

multi-omics have substantially enriched our understanding of immune

cell subpopulation heterogeneity within the liver. These innovative

approaches have shed light on emerging inflammatory mechanisms,

including notable macrophage heterogeneity, involvement of auto-

aggressive T cells, and the role of unconventional T cells and

interactions between platelets and immune cells. These insights

contribute to a deeper understanding of the complex interplay

between systemic inflammation, MAFLD, and atherosclerosis (26–

28). SII, a recognized measure of systemic inflammation, integrates

multiple components of the immune and inflammatory systems,

comprehensively assessing an individual’s overall immune-

inflammatory status. This study observed that higher SII quartiles

exhibited a higher prevalence of MAFLD and SCAS. This finding

suggests a shared underlying background of systematic inflammation

for these two conditions.
Frontiers in Endocrinology 07
CTL-S is a quantitative method employed to objectively measure

the severity of hepatic steatosis, characterized by abnormal fat

accumulation in the liver. On the other hand, cIMT offers valuable

insights into the extent of subclinical atherosclerosis, denoting the

accumulation of arterial plaque before the onset of symptoms. Xie et al.

conducted a study involving 6792 adults aged 18 to 80, finding a

significant positive association between SII and controlled attenuation

parameters, suggesting that an increased SII may indicate more severe

hepatic steatosis (29). Similarly, Song et al. analyzed data from 10505

participants and observed an independent interaction between SII and

hepatic steatosis. This association was identified using weighted

multivariable regression analysis and subgroup analysis (14).

Additionally, Çırakoğlu et al. examined individuals with hypertension

and discovered an independent correlation between SII and increased

cIMT in this population (16). In line with prior research, this study

showed a positive correlation between SII and cIMT, along with a

negative correlation between SII and CTL-S after adjusting for

confounding factors using weighted multiple linear regression

analyses. These results suggest that SII is linked with the severity of

hepatic steatosis and cIMT. Previous studies have demonstrated a

positive correlation between SII and increased risk of NAFLD and

CVD mortality. For instance, Liu et al. revealed a significant positive

association observed between ln (SII) and NAFLD risk (OR=1.46, 95%

CI: 1.27–1.69, P <0.001), establishing a linear relationship between ln

(SII) and NAFLD in a cohort of 10,821 adults from six cycles of the

NHANES (30). Several large cohort studies have demonstrated that an

elevated SII is independently associated with an increased risk of CVD

mortality (31–33). Our study found similar results to the above studies.

In addition, this study also conducted a sensitivity analysis in

subgroups of men to account for potential variations in SII

categorizations and further enhance the robustness of the study

findings. As expected, the positive correlation of increased SII

quartiles and Ln (SII) with the risk of MAFLD and SCAS persisted.

Additionally, SII has been validated as a diagnostic index for various

inflammatory digestive diseases (34, 35) and coronary artery disease
BA

FIGURE 3

Structural model for the mediating role of SII (A) and Ln (SII) (B) in the association between MAFLD and SCAS after adjusting for Model 3. SII,
Systemic immune-inflammation index; MAFLD, Metabolic dysfunction-associated fatty liver disease; SCAS, Subclinical carotid atherosclerosis. Model
3: adjusted for age, gender, diabetic duration, smoking, drinking, systolic blood pressure, diastolic blood pressure, waist circumference, body mass
index, glycated hemoglobin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid,
homeostatic model assessment of insulin resistance, alanine aminotransferase, and aspartate aminotransferase.
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(36). Similarly, this study also found that SII exhibited a favorable

diagnostic value for MAFLD and SCAS. Previous studies have

demonstrated that SII played a mediating role in chronic

inflammatory diseases associated with CVD (37) and metabolic

syndrome (38). T2DM often exhibits abnormal glucose metabolism,

dysfunctional fat accumulation, insulin resistance, and dyslipidemia, all

contributing to systemic inflammation and SCAS. Consequently,

determining the exact impact of inflammation triggered by MAFLD

on the increased risk of SCAS in individuals with T2DM is intricate due

to shared risk factors between the conditions. Despite adjustment for

the shared risk factors attenuating the proportion of the mediated effect

related to SII and Ln (SII), its mediating role in this association

remained statistically significant.

This study has several notable strengths, particularly its novel

investigation into the mediating role of the SII in the relationship

between MAFLD and SCAS, as well as the enrollment of a study

population from two centers, which enhances the reliability and

external validity of the findings. Nonetheless, it is imperative to

recognize certain limitations inherent in this investigation. Firstly, the

data utilized in this analysis were cross-sectional, limiting our ability to

establish causality or assess temporal relationships. Secondly, despite

adjusting for various known risk factors, there is still the possibility of

residual confounding or unmeasured variables that could influence the

interpretation of the result. Lastly, the assessment of hepatic steatosis in

this study relied on unenhanced CT scans rather than the gold standard

criterion of liver biopsy. This methodological variation introduces the

potential for discrepancies in the accuracy of diagnosis.
Conclusion

In conclusion, increased SII quartiles and Ln (SII) demonstrated

positive associations with the risk of MAFLD and SCAS. SII and Ln (SII)

partially mediated the effect of MAFLD on SCAS. These findings

emphasize the impact of MAFLD on increased risk of SCAS may be

achieved in part by promoting systemic inflammation. Further research is

needed to validate our results and elucidate the underlying mechanisms.
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