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Transcriptome analysis
combined with Mendelian
randomization screening for
biomarkers causally associated
with diabetic retinopathy
Junyi Liu1†, Jinghua Li1†, Yongying Tang1, Kunyi Zhou1,
Xueying Zhao1, Jie Zhang2 and Hong Zhang1*

1Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University,
Kunming, China, 2Department of Ophthalmology, Dali Bai Autonomous Prefecture People’s Hospital,
Dali, China
Background: Diabetic retinopathy (DR) is considered one of the most severe

complications of diabetes mellitus, but its pathogenesis is still unclear. We

hypothesize that certain genes exert a pivotal influence on the progression of

DR. This study explored biomarkers for the diagnosis and treatment of DR

through bioinformatics analysis.

Methods:Within the GSE221521 and GSE189005 datasets, candidate genes were

acquired from intersections of genes obtained using WGCNA and DESeq2

packages. Mendelian randomization (MR) analysis selected candidate

biomarkers exhibiting causal relationships with DR. Receiver Operating

Characteristic (ROC) analysis determined the diagnostic efficacy of biomarkers,

the expression levels of biomarkers were verified in the GSE221521 and

GSE189005 datasets, and a nomogram for diagnosing DR was constructed.

Enrichment analysis delineated the roles and pathways associated with the

biomarkers. Immune infiltration analysis analyzed the differences in immune

cells between DR and control groups. The miRNet and networkanalyst databases

were then used to predict the transcription factors (TFs) and miRNAs,

respectively, of biomarkers. Finally, RT-qPCR was used to verify the expression

of the biomarkers in vitro.

Results: MR analysis identified 13 candidate biomarkers that had causal

relationships with DR. The ROC curve demonstrated favorable diagnostic

performance of three biomarkers (OSER1, HIPK2, and DDRGK1) for DR, and

their expression trends were consistent across GSE221521 and GSE189005

datasets. The calibration curves and ROC curves indicated good predictive

performance of the nomogram. The biomarkers were enriched in pathways of

immune, cancer, amino acid metabolism, and oxidative phosphorylation. Ten

immune cell lines showed notable disparities between the DR and control

groups. Among them, effector memory CD8+ T cells, plasmacytoid dendritic

cells, and activated CD4+ T cells exhibited good correlation with biomarker

expression. The TF-mRNA-miRNA network suggested that hsa-mir-92a-3p,

GATA2, and RELA play important roles in biomarker targeting for DR. RT-qPCR
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results also demonstrated a notably high expression ofHIPK2 in patients with DR,

whereas notably low expression of OSER1.

Conclusion: OSER1, HIPK2, and DDRGK1 were identified as biomarkers for DR.

The study findings provide novel insights into the pathogenesis of DR.
KEYWORDS

diabetic retinopathy, enrichment analysis, immune infiltration, Mendelian
randomization, regulatory network
1 Introduction

Diabetic retinopathy (DR) is a disease that causes vision loss in

adults aged 20 to 74 years (1). The incidence of visual impairment

and blindness caused by DR in low- and middle-income countries

has increased significantly due to the increasing incidence of type 2

diabetes (2). About one-third of the 260 million people with

diabetes have DR, and one-third of these patients are diagnosed

with advanced DR or diabetic macular edema, and most of these

patients have severe vision loss and a serious impact on their quality

of life (3). In China, the incidence of diabetes is steadily increasing,

with projections indicating that by 2045, approximately 174 million

individuals will be diagnosed with diabetes (4). The diagnosis of DR

mainly depends on history of diabetes and changes in the fundus of

the eye as assessed by fundus photography, optical coherence

tomography, and fundus fluorescence angiography (5). At

present, DR is diagnosed solely based on the clinical

manifestations, and the corresponding symptomatic treatment is

based on the findings of fundus evaluation, but there is a lack of

predictive and effective evaluation methods for DR. Among the

many risk factors for DR, the most relevant factors are diabetes

progression and poor glycemic control (6). The pathogenesis of DR

is complicated, involving multiple molecular and biochemical

mechanisms related to the homeostasis of retinal blood vessels

and cells. The treatment for DR mainly includes intravitreous drug

injection and retinal laser photocoagulation (7)Due to our lack of

understanding of DR pathogenesis, there is also a lack of effective

clinical treatment options. Therefore, it becomes vital to identify

robust biomarkers for DR and further investigate the mechanisms

underlying DR pathogenesis. The ideal therapeutic strategy for the

clinical identification and management of DR should aim to

enhance the patients’ quality of life to the fullest.

Mendelian randomization (MR) is a novel epidemiological

design tool that follows the genetic law of random distribution of

alleles from parents to offspring (8). This tool has been increasingly

used for establishing causal relationships between exposure factors

and disease risks, made possible through advancements in statistical

techniques, availability of extensive datasets, progress in epigenetics
02
research, and the emergence of various ‘omics’ technologies (9).

Therefore, in this study, we used MR to screen for biomarkers that

exhibit a causal relationship with DR.

We hypothesize that certain genes, which are biomarkers, exert

a pivotal influence on the progression of DR. In this study,

differential expression analysis, weighted gene co-expression

network analysis (WGCNA), functional annotation analysis,

protein-protein interaction (PPI) network construction, and MR

analysis of data related to DR in the Gene Expression Omnibus

(GEO) and the Integrative Epidemiology Unit (IEU) Open genome-

wide association study (GWAS) databases identified three

biomarkers with a causal relationship with DR. Furthermore,

functional enrichment analysis, immune infiltration analysis,

regulatory network construction, and drug prediction were

performed, and the expression levels of these biomarkers were

verified in the two datasets by RT-qPCR. Finally, a diagnostic

nomogram was constructed, which could provide new insights

into the diagnosis and treatment of DR. The flowchart illustrating

the entire analysis process was depicted in Figure 1.
2 Materials and methods

2.1 Data source

The GEO database (https://www.ncbi.nlm.nih.gov/) was used to

acquire mRNA expression profile of the GSE221521 and

GSE189005 datasets with the GPL24676 and GPL23126

platforms, respectively. The study included 41 and 50 venous

blood samples of DR and normal samples, respectively, in

GSE221521 as the training set. GSE189005 consisted of 10 and 9

venous blood samples of DR and normal samples, respectively. The

IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/) was

employed to obtain the GWAS ID and data for exposure factors

and DR. DR was considered as the outcome (finn-b-

DM_RETINOPATHY). The finn-b-DM_RETINOPATHY dataset

comprised of 14,584 DR samples and 16,380,459 single nucleotide

polymorphisms (SNPs).
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2.2 Differential expression analysis

In the GSE221521 dataset, DR-differentially expressed genes

(DEGs) between DR and normal samples were identified conducted

utilizing the DESeq2 package (v 1.34.0) (|Log2FC| > 0.5, p < 0.05) (10).

The P value was corrected by Benjamini-Hochberg (BH) method. The

volcanomap and heat map were drawn employing the ggplot2 (v 3.4.1)

and ComplexHeatmap (v 2.16.0) packages, respectively (11, 12).
2.3 WGCNA

TheWGCNAwas implemented to seek DR keymodule genes. The

WGCNA package (v 1.71) was used to perform hierarchical clustering

of all samples in the GSE221521 dataset, and outliers were removed

(13). Then, the optimal soft threshold (b) was determined by realizing

scale-free distribution and setting R2 above 0.85. Based on the b value,

themodule was segmented by applying the standard of hybrid dynamic

tree cutting algorithm (deepSplit = 2, mergeCutHeight = 0.3), with each

module containing at least 100 genes. Modules with an absolute

correlation greater than 0.6 with DR were further analyzed, and

genes in these module were DR key module genes.
2.4 Identification and functional annotation
analysis of candidate genes

The ggVennDiagram package (v 1.2.2) was used to determine

the overlap between DR-DEGs and DR key module genes, and

candidate genes were identified if there was overlap (14).

The clusterProfiler package (v 4.6.0) was used to perform

functional annotation analysis, including the Gene Ontology
Frontiers in Endocrinology 03
(GO) functions, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways, and the disease ontology (DO) enrichment

analysis (p < 0.05) (15). The STRING database (https://string-

db.org/) was employed to predict interactions between proteins

corresponding to candidate genes with a confidence score threshold

of 0.4. The protein-protein interaction (PPI) network was

subsequently displayed adopting Cytoscape (v 3.10.0) (16).
2.5 MR analysis

The candidate genes served as exposure factors, and DR was

used as the outcome for MR analysis. In MR studies, the following

three assumptions were made: (a) the presence of a significant

correlation between instrumental variables (IVs) and exposure

factors is imperative, (b) IVs should not be affected by

confounding factors related to exposure factors or outcome, and

(c) IVs can affect the outcome only through exposure factors.

The mv harmonize data function in the TwoSampleMR package

(v 0.5.6) was used to unify effect alleles and effect sizes (17). Next,

SNPs exhibiting significant correlation with candidate genes were

selected as IVs (p<5×10-8), and IVs for linkage disequilibrium (LD)

were removed (clump=TRUE, R2 = 0.001, kb=10000). The function

extract instruments of TwoSampleMR package (v 0.5.8) was

employed for this procedure (17). MR analysis of causality was

carried out by five methods—MR Egger, Weighted median, Inverse

variance weighted (IVW), Simple mode, Weighted mode), of which

results of the IVW were the primary reference (p<0.05) (18–22).

Scatter plots, forest plots, and funnel plots were prepared to

visualize the results. An odds ratio (OR) greater than 1 indicated

that the gene was a risk factor for DR, while the value was less than

1, the gene was considered a protective factor.
FIGURE 1

The flowchart of entire analysis process.
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2.6 Sensitivity analysis for MR analysis

The reliability of MR analysis was assessed via sensitivity

analysis, consisting of heterogeneity and horizontal pleiotropy

tests, as well as Leave-One-Out (LOO) analysis. Initially, the

Cochran’s Q test for heterogeneity was conducted, with p>0.05

indicating the absence of heterogeneity. Subsequently, a horizontal

pleiotropy test was performed by employing the MR pleiotropy test

function, with p>0.05 indicating that SNPs affected the outcome

only through exposure factors. Finally, the LOO analysis was

conducted using the MR leave one out function to determine

whether a single SNP could significantly alter the overall effects.

Genes exhibiting causal relationships with the outcome and passing

the sensitivity analysis were identified as potential.
2.7 Receiver operating characteristic curve
analysis and nomogram development

The pROC (v 1.18.0) (23) package was employed to plot ROC

curves of potential biomarkers in the GSE221521 and GSE189005

datasets, and genes exhibiting area under the curve (AUC) values

greater than 0.7 were considered reliable biomarkers. Subsequently,

the biomarker expression levels in the GSE221521 and GSE189005

datasets were validated. Based on the expression of biomarkers, the

rms package (v 6.5.0) was used to develop a diagnosis nomogram

for DR patients (24). Calibration curves and ROC curves were

constructed to evaluate the accuracy and reliability of the

nomogram predictions. The calibration curve was plotted using

the calibrate function and boot method.
2.8 Gene set enrichment analysis and gene
set variation analysis

Using c2.cp.kegg.v2023.1.Hs.symbols.gmt as the background

gene set, GSEA of biomarkers was conducted with R

clusterProfiler (v 4.6.0) (p<0.05) (15). Based on biomarker

expression, all samples in the GSE221521 dataset were

reorganized into high and low expression groups. The GSVA

package (v 1.46.0) was used for GSVA of biomarkers in these two

groups (25).
2.9 Immune infiltration analysis

The single sample GSEA (ssGSEA) algorithmwas used to assess the

abundance of 28 immune cells in the samples of DR and control groups.

The Wilcoxon test was used to compare the difference in immune cell

infiltration between the two groups (p<0.05). The Spearman correlation

coefficient between distinct immune cells, as well as between biomarkers

and these cells was computed (|r|>0.3, p<0.05).
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2.10 Construction of regulatory network
and drug prediction

The miRNA targeting biomarkers were predicted using the

miRNet database (https://www.mirnet.ca), while the transcription

factors (TFs) regulating biomarkers were obtained from the

networkanalyst database (http://www.networkanalyst.ca). Cytoscape

(v 3.10.0) was then used to construct a regulatory network involving

TF-mRNA-miRNA interactions (16). In order to explore potential

drugs for the treatment of DR, targeted drugs for biomarkers were

searched based on Drug Signatures Database (DSigDB) database

(http://tanlab.ucdenver.edu/DSigDB), and results with p < 0.05

were selected.
2.11 Reverse transcription-quantitative
polymerase chain reaction

Peripheral venous blood samples were collected from 20

patients in the Second affiliated Hospital of Kunming Medical

University, including 10 patients with DR and 10 patients without

DR. These samples were divided into two parts, each comprising of

five DR samples and five control samples, and RT-qPCR was

performed on each part to verify the screened biomarkers. This

experiment was approved by the Institutional Review Board of the

Second affiliated Hospital of Kunming Medical University (Review

-PJ- Research -2024–134). TRIzol (Ambion, Austin, TX) was used

to separate total RNA from 10 samples following the manufacturer’s

instructions. The concentration of RNA was extracted using

NanoPhotometer N50 (IMPLEN GmbH), and the purity of RNA

was assessed by measuring the ratio of A260/A280. The SureScript-

First-strand-cDRA-synthesis-kit (Servicebio, Wuhan, China) was

used for reverse transcription of total RNA into cDNA as per the

manufacturer’s instructions. The temperature was set to 25°C for 5

minutes, followed by 50°C for 15 minutes, then raised to 85°C for a

duration of 5 seconds. Finally, maintain the temperature at 4°C

during reverse transcription. Subsequently, qPCR analysis was

performed using the 2xUniversal Blue SYBR Green qPCR Master

Mix (Servicebio) according to the provided manual. The

amplification conditions were 95°C for 1min, 95°C for 20s, 55°C

for 20s, and 72°C for 30s. The primer sequences for PCR are listed

in Supplementary Table 1. Gene expression levels were normalized

to GAPDH as an internal reference and calculated using the 2

−DDCq method (26). The characteristics of patients are listed in

Supplementary Table 2.
2.12 Statistical analysis

R software (v 4.2.1) (https://www.R-project.org/.) was utilized

to process and analyze data. Statistical analysis was performed using

the wilcox.test method in R.
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3 Results

3.1 Acquisition of candidate genes

The differential expression analysis between DR and normal

samples in GSE221521 yielded 2,283 DR-DEGs, comprising 1,304

upregulated DR-DEGs and 979 downregulated DR-DEGs. The

volcano map illustrates both upregulated and downregulated DR-

DEGs (Figure 2A). The heatmap displays the expression of the top
Frontiers in Endocrinology 05
50 DR-DEGs, ranked based on p.adj values, in the two

groups (Figure 2B).

Sample clustering analysis revealed two outliers (GSM6881234

and GSM6881340) in the GSE221521 dataset and were removed for

subsequent analysis (Figure 2C). The b value was determined to be

13 by setting a threshold of scale-free R2 above 0.85 to construct

gene modules (Figure 2D). As a result, 10 modules were obtained by

the hybrid dynamic tree cutting algorithm (Figure 2E).

Subsequently, the correlation between the green (R=0.73), light
B

C

D E

F G

A

FIGURE 2

Acquisition of candidate genes (A) Volcano map of DR-DEGs (B) Heat map of DR-DEGs (C-F) WGCNA (C) Sample clustering diagram (D) The
selection of soft threshold b (E) Module clustering diagram (F) the relevance heat map of gene modules and DR (G) Venn map of candidate genes.
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green (R=0.66), and midnight blue (R=0.63) module genes with DR

were greater than 0.6, and a total of 1,079 DR module genes were

obtained from these modules (Figure 2F). Finally, 423 candidate

genes were determined based on interaction between 2,283 DR-

DEGs and 1,079 DR module genes (Figure 2G).
3.2 Enrichment analysis of candidate genes

In order to understand the functions, diseases, and pathways of

candidate genes, enrichment analysis was performed. The GO

functions of candidate genes included semaphorin receptor

complex, semaphorin-plexin signaling pathway involved in axon

guidance, and regulation of cell shape (Figure 3A). The KEGG

enrichment analysis showed that candidate genes were markedly

enriched in endometrial cancer, basal cell carcinoma, fatty acid

biosynthesis, and apoptosis (Figure 3B). The DO enrichment

analysis showed that candidate genes were significantly related to

meningioma, tuberous sclerosis, intracranial arterial disease, and

cerebral arterial disease (Figure 3C).

The PPI network constructed to investigate the interactions

among genes contained 324 nodes and 815 edges. AGO2 had a

direct interaction with 18 genes (e.g., CLCN6, UBR4, SIDT2),

whereas ACTG1 interacted with 14 genes (e.g., SRCAP, ITGA3,

HCLS1) (Figure 3D).
3.3 Candidate biomarkers exhibiting
significant causal relationships with DR

The 423 candidate genes served as exposure factors, with 176

genes exhibiting SNPs, and DR was used as the outcome for the MR

analysis. The IVW method was used to identify 13 candidate

biomarkers (OSER1, HIPK2, DDRGK1 , PCK2 , IK , IRF5 ,

COLGALT1, TRPM2, SLC38A10, TSNARE1, PAQR7, ZNF142,

and ARID1A) that exhibited significant causal relationships with

DR (p<0.05). Among them, eight candidate biomarkers (OSER1,

HIPK2, DDRGK1, PCK2, TRPM2, SLC38A10, TSNARE1, and

ZNF142) exhibited an OR greater than 1 and identified as risk

factors for DR. Conversely, five candidate biomarkers (IK, IRF5,

COLGALT1, PAQR7, and ARID1A) demonstrated an OR less than 1

and were considered protective factors for DR (Table 1).

In the scatter plot, the effect of SNPs of OSER1, HIPK2, DDRGK1,

PCK2,TRPM2, SLC38A10, TSNARE1, and ZNF142 on DR were

positively correlated overall, while the effect of SNPs of IK, IRF5,

COLGALT1, PAQR7, and ARID1A on DR were negatively correlated

overall. These results confirmed the above conclusions (Supplementary

Figure 1). Consistent with the previous results, the forest map

illustrated that the MR effect size of risk factors for DR exceeded 0

and theMR effect sizes of risk factor were less than 0, providing further

evidence that IVs exhibit no or weak correlation with outcome

(Supplementary Figure 2). At last, the funnel plot illustrated that MR

analysis of 13 candidate biomarkers and DR was consistent with

Mendel’s second random law (Supplementary Figure 3).

Sensitivity analysis results showed that all 13 candidate

biomarkers passed the tests of horizontal pleiotropy and
Frontiers in Endocrinology 06
heterogeneity, and LOO analysis affirming the robustness and

reliability of our MR analysis (Supplementary Tables 3, 4,

Supplementary Figure 4).
3.4 OSER1, HIPK2, and DDRGK1 served as
dependable biomarkers

The AUC values in ROC curves of OSER1, HIPK2, and

DDRGK1 were 0.868, 0.815, 0.806, respectively, in GSE221521,

and 0.700, 0.833, and 0.722, respectively, in GSE189005

(Figures 4A–F). Given that all the AUC values exceeded 0.7, these

three genes could serve as reliable biomarkers. The expression levels

of OSER1, DDRGK1 and HIPK2 were consistent in GSE221521 and

GSE189005 (Figures 4G, H). RT-qPCR results also demonstrated a

significant high expression of HIPK2 in patients with DR, whereas

OSER1 exhibited a significant lower expression level (Figures 4I–K,

Supplementary Figure S5). A nomogram was constructed based on

the expression levels of OSER1, HIPK2, and DDRGK1 (Figure 5A).

The AUC value for the nomogram was 0.942, and the calibration

curve of the nomogram was almost a straight line, indicating a good

predictive performance of the nomogram (Figures 5B, C).
3.5 GSEA and GSVA of biomarkers

GSEA analysis demonstrated significant associations between

HIPK2 and DDRGK1 with ribosome, Parkinson’s disease, oxidative

phosphorylation, and other pathways. OSER1 was enriched in

spliceosome, neuroactive ligand receptor interaction, and

olfactory transduction (Figures 6A–C). The top 20 pathways

enriched by DDRGK1, HIPK2 and OSER1 in GSVA are shown in

Figures 6D–F. The first three pathways (glycine serine and

threonine metabolism, base excision repair, etc.) of DDRGK1

were enriched in the high expression group, while the remaining

17 pathways (such as inositol phosphate metabolism and glioma)

were enriched in the low expression group. Similarly, the initial 11

pathways (lysine degradation, prostate cancer, etc.) of HIPK2 were

enriched in the high expression group, whereas the remaining nine

pathways (glycine serine and threonine metabolism, ribosome, etc.)

were enriched in the low expression group. Among pathways

related to OSER1, the first 14 (beta alanine metabolism, nitrogen

metabolism, etc.) were enriched in the high expression group, and

the remaining six (glyoxylate and dicarboxylate metabolism,

primary immunodeficiency, etc.) were enriched in the low

expression group.
3.6 The immune infiltration exhibited
notable disparities between the DR and
control groups

The distributions of the 28 immune cells in the sample were

visualized using a heatmap (Figure 7A). There were 10 immune cell

types exhibiting notable disparities between the DR and control

groups, such as central memory CD8+ T cells, activated CD8+ T
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B
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D
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FIGURE 3

Functional enrichment analysis and PPI network (A) GO functions enriched by candidate genes (B) KEGG pathways enriched by candidate genes
(C) Disease enriched by candidate genes (D) PPI network of candidate gene.
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cells, monocytes, effector memory CD8+ T cells, activated CD4+ T

cells, and myeloid derived suppressor cells (Figure 7B). There was a

significant positive association between activated CD8+ T cells and

activated CD4+ T cells (R=0.60). Conversely, a significant negative

correlation was identified between monocytes and activated CD4+ T

cells (R=-0.52) (Figure 7C). DDRGK1 expression significantly and

positively correlated with effector memory CD8+ T cells and

negatively with plasmacytoid dendritic cells. Activated CD4+ T

cells correlated significantly and positively with OSER1

expression. HIPK2 expression significantly and positively

correlated with myeloid derived suppressor cells and negatively

with activated CD8+ T cells (Figures 7D–F).
3.7 Regulatory relationships
with biomarkers

TF-mRNA-miRNA network was composed of 25 TFs, three

biomarkers, and 191 miRNAs, with a total of 219 nodes and 233

edges (Figure 8). The hsa-mir-92a-3p linked with all three

biomarkers. GATA2 and RELA had strong associations with

HIPK2 and OSER1, thereby highlighting their role in the

pathogenesis of DR. The target drugs of HIPK2 mainly included

GW5074 (Raf1 Kinase Inhibitor I) MRC, LY-317615 Kinome Scan,

and GSK650394A MRC. Furthermore, OSER1 was primarily

targeted by Thioguanosine PC3 UP, Elesclomol CTD 00004602,

and Gedunin CTD 00003449 (Table 2).
4 Discussion

DR is a condition affecting the small blood vessels in the retina,

commonly seen in individuals with diabetes. It has emerged as a

leading cause of visual impairment among middle-aged people
Frontiers in Endocrinology 08
worldwide. Approximately 22.3% of diabetic patients are affected

by DR, and about 6.2% experience progressive changes in their

retina that can potentially lead to vision loss (27). Timely diagnosis

and prompt initiation of treatment can effectively mitigate over 90%

of vision loss attributed to DR (28). The occurrence and

development of DR are complicated, and its pathogenesis is still

unclear. Therefore, it is necessary to investigate further into

biomarkers for DR. Bioinformatic analysis techniques, based on

the gene expression profiles acquired from databases, have been

used to investigate target genes in disease diagnosis (29). For

example, inhibition of MAPK3 expression was found through

bioinformatics analysis to potentially impact the onset and

progression of DR through its regulation of autophagy (30).

Likewise, eight potential pyroptosis-related genes involved in the

occurrence of DR were analyzed (31). Bioinformatics analysis have

allowed us to derive novel insights into the immune mechanisms

involved in proliferative diabetic retinopathy, and M2 macrophage-

related biomarkers have been recognized to play a role in DR (32).

The engagement of hub genes HMOX1 and PTGS2, along with their

related TFs and miRNAs, have been shown to potentially play a role

in ferroptosis in DR (29).

MR analysis relies on genetic predictors as IVs to investigate the

causal association between exposure factors and diseases (33). MR

has been used to explore biomarkers of multiple diseases, including

diabetes mellitus and DR (34, 35). MR analysis offers crucial

evidence regarding the potential causal impacts of numerous

alterable exposures, encompassing conventional epidemiological

risk factors, lifestyle aspects, and targeted interventions (36).

In this study, based on transcriptome data in the GSE221521

and GSE189005 datasets, candidate genes were identified through

differential expression analysis and WGCNA. These candidate

genes served as exposure factors, and DR was used as the

outcome for MR analysis. A total of 13 candidate biomarkers that

exhibited causal relationships with DR were obtained by MR
TABLE 1 MR analysis results (IVW).

outcome exposure gene symbol Method P value OR

finn-b-
DM_RETINOPATHY

eqtl-a-ENSG00000132823 OSER1 IVW 0.04 1.052

eqtl-a-ENSG00000064393 HIPK2 IVW 0.04 1.259

eqtl-a-ENSG00000198171 DDRGK1 IVW 0.022 1.064

eqtl-a-ENSG00000100889 PCK2 IVW 0.002 1.078

eqtl-a-ENSG00000113141 IK IVW 0.039 0.926

eqtl-a-ENSG00000128604 IRF5 IVW 0.003 0.925

eqtl-a-ENSG00000130309 COLGALT1 IVW 0.002 0.906

eqtl-a-ENSG00000142185 TRPM2 IVW 0.043 1.09

eqtl-a-ENSG00000157637 SLC38A10 IVW 0.027 1.067

eqtl-a-ENSG00000171045 TSNARE1 IVW 0.0003 1.185

eqtl-a-ENSG00000182749 PAQR7 IVW 0.003 0.893

eqtl-a-ENSG00000115568 ZNF142 IVW 0.043 1.094

eqtl-a-ENSG00000117713 ARID1A IVW 0.022 0.942
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analysis, and the ROC curve demonstrated favorable diagnostic

performance of three biomarkers (OSER1, HIPK2, and DDRGK1)

for DR. Enrichment analysis delineated pathways associated with

the biomarkers, including oxidative phosphorylation, as well as

amino acids and glucose. Immune infiltration analysis showed that

biomarkers were associated with pro-inflammatory cells such as

activated CD4+ T cells or Tfh cells. Moreover, a TF-mRNA-miRNA

network was composed of 25 TFs, three biomarkers, and 191
Frontiers in Endocrinology 09
miRNAs, with a total of 219 nodes and 233 edges. Finally, RT-

qPCR verified the expression of the biomarkers in vitro. Then, we

delve into the in-depth discussion of the roles of OSER1, HIPK2,

and DDRGK1 in DR.

The long noncoding RNA OSER1 plays a crucial role in the

inflammation and apoptosis of rheumatoid arthritis fibroblasts (37),

and its low expression was markedly associated with poor survival

of cancer patients (38). In the present study, we found that low
B C

D E F

G H

I J K

A

FIGURE 4

Identification and validation of biomarkers (A–F) ROC curve analysis of candidate biomarkers in GSE221521 and GSE189005 datasets (G, H) The
expression levels of OSER1, DDRGK1 and HIPK2 in GSE221521 and GSE189005 datasets (I–K) The expression levels of OSER1, DDRGK1 and HIPK2 in
clinical samples by RT-qPCR. *: p < 0.5, ***: p < 0.001, ns: not statistically significant.
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OSER1 expression can also contribute to the pathogenesis of DR.

Inflammation is a major driver of DR, and OSER1 is known to

promote the inflammatory cascades (37), thereby triggering DR.

HIPK2 regulates several pro-fibrotic pathways, such as Wnt/b-
catenin, liver and cardiac fibrosis, pulmonary, and renal pathways

(TGF-b and Notch signaling) (39). HIPK2 inhibition can result in

cardioprotective effects as it would decrease EGR3 and CLEC4D

expression levels through ERK1/2-CREB inhibition in

cardiomyocytes, as well as through the suppression of Smad3

phosphorylation in cardiac fibroblasts (40). These findings suggest a

close link between HIPK2 expression and fibrosis. Diabetes-associated

fibrosis reflects the repair of primary injury and is involved in the

pathogenesis of diabetic nephropathy, cardiomyopathy, and liver

dysfunction, as well as the development of DR and neuropathy (41).

In the present study, we found that HIPK2 was upregulated in DR

patients, suggesting that HIPK2 may promote the development of DR

by promoting the pathological process of retinal cell fibrosis. miR-423–

5p is reported to directly bind to HIPK2, and its upregulation in DR

patients enhances angiogenesis by inhibiting HIPK2 expression,

thereby activating the HIF1a/VEGF signaling pathway (42). This is

contrary to the results of the present study, and it is speculated that an

increase in the level of VEGF may promote the levels of HIPK2. It is

also possible that the discordant result was because our PCR was based
Frontiers in Endocrinology 10
on blood samples. In order to clarify the exact relationship between

HIPK2 and VEGF, it is necessary to conduct a study using a larger

sample size for the extraction and analysis of vitreal fluids.

DDRGK1, a protein containing the DDRGK domain, plays a

crucial role in the recently identified ufmylation mechanism. Absence

of DDRGK1 leads to significant levels of endoplasmic reticulum (ER)

stress (43) and causes a range of conditions, such as malignancies,

neurodegenerative disorders, diabetes, and inflammatory disorders

(44). Knocking out DDRGK1 has been observed to trigger ER stress

and facilitate apoptosis (45). Due to hyperglycemia and insulin

resistance, apoptosis causes DR. Aligning with our finding that low

DDRGK1 expression in DR patients, it is possible that ER stress

induced by decreased DDRGK1 may contribute to the development

of DR. However, the large variation in the RT-qPCR results may be

related to the small sample size, and more samples are needed for

verification of the results.

The present study is the first to demonstrate the association

between biomarkers OSER1 and DDRGK1 and DR. We found that

HIPK2 may affect fibrosis and VEGF levels through some signaling

pathways, suggesting that HIPK2 serves as reliable biomarkers for DR.

The primary pathophysiological alterations observed in DR are

attributed to long-term hyperglycemia, which triggers oxidative

stress and inflammation within the microvessels of the retina.
B C

A

FIGURE 5

Construction and evaluation of the nomogram (A) Construction of the nomogram (B) Calibration curve of nomogram (C) ROC curve of nomogram.
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B

C

D

E

F

A

FIGURE 6

GSEA and GSVA analysis of biomarkers (A-C) GSEA analysis of DDRGK1, HIPK2, and OSER1 (D-F) GSVA analysis of DDRGK1, HIPK2, and OSER1.
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Consequently, this leads to thickening of the basement membrane

surrounding retinal capillaries, increased permeability of retinal

blood vessels, and neovascularization (46). Glycemic control is

achieved through the coordinated interaction among glycolysis,

the Krebs cycle, and oxidative phosphorylation. Disturbing this

equilibrium results in various biochemical and molecular

alterations in DR (47). GSEA and GSVA of these three

biomarkers provided details of the enrichment between these
Frontiers in Endocrinology 12
genes and related pathways. The biomarkers were enriched in

pathways of oxidative phosphorylation, possibly indicating that

hyperglycemia disrupts the balance between glycolysis and

oxidative phosphorylation, leading to other biochemical and

molecular changes in retinal cells that have been linked to the

neural and microvascular complications of DR. In summary, the

expression of these biomarkers may influence the imbalance

between glycolysis and oxidative phosphorylation caused by
B

C D

E F

A

FIGURE 7

Immune infiltration analysis (A) Heat map of the distributions of the 28 immune cells (B) Differences in the abundance of immune cells in DR and
Control groups (C) Differential immune cell correlation heat map (* represents the P-value < 0.05, the number represents the correlation coefficient)
(D-F) Lollipop chart analysis of correlation between DDRGK1, HIPK2, and OSER1 with differential immune cells (The size of the circle represents
correlation, and different colors represent different P-values). *: p < 0.5, **: p < 0.1, ***: p < 0.001, ns, not statistically significant.
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hyperglycemia, potentially leading to retinal microvascular changes

associated with DR.

Amino acids play a crucial role in the formation of tissues,

specialized proteins, hormones, enzymes, and neurotransmitters.

They also contr ibute to energy metabol ism through

gluconeogenesis and play important roles in various metabolic

pathways (48). Glutamine and arginine levels in the peripheral

blood tend to increase in DR patients (49, 50), and methionine level

decreases in blood samples of DR patients (48). Therefore, these

amino acids can also be used as biomarkers for the early diagnosis of

DR. In this study, the pathway of glycine, serine, and threonine

metabolism was enriched in the high expression group of DDRGK1.
Frontiers in Endocrinology 13
AmongOSER1-related pathways, beta alanine metabolism, nitrogen

metabolism, and other amino acid pathways were enriched in the

high expression group. Evidence from previous metabolomics

studies and our study suggests that metabolic pathways of many

amino acids are involved in the occurrence of DR. Consequently,

there may be numerous interactions between metabolic pathways of

amino acids and glucose associated with the three biomarkers

identified in our study, which require further investigation.

Diabetes is a metabolic disorder, and chronic inflammation

plays a vital role in the development of type 2 diabetes. We found

10 immune cell types exhibiting notable disparities between the

DR and control groups, including activated CD4+ T cells. It is well
FIGURE 8

TF-mRNA-miRNA regulatory network (Green represents TF, red represents biomarkers, and purple represents miRNA).
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established that CD4+ T cells are involved in inflammation (51),

and the accumulation of CD4+ T cells, B cells, and macrophages is

observed in the vitreous of DR patients (52). Inflammation can

also affect retinal vascular pathology in DR through the activation

of pro-inflammatory retinal microglia by the innate immune

system and the transformation of CD4+ T cells into pro-

inflammatory Th1 and Th17 cells (53). OSER1 can affect the

inflammatory response in DR patients by affecting activated

CD4+ T cells, leading to the occurrence of DR. The number of a

relatively new subgroup of circulating CD4+ T cells i.e., follicular

helper T (Tfh) cells, which are located at the germinal center, is

reported to increase in DR patients compared to healthy

individuals (52, 54). The present study also showed that the

number of Tfh cells increases in the DR group. These findings

further support our results that the number of activated CD4+ T

cells significantly and positively correlated with OSER1

expression, suggesting OSER1 may promote inflammation and

accelerate vascular injury, leading to the development of DR

through activated CD4+ T cells or Tfh cells.

In conclusion, three biomarkers, namely OSER1, HIPK2, and

DDRGK1, were found to play a role in DR pathogenesis. The

diagnostic nomogram for DR constructed in this study will help

further improve the diagnosis of DR. These three biomarkers are

expected to become potential targets for the diagnosis and

treatment of DR patients. One limitation of the present study is

that the results are based on the bioinformatic analysis of a public

database, and further experiments are needed to explore the detailed

roles of the biomarkers. Additional clinical studies are needed to

validate the results. OSER1 and DDRGK1 have not been studied

earlier in the context of DR, and additional studies are needed to

ascertain their role in DR pathogenesis. Our future studies will focus

on these two biomarkers. The relationship between HIPK2 and DR

in the present study was found to be opposite of what has been

reported earlier; again, further research is needed to explore

these pathways.
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GSK650394A MRC / /

OSER1

Thioguanosine PC3 UP C10H13N5O4S

Elesclomol CTD 00004602 C19H20N4O2S2

Gedunin CTD 00003449 C28H34O7
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