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Cardiometabolic risk factors in
MASLD patients with HCC: the
other side of the coin
Marica Meroni*†, Miriam Longo*† and Paola Dongiovanni

Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico,
Milan, Italy
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes

the commonest cause of chronic liver disorder worldwide, whereby affecting

around one third of the global population. This clinical condition may evolve into

Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and

hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The

complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia

and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations

may be crucial in influencing the risk of HCC and modifying its prognosis.

However, the causative association between HCC onset and the presence of

metabolic comorbidities is not completely clarified. Therefore, the present

review aimed to summarize the main literature findings that correlate the

presence of inherited or acquired hyperlipidemia and metabolic risk factors

with the increased predisposition towards liver cancer in MASLD patients. Here,

we gathered the evidence underlining the relationship between circulating/

hepatic lipids, cardiovascular events, metabolic comorbidities and

hepatocarcinogenesis. In addition, we reported previous studies supporting the

impact of triglyceride and/or cholesterol accumulation in generating aberrancies

in the intracellular membranes of organelles, oxidative stress, ATP depletion and

hepatocyte degeneration, influencing the risk of HCC and its response to

therapeutic approaches. Finally, our pursuit was to emphasize the link between

HCC and the presence of cardiometabolic abnormalities in our large cohort of

histologically-characterized patients affected by MASLD (n=1538), of whom 86

had MASLD-HCC by including unpublished data.
KEYWORDS
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1 Introduction

Due to the global spreading of Metabolic Syndrome (MetS), the newly re-defined

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) represents the greatest

challenge for the global Health systems of the 21st century. This concept is even more

relevant when we consider that it may constitute the etiopathological substrate for the
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development of advanced stages of the disease, passing towards

Metabolic Dysfunction-Associated Steatohepatitis (MASH), to

fibrosis, cirrhosis and hepatocellular carcinoma (HCC). As

assumed by the novel nomenclature, several metabolic alterations

may be causative of steatosis, thus being more inclusive of

cardiometabolic risk factors as abdominal obesity, dyslipidemia,

hypertension, and hyperglycemia. Indeed, the new terminology

implies body mass index (BMI) >= 25 kg/m2 or increased waist

circumference (WC >94 cm for men and 80 cm for women); raised

plasma triglycerides (TGs>= 1.70 mmol/L or lipid lowering

treatments); reduced HDL cholesterol (<= 1.0 mmol/L or lipid

lowering agents); high blood pressure (>= 130/85 mmHg or therapy

with anti-hypertensives); and enhanced fasting serum glucose (>=

100 mg/dL) or glucose intolerance (1).

A total of 10–20% of HCC cases is attributable to MASLD (2),

thus projecting the proportion of the annual incidence of the liver

cancer worldwide and requiring a growing attention in surveillance

programs (3, 4). With the advances in antiviral therapies, MASLD-

related HCC is becoming also the sixth most common tumor

globally and the second indication for liver transplantation in the

United States (5). Intriguingly, MASLD-HCCmay even occur in the

absence of cirrhosis, further delaying its diagnosis (6, 7).

Nutritional and lifestyle habits as well as the metabolic status of

patients may participate in determining the risk of HCC andmodifying

its prognosis (8). However, the mechanisms underlying this association

are not completely elucidated. Thus, the present mini-review aims to

deepen the role of metabolic comorbidities in predisposing to liver

cancer in MASLD patients, emphasizing the correlation between HCC

and the presence of cardiovascular abnormalities.
2 Common genetic signature between
MASLD-HCC and lipid disorders

Ever increasing evidence testifies that the evolution of MASH

towards HCC, with or without cirrhosis, is prompted by a plethora

of common and rare inherited variations (9). Genetic variants

which predispose to HCC are those in genes related to hepatic

lipid handling including the Patatin-like phospholipase domain

containing 3 (PNPLA3), the Transmembrane 6 superfamily

member 2 (TM6SF2) and Membrane bound-o-acyltransferase

domain-containing 7 (MBOAT7) , widely reported to be

responsible for fatty loading of the liver (10). These

polymorphisms alone and more so when combined in polygenic

risk scores (PRSs), have been extensively associated with glucose

reprogramming, tumorigenesis and metabolic switching towards

aerobic glycolysis, mitochondrial failure and oxidative stress due to

hepatic lipid overload (10, 11). In details, the prevalence of the three

at-risk variants was 2.5-fold enriched in patients in the MASLD-

HCC compared to non-carriers and their cumulative presence was

associated with enhanced MASLD-HCC risk (11). Moreover, by

applying a mendelian randomization approach, Dongiovanni and

colleagues firstly reported that the co-presence of PNPLA3,

TM6SF2, MBOAT7, and GCKR at-risk alleles, aggregated into a

PRS, causally determines an increased susceptibility to develop

severe chronic liver diseases, which reached about 13.4-fold for
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MASLD-HCC risk, as a consequence of their ability to induce

hepatic fat accumulation (12). Accordingly, it has been

demonstrated that the impact of each genetic variant on the odd

to develop HCC is directly proportional to their ability to

predispose to fatty liver (12, 13). For instance, the genetic

variation encoding the p.I148M substitution in PNPLA3 which is

the major inherited determinant of hepatic fat accumulation, is

enabled to predispose to an until 5-fold higher risk to develop HCC

even independently offibrosis (14). Likewise, the common rs641738

close to MBOAT7 has been pointed out as a modifier of the

susceptibility to develop HCC even in the absence of cirrhosis as

a consequence of its ability to induce giant lipid droplets (LDs) into

the hepatocytes and other rare loss-of-function variants in the same

gene have been found enriched in patients with MASLD-HCC (15).

Therefore, a close relationship between circulating/hepatic lipids

and hepatocarcinogenesis exists and genetic variants influencing

them may be helpful in discriminating those MASLD patients at

increased risk of HCC.

In keeping with this notion, other variants implicated in the

remodeling of lipids and their release favor the switching from fatty

liver towards cancer. Indeed, similarly to what occur in patients

carrying the p.E167K allele of TM6SF2, even rare mutations with

large effect size in the Apolipoprotein B (APOB) gene, have been

correlated with hypobetalipoproteinemia and a protection against

cardiovascular complications, but with more severe liver injuries

(15). Indeed, ApoB participates to the VLDL gathering and

modulates their secretion and loss-of-function variants blunt

circulating lipoprotein concentrations. This event triggers severe

fat depots’ formation due to VLDL retention and progressive

MASLD up to HCC (16). As a consequence, a significant

enrichment in pathogenic and truncating mutations in APOB

gene has been identified in MASLD-HCC patients (15). In line

with a possible causative role of lipid retention in hepatocytes in

fostering HCC onset, even somatic mutations in APOB frequently

occur during hepatocarcinogenesis (17). Hence, APOB alterations

have been recently outlined as a prognostic biomarker for

HCC (18).

Similarly, other variants influencing fasting lipids have been

reported to increase the susceptibility to severe liver injuries. In

particular, Dongiovanni and colleagues demonstrated that the

proprotein convertase subtilisin/kexin type 7 (PCSK7) rs236918

G > C gain-of-function mutation coupled atherogenic dyslipidemia

and acute coronary syndrome with MASH-fibrosis in a large

histologically-characterized cohort of MASLD patients (19).

Accordingly, it has been recently reported that this variant is

enabled to modulate ApoB protein levels reinforcing the

hypothesis of a possible role for PCSK7 in modulating lipid

metabolism, LDs formation and liver damage (20). Likewise,

genetically-determined aberrant expressions of PCSK9, another

member of the proprotein convertase subtilisin/kexin family, have

been correlated with hereditary hypercholesterolemia, severe

steatosis and cardiovascular abnormalities (21–23). However, the

impact on hepatocarcinogenesis of inherited variants in these two

genes is still unexplored.

Moreover, the rs599839 A>G variant localized in the 1p13.3

locus related to lipid traits reduced the risk of coronary artery
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disease (CAD) and dyslipidemia, favoring in turn the incidence of

liver cancer, poor prognosis, reduced overall survival and advanced

tumor stages in HCC patients. The likely mechanism behind this

association is due to the overexpression of the oncogene Proline

And Serine Rich Coiled-Coil 1 (PSRC1), and of Sortillin 1 (SORT1),

both involved in distinct pathways. The former regulates cell

proliferation participating to microtubule destabilization and

spindle assembly, while the latter modulates circulating lipid

profiles, reinforcing lipoprotein clearance, turnover and dismissal.

Hence, similarly to the aforementioned mutations, it disentangles

the risk of atherogenic dyslipidemia and hepatocarcinogenesis,

whereby enhancing HCC incidence, but ameliorating serum lipid

profile (24). Accordingly, hepatic PSCR1 expression associated with

increased HCC recurrence, and its overexpression was observed in

hepatoma tissues compared to the adjacent ones and correlated

with reduced survival (25, 26). Conversely, the Neurotensin (NTS)

rs1800832 variant has been described to enhance the susceptibility

to coronary heart diseases, and predispose to advanced fibrosis and

HCC in MASLD patients. This polymorphism modulates

circulating pro-NTS, a peptide mainly released from entero-

endocrine N cells of the gastrointestinal tract which facilitates

intestinal fatty acid absorption and its effects are mediated by

three neurotensin receptors (NTSRs), one of which is SORT1.

Exaggerated NTS expression has been described in human HCC

samples, where it mediates hepatocyte proliferation and epithelial

mesenchymal transition (EMT), being tumors more aggressive and

promoting tumor invasion, spreading and metastasis (27). Even

more, elevated pro-NTS circulating levels were significantly

correlated with the presence of HCC (28). Therefore, we could

hypothesize that other inherited mutations exerting large effects on

lipoprotein metabolism may be useful to classify patients with

MASLD according to their relative risk of developing

cardiovascular vs. liver-related events.

Other genetic risk factors may play a crucial role in the

transition from simple steatosis to MASH and cancer, whereby

modulating the lipid composition and the size of the LDs. For

instance, the rs35568725 (p.S251P) variant in Perilipin-2 (PLIN2)

gene, which regulates the stability and the remodeling of LDs and

VLDL lipidation, predisposes to severe insulin resistance (IR) and

atherosclerosis. This mutation conveys the risk of severe hepatic

disease favoring the accumulation of small LDs in hepatocytes

(29, 30). The pro-carcinogenic role of PLIN2 is still under

investigation. However, it has been found up-regulated in HCC

samples, gaining prognostic value and influencing adverse

outcomes (31). Likewise, also PLIN5, another member of the

perilipin family, is highly expressed in livers isolated from HCC

patients and diethylnitrosamine (DEN)-treated mice (32). The

rs884164 in PLIN5 downregulates its protein expression, blunting

the number of contacts between mitochondria and LDs and lipid

degradation. This variant is associated with a poorer outcome

following myocardial ischemia, and enhanced oxidative stress in

cardiomyocytes (33, 34). Alongside, other inherited defects in

autophagic processes, mainly in lipophagy, accelerates LD

accumulation (35). Although the impact of the variants in PLIN2

and PLIN5 genes on liver cancer is still under definition, we cannot
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rule out that they may define disease progression to cancer and

therapeutic response, due to their contribution to LD number, size

and composition. Indeed, it has been hypothesized that LDs

sequester anti-cancer drugs, hampering their efficacy. Moreover,

since augmented LD biogenesis have been reported in different

neoplastic conditions, this makes LDs novel suitable targets for

anticancer drugs and for the development of new dyes for cancer

cells imaging (36, 37).
3 Role of hyperlipidemia in HCC
development and evolution

3.1 Fatty acids and lipid droplets
metabolism in the modulation of HCC risk

MASLD is a complex disorder, whose pathogenesis involves

multi-parallel hits, either environmental or genetic factors. TGs,

diglycerides, and ceramides overload trigger endoplasmic reticulum

(ER) stress and mitochondrial dysfunction, causing both calcium

(Ca2+) and reactive oxygen species (ROS) enrichment, which are

directly involved in DNA mutagenesis, activation of oncogenes or

inhibition of onco-suppressors (11, 38, 39).

Several studies revealed that hepatic LDs accumulation and de

novo lipogenesis (DNL) play a crucial role in HCC development.

Notably, the inhibition of key enzymes involved in lipogenic

pathways, such as stearoyl-CoA desaturase (SCD), fatty acid

synthase (FASn), and acetyl-CoA carboxylase (ACC), has been

linked to a reduced presence and proliferation of cancer stem

cells (CSCs), which are critical for tumor growth and progression,

in both in vitro and in vivo models (40, 41). Moreover, free fatty

acids (FFAs) derived from adipose tissue lipolysis, combined with

those synthesized through DNL, may accelerate hepatocytes’

degeneration, and promote tumor escape mechanisms by

activating anti-apoptotic programs. Palmitic acid (PA) treatment

affects insulin signaling, enhances b-oxidation, exacerbates ROS

content, and turns on c-Jun NH2-terminal kinase (JNK), a

constitutively activated factor in HCC. The accumulation of oleic

acid (OA) and PA promotes liver cancer by suppressing Pten, an

inhibitor of Pi3k/Akt/mammalian target of rapamycin (mTOR)

signaling (42).

Notwithstanding, it has been observed that HCC has a wide

molecular and phenotypic variability. Indeed, T2D, obesity, or

MASLD may induce the development of “oxidative” HCCs, in

which FFAs are catabolize through b-oxidation and increase ATP

availability. This mechanism may favor cell growth and mainly

involve the activation of PPARa, the master regulator of FFA

degradation, and of WNT/b-catenin oncogenic cascade (43). In

keeping with these findings, Tian et al. has demonstrated that LD

breakdown (lipophagy) was unexpectedly involved in

carcinogenesis in hepatoma cell lines, MASLD murine models,

and MASLD-HCC human samples (44).

Even more, LD formation and their dimension (micro/macro-

LDs) hover a crucial role in HCCmetastasis, stemness and response

to therapy. Interestingly, besides stocking energy sources, LDs work
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as a buffering system incorporating lipotoxic species. It has been

reported that long-term Sorafenib exposure, the first-line treatment

for advanced HCC, impairs b-oxidation, causing the accumulation

of FAs. In turn, toxic FAs are incorporated into LDs, favoring their

biogenesis and enlargement, and increasing the HCC susceptibility

to became drug resistant. This adverse effect has been recently

attributed to the upregulation of AKR1C3 protein, which promotes

LD shaping and accumulation, insofar as the selective AKR1C3

inhibition improved Sorafenib resistance in HCC cell lines (45).

PLIN1/2/3 proteins mediate LDs–mitochondria crosstalk,

regulating LDs’ expansion and disposal. Notably, PLIN1, PLIN2

and PLIN3 are differentially expressed during tumorigenesis and

usually dwell on the LDs’ surface according to the LDs’ dimension.

PLIN2 and PLIN3 mainly coat small LDs and are commonly

overexpressed at early stages of HCC, as the LD dimension allows

rapid dynamics between synthesis and consumption to sustain

phases of cell proliferation or metabolism. PLIN1 expression is

lost during hepatocarcinogenesis and may reflect the differentiation

grade of hepatocytes (46).

The activation of SREBP1 via PI3K/Akt/mTOR further

contributes to neoplastic steatogenesis and PLINs expression (47).

These studies pointed out a differential role of micro/macro-LDs in

HCC onset and progression, although details on the mechanisms

and respective roles need to be addressed in the future.
3.2 Cholesterol and HCC

Recent clinical and preclinical evidence supported the notion

that an excessive cholesterol intake may represent an independent

risk factor for liver cancer development in the context of MASLD,

even irrespectively of cirrhosis (48–50). However, a precise

definition of the likely mechanism behind this association

remains to be elucidated. In different rodent models of obesity

and diabetes, it has been demonstrated that hyperinsulinemia

stimulates induction of new cholesterol synthesis, through sterol

regulatory element-binding protein 2 (SREBP2) activation, low-

density lipoprotein receptor (LDLR) up-regulation, and the

shutdown of its conversion into bile acids, thus leading to the

hepatic accumulation of free cholesterol. Cholesterol overload, in

turn, favors lipotoxicity into the hepatocytes, mediating the

progression to MASH (48). In details, cholesterol over-storage

into the organelles as ER and mitochondria generates aberrancies

in the intracellular membranes, ROS production, ATP depletion

and hepatocyte degeneration. Overall, these events predispose to a

more prone pro-inflammatory milieu, priming the transition from

uncomplicated steatosis to steatohepatitis and fibrosis (48, 51, 52).

Indeed, cholesterol uptake mediated by the scavenger receptor (SR-

A) or by CD36 and by lectin-like oxidized LDL receptor-1 (LOX-1),

exerts a dual role on Kupffer cells and hepatic stellate cells (HSCs),

respectively, thus promoting their activation, the release of pro-

inflammatory cytokines, oxidized mtDNA and pro-cancerous

factors (53). Accordingly, DEN administration to mice fed a high

fat high cholesterol (HFHC) diet induced more severe oxidative

DNA damage, non-synonymous somatic mutations, numerous and
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large liver tumors compared to littermates treated with DEN alone

(54). In addition, rodents fed HFHC displayed a pronounced gut

microflora dysbiosis and fecal microbiota transplantation in germ-

free mice favored the onset of steatosis, inflammation, oxidative

stress and cell proliferation. On the contrary, microbiota

manipulation to restore the eubiosis as well as cholesterol

lowering agents as atorvastatin might be effective for HCC

prevention (55).

It has been largely reported that free cholesterol depots are

accumulated in patients with MASH, due to the imbalance between

its biosynthesis, conversion and excretion and free cholesterol levels

correlate with the severity of the disease (56, 57). High cholesterol

assumption has been proven to enhance the susceptibility to HCC

in a population-based study among 14,407 participants conducted

in the United States, but serum cholesterol concentrations were not

associated with a higher risk of cirrhosis or liver cancer (49).

Conversely, Carr and colleagues found a positive correlation

between plasma cholesterol, lipoprotein levels and tumor growth,

cell invasion and aggressiveness (58). Likewise, a nested case-

control study within the Scottish Primary Care Clinical

Informatics Unit (PCCIU) database demonstrated that statins

assumption had a protective effect on HCC risk (hazard ratio HR,

0.48; 95% CI, 0.24–0.94) (59). In addition, statin users had 15%

lower hazard ratio (HR) to develop a new liver disease, 28% lower

HR of liver-related death and a 42% lower HR of HCC, showing a

significant hepatoprotection in time and dose dependent manner

(60). Similar benefits of statin use have been reported even in

patients with chronic hepatitis B (CHB) (61).

Intriguingly, Ma and collaborators demonstrated that

choles tero l leve l s may regulate a l so tumor immune

microenvironment, whereby affecting natural killer and CD8+ T

cells (62). In particular, these authors demonstrated that

cholesterol-enriched tumors progressively upregulate the

programmed death receptor 1 (PD-1), thus inducing CD8+ cell

death and the loss of cell growth control. On the contrary,

cholesterol-lowering agents, as simvastatin, prime the anti-tumor

immunity mimicking the effect of the novel developed PD-1/

Programmed death ligand 1 (PD-L1) inhibitors (63).

All-in-all, to further dissect the impact of cholesterol on the

incidence of HCC and shed a light on the possible use of lipid

biomarkers as a predictive sign of cancer, more investigations will

be warranted.
4 Prognostic value of metabolic
markers in MASLD-HCC patients

Emerging evidence outlines that metabolic factors, including

dyslipidemia, may increase the susceptibility to develop HCC,

especially in population with low prevalence of viral hepatitis

(64). Indeed, the peculiar pro-inflammatory and lipotoxic milieu

that characterizes the hepatic tissue of MASLD patients, influences

the risk of HCC and adverse prognosis. However, the magnitude

and the direction of this association is still under definition. In

addition, except for the total cholesterol, only few studies reported
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an association between circulating LDL, HDL and TGs and

hepatocarcinogenesis (65, 66). In this context, the idea to possibly

exploit lipid biomarkers as an edge of the disease progression,

became attractive.

For instance, neutrophil-to-HDL-C ratio (NHR) parameter has

been recently proposed as prognostic indicator of mortality in HCC

patients, exceeding the power of each single marker alone (67).

Indeed, HDL cholesterol may play discrete anti-inflammatory and

anti-oxidant functions and its reduction has been correlated with

the presence of different metabolic disorders (68, 69), including

HCC (70). Conversely, neutrophils constitute a precocious innate

immune response to injured tissues, being recruited directly in

proximity to the damage and parallelly increasing their count (71).

Therefore, the evaluation of this composite marker may be

representative of a severe disease status, overall reflecting both

inflammation and lipid metabolism. Accordingly, in the last years,

various applications for the NHR have been screened, as an index of

acute ischemic stroke (AIS) (72), or as a predictor of clinical

outcomes of all-causes of cardiovascular mortality (73). In

addition, low HDL cholesterol has been recently reported as novel

marker to predict HCC in 1,234 MASLD patients by Crudele and

collaborators (74). However, further population-based studies are

required to better define its sensitivity and sensibility in foreseeing

MASLD-HCC.

Given the strong impairment in hepatic parenchyma, an

abnormal pattern of serum lipoproteins as ApoA1 and ApoA2,

has been observed in patients with HCC (75, 76). For this reason, it

has been pointed out ApoA1 as a candidate biomarker for early

diagnosis, prognosis, and monitoring of HCC, in patients affected

by viral hepatitis C (77). However, one of the main issues is that

ApoA1 is not a sensitive or specific biomarker enough to separate

HCC from chronic liver diseases, in which hepatic dysfunction

occurs. Nonetheless, these findings further corroborate the

association between a dyslipidemic profile and the presence and/

or the risk of liver cancer (78, 79). Accordingly, we recently

demonstrated that the low serum lipoprotein (Lp(a))

concentrations correlated with transaminase elevation and

increased risk of developing cirrhosis in MASLD patients, thus

representing a novel lipid biomarker to reliably predict severe liver

disease (80). Alongside, Lp(a) has been proposed also as an

indicator of tumor recurrence after curative resections since it

represents an hallmark of the residual hepatic function (81).

Concerning other lipid-related biomarkers, preclinical and in

vitro studies demonstrate that serum and hepatic PCSK9 levels

induced by glucose exposure, alter the response of hepatoma cells to

cancer therapy (82). In addition, the high availability of glucose in

tumor tissues fosters PCSK9 elevated secretion, which favors, in

turn, hypercholesterolemia (82).

Considering the metabolic reprogramming that characterizes

hepatoma cells, it is conceivable that lipidomic-based studies may

provide novel biomarkers. For instance, a downregulation of plasma

phosphatidylcholine species (83) as well as of ceramides (84) has

been reported to have an acceptable predictive performance for

HCC, whereas the enhancement of Sphingosine 1-phosphate (S1P),

the prevalent hepatic sphingolipid, supports tumor growth (85).

Likewise, the assessment of the typically aberrant fatty acid
Frontiers in Endocrinology 05
metabolism (FAM), which supports cancer cell proliferation, may

be useful to construct prognostic risk models for HCC (86).

Alongside novel lipidomics approaches, also recent

metabolomics studies on blood samples from subjects with HCC

revealed aberrant circulating profiles of glucose, lactic acid, retinol,

bile acids and amino acids (including alanine, glutamine, 1-

methylhistidine, lysine, and valine), mainly as a consequence of

the unique HCCmetabolism (87). Notably, a deep understanding of

the utility and reliability of these omics biomarkers is necessary to

consider them for their introduction into the clinical practice. Even

more, further validation analyses in larger cohorts of patients are

required to understand whether these serum metabolites may be

helpful in diagnosing HCC and in stratifying MASLD-HCC

patients according to their prognosis. In this context, an

integrated view of the metabo-lipid signature of HCC patients is

now emerging as a diagnostic opportunity for Alpha-fetoprotein

(AFP) false-negative subjects (88).
5 Cardiovascular risk in patients
affected by MASLD-HCC

5.1 Cardiovascular complications,
dyslipidemia and type 2 diabetes in
MASLD-HCC patients

As extensively reported, the amount and the diameter of

circulating LDL cholesterol is one of the primary risk factors that

predispose to vascular atherosclerotic diseases in both men and

women (89). In details, numerous, small, dense and oxidized LDL

particles constitute the more noxious elements in the etiology of

CAD. Nevertheless, the causal relationship between HCC and

cardiometabolic risk factors is still under investigation. Indeed,

conflicting results are available regarding the association between

LDL levels and the odd of liver cancer. On one hand, it has been

demonstrated that LDL cholesterol loading into intracellular

organelles prompts oxidative and ER stress, thus creating a more

pro-oncogenic microenvironment (90), on the other, some

epidemiological studies described a significant association

between relatively low levels of LDL cholesterol (<100 mg/dL)

and the risk of incident cancer (91, 92). In keeping with the latter

observation, a reduction of the overall mortality in HCC patients

with hypertriglyceridemia (HR, 0.38; 95% CI, 0.26 to 0.55) and

hypercholesterolemia (HR, 0.50; 95% CI, 0.37 to 0.67) has been

reported by Chiang et al. (66).

Notwithstanding, Bertero and colleagues determined that

patients affected by cardiovascular diseases (CVD) are more likely

prone to develop malignancies, sustaining a possible shared biology

(i.e., inherited or acquired predisposing factors, inflammation,

stress and angiogenesis) that primes tumors and CVD

development (93). Hence a common multi-factorial pathogenic

substrate, involving T2D, dyslipidemia, hypertension, and obesity

for both diseases has been postulated (94). Accordingly, Banke and

collaborators further corroborate this notion, describing that

patients with chronic heart failure have an increased susceptibility

to develop any-type of cancers, with an incidence ratio of 1.24 (95).
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The other side of the coin is that fatal cardiovascular complications

and heart involvement in liver cancer is considered a poor

prognostic indicator, reducing the survival and cardiac metastasis

occurring in 10% of HCC diagnosis (96). Therefore, the overall

clinical framework of HCC patients, the use of cholesterol-lowering

medications, other therapeutic and dietary indications, and the

inference of genetic variations should be rigorously taken into

account to evaluate these associations.

A greater unified opinion outlines the causal relationship

between poor glycemic control/T2D and the incidence of HCC,

thus pointing out the need of achieving the goal of a better glucose

management to reduce long-term complications of diabetes in these

patients (66, 91, 97). Several epidemiological studies supported this

evidence (98–102) and a meta-analysis across 26 studies claimed an

almost doubled risk of HCC in patients with T2D of different

ethnicity and geographic localization (103).

In particular, T2D represents an independent risk factor for

HCC, in both men and women and this association became

stronger with prolonged T2D duration and more so in the co-

presence of other comorbid metabolic conditions (97). Indeed,

hyperglycemia, raised levels of insulin and insulin-like growth

factor 1 (IGF1) display proliferative and oncogenic effects and

they worsen the already existing cardiometabolic risk factors

exasperating chronic inflammation, endothelial dysfunction,

oxidative stress and DNA damage thus creating a favorable tumor

microenvironment. In this context, intestinal dysbiosis and

microbial metabolites may promote the raising of pro-

inflammatory, pro-coagulative and pro-fibrotic circulating

molecules, as the endotoxins (104, 105). Notably, it has been also

reported that T2D and HCC share almost 336 differentially

methylated genes (DMGs), including 86 co-methylated DMGs,

mainly involved in glycosaminoglycan biosynthesis, fatty acid and

metabolic pathways, whereas 250 DMGs with a different

methylation direction, enriched in the Sphingolipid metabolism

and immune signaling, thus corroborating a common

pathophysiology between these two diseases (106). Otherwise,

endothelial dysfunction per se is responsible for vasoconstriction

and platelet aggregation fueling pro-inflammatory mediators

release, hypertension, diabetic nephropathy and cardiovascular

diseases, fostering a ‘vicious cycle’ (107). Hence, T2D appears as

the common denominator between hepatocarcinogenesis and

cardiovascular abnormalities, by predisposing to both advanced

lesions, poor outcomes, vascular complications and higher

mortality rate (108). Nonetheless, irrespectively of coexisting

factors, IR is the major determinant of severe hepatic fibrosis,

which is an excellent prognostic indicator of HCC onset (109).

Alongside hyperinsulinemia has been reported to be responsible for

the induction of more aggressive cancer phenotypes and poor

prognosis even in other types of tumors (110).

Finally, the increasing number of metabolic comorbidities,

including dyslipidemia, T2D, obesity and hypertension has been

associated with enhanced predisposition to HCC, reaching an 8.1-

fold increased HCC risk (95% CI, 2.48–26.7) in the co-presence of

these four cofactors (97).
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5.2 Other cardiometabolic risk
factors influencing the risk of
MASLD-HCC: the role of abdominal
obesity and hypertension in
modifying hepatocarcinogenesis

As abovementioned, it is now widely acknowledged that obesity,

hypertension, glucose intolerance and T2D frequently co-occur

with hepatic steatosis, contribute to its progression and have been

associated with both cardiovascular and HCC risk in MASLD

patients (111).

Obesity has been increasingly identified as a major driver in the

evolution of MASLD up to HCC. Substantial adipose tissue deposits

introduce significant complications for the diagnosis and screening

of HCC with both invasive and non-invasive techniques. The

presence of subcutaneous and visceral fat can hinder the

detection of hepatic lesions by ultrasound, the standard protocol

for HCC surveillance, as well as it can make challenging the

interpretation of images obtained with higher resolution

equipment, such as MRI and CT. Additionally, in liver biopsies,

the accessibility to the liver can be limited by abdominal fat

accumulat ion, ra is ing the r isk of procedural-re lated

complications (112).

Two large population studies carried out in Denmark and US,

including 43,965 and 900,000 cases, respectively, have shown that

liver cancer development was by around 2-fold higher in obese

patients compared to the general population. Furthermore, the

relative risk of dying from liver cancer increased by 1.68 times for

women and 4.52 times for men with a BMI>30 kg/m2 compared to a

reference group with a median BMI>21.8 kg/m2 (113, 114).

Recently, Rustgi and collaborators conducted a retrospective

study in a large cohort of 98,090 newly diagnosed MASLD

patients eligible for bariatric surgery, spanning from 2007 to

2017. The authors found that MASLD subjects who underwent

bariatric interventions exhibited a lower rate of obesity-related

cancer, including HCC, compared to those who did not undergo

the surgery (115). These findings were partially corroborated by

Saito et al. who tested the efficacy of a multidisciplinary weight loss

program (WLP), including the nutritional assessment and physical

exercise, in HCC patients with a high BMI (≥25 kg/m2) before they

underwent hepatic resection. Despite WLP did not impact on HCC

recurrence or progression, it improved the immune status and liver

function (116), thereby supporting that interventions like bariatric

surgery and weight loss may potentially aid to mitigate HCC risk

and to ameliorate its management.

Hypertension represents the most prevalent cardiometabolic

risk abnormality in MASLD patients, diagnosed in up to 50% of

cases. The use of antihypertensive drugs, which include

angiotensin-converting enzyme inhibitors (ACEi), calcium

channel blockers (CCBs), beta-adrenoceptor blockers (BBs),

angiotensin receptor blockers (ARBs) and thiazide diuretics, is a

critical component in MASLD management, since hypertension

showed an independent association with HCC risk and poor

prognosis (117). Nonetheless, it is still unclear whether and how
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antihypertensive drugs may modify the risk of HCC or may limit

the efficacy of anti-cancer therapies (118, 119). For instance,

captopril, an ACEi, reduced hepatic fibrosis and prevented

progression towards HCC development in murine models of liver

cancer (119). Conversely, Zhang and coworkers reported that ACE

inhibitors may compromise the effects of anti-angiogenic drugs in

HCC mouse models (120), thus supporting the necessity for a

rigorous monitoring and control of hypertension in MASLD-HCC

patients to optimize treatment efficacy and outcomes.

A large meta-analysis collecting data from 1976 to 2017 in 12

countries (a total of 526,336 participants) have shown that

hypertension awareness, treatment, and control have been

improved in high-income states (121). However, in the past

decades, an alarming data has emerged concerning the ever-

increasing percentage of MASLD patients who suffered of

uncontrolled hypertension, which per se represents a negative

predictor of CVD-related mortality (121, 122). Multiple factors

have been recognized as major responsible behind this trend,

including non-adherence to treatment guidelines, physician

inertia, medication non-compliance, or limited health literacy

(122), underlining the urgent need to integrate comprehensive
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hypertension screening and management strategies into the care

protocols for MASLD patients.
6 Our novel findings regarding the
prevalence of carotid plaques in
HCC patients

In the attempt to provide further clinical evidence for the

surveillance of HCC patients, we explored the relationship

between the risk of hepatocarcinoma and cardiometabolic

comorbidities in a large cohort of biopsied-proved MASLD

patients (n=1538; Overall cohort). The Overall cohort was

enrolled at the Fondazione IRCCS Cà Granda Ospedale Maggiore

Policlinico of Milan, as previously described (11, 24).

The Overall cohort (n=1538) included n=1452 MASLD subjects

with different stages of the disease (Hepatology service cohort) and

n=86 MASLD-HCC individuals (Table 1). Histological evaluation

was staged according to NAFLD activity score (NAS) by Kleiner

et al. for steatosis, necroinflammation and ballooning degree.
TABLE 1 Demographic, anthropometric and clinical features of the Overall cohort (n=1538), stratified according to class enrollment criteria (n=1452,
Hepatology service cohort and n=86, MASLD-HCC).

Overall cohort (n=1538)
Hepatology service

(n=1452)
MASLD-HCC

(n=86)
P value*

Sex, M 808 (52.5) 742 (51) 66 (77) <0.0001

Age, years 49 ± 0.34 48 ± 0.33 67 ± 1.42 <0.0001

BMI, kg/m2 34.5 ± 0.23 34.7 ± 0.23 28.8 ± 1.12 <0.0001

Obesity, yes 925 (60.1) 904 (62.3) 21 (24.4) <0.0001

IFG/T2D, yes 402 (26) 351 (24.1) 51 (60) <0.0001

Glucose, mg/dL 102.9 ± 0.8 101.6 ± 0.8 131.5 ± 3.8 <0.0001

Insulin, IU/ml 20.7 ± 0.8 20.6 ± 0.8 24.3 ± 5.9 0.35

HOMA-IR 5.4 ± 0.26 5.2 ± 0.25 11.04 ± 1.9 <0.0001

Total cholesterol, mmol/L 197.5 ± 1.14 198.8 ± 1.15 164.9 ± 5.7 <0.0001

LDL cholesterol, mmol/L 123.3 ± 1.03 124.3 ± 1.05 99.2 ± 5.2 <0.0001

HDL cholesterol, mmol/L 49.9 ± 0.4 49.9 ± 0.4 49.9 ± 1.99 0.98

Triglycerides, mmol/L 142 ± 2.4 143.5 ± 2.4 107.2 ± 12.1 0.003

Lp(a), nmol/L 32.5 ± 1.6 32.9 ± 1.7 24.7 ± 6.8 0.22

Carotid IMT, mm 0.83 ± 0.009 0.83 ± 0.009 0.93 ± 0.04 0.01

Statin, yes 148 (9.6) 137 (9.4) 11 (13.4) 0.39

ALT, IU/l 34 {21–57} 33 {20–57} 43 {27–54} 0.29

AST, IU/l 26 {19–39} 25 {19–38} 47 {27–72} <0.0001

GGT, IU/l 41 {22–82} 39 {22–78} 84 {49–176} <0.0001

LDH, U/l 188 {221–263} 184 {109–254} 247 {179–335} 0.008
fr
Values are reported as mean ± SE, number (%) or median {IQR}, as appropriate. BMI, body mass index; IFG, impaired fasting glucose; T2D, type 2 diabetes; IMT, intima-media thickness.
Variables with skewed distribution were logarithmically transformed before analyses. IFG defined as fasting glucose >110 mg/dL. Mean carotid artery intima-media thickness (IMT), an index of
the early atherosclerotic process, was determined by high−resolution B-mode ultrasonography with a 7.5‐MHz transducer. Values of IMT represent the mean IMT on the left and right sides. The
presence of plaques was defined as a focal carotid thickening >1.2 mm. Systolic and diastolic blood pressures were measured twice on the same day, and the mean values were used for analysis.
The presence of hypertension was defined when systolic blood pressure was over 140 mm Hg or diastolic blood pressure was over 90 mm Hg more than twice or in subjects treated with
antihypertensive medication (80). *p<0.05 was considered statistically significant at two-way ANOVA (MASLD-HCC vs Hepatology service cohort). Bold values are those statistically significant.
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MASH was diagnosed when (a) steatosis, (b) lobular inflammation

and (c) ballooning were concomitantly present. Fibrosis stage was

defined according to the recommendations of the NAFLD Clinical

Research Network (123). Informed written consent was obtained

from each patient and the study protocol was approved by the

Ethical Committees of the Fondazione IRCCS Ca’ Granda, Milan

and it was in conformity with the ethical guidelines of the 1975

Declaration of Helsinki.

MASLD-HCC patients, were predominantly older men and

overweight, exhibited higher circulating transaminase (AST and

GGT) and lactate dehydrogenase (LDH) levels compared to those

belonging to the Hepatology service cohort (p<0.001, Table 1).

Moreover, a reduced total cholesterol, LDL cholesterol and TGs

together with higher fasting glucose concentration and HOMA-IR

values were observed in MASLD-HCC patients compared to the

Hepatology service cohort (p<0.001, Table 1). These findings were

consistent with those of Cao J et al, who found a strong association

between low-LDL cholesterol levels and HCC occurrence in a

mendelian randomization analysis across 212,453 individuals.

Similarly, this correlation was confirmed by Li M. et al. in a

multicentric, prospective study including 137,884 participants,

who even reported that patients with a poor glycemic control

showed a higher risk of liver cancer (91, 92).

The incidence of cardiovascular complications was firstly

analyzed in the Overall cohort, stratified according to histological

liver damage. In the Overall cohort, n=389 cases (25.3%) had

uncomplicated steatosis, n=280 (18.2%) presented MASH, n=783

patients (50.9%) had MASH plus fibrosis (referred to as fibrosis)

and n=86 (5.6%) developed HCC. In keeping with the notable

increase in carotid intima-media thickness (IMT) observed in

MASLD-HCC patients compared to the Hepatology service

cohort (p<0.05, Table 1), we showed that the frequency of carotid

plaques was significantly higher MASLD-HCC subjects compared

to those with a less severe disease (carotid plaques: 75% vs 30%,

33.9% and 43.5%; p=0.001 at Pearson correlation analysis;

padj=0.01 after the adjustment for age Figure 1A), despite the

lower circulating lipids detected in these patients (Table 1).

Alongside this, a marked increase in the incidence of

hypertension and T2D were found in MASLD-HCC individuals,
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and their frequency progressively increased with MASLD

worsening. Specifically, hypertension was present in 76.5% of

MASLD-HCC patients compared to 33.6%, 34.2%, and 46.8% in

earlier stages of the disease (p<0.0001 at Pearson correlation

analysis; padj=0.05 after the adjustment for age Figure 1B), while

T2D reached the 58.8% in HCC cases vs. 13.6% in uncomplicated

steatosis, 19.15% in MASH and 34.8% in fibrosis (p<0.0001 at

Pearson correlation analysis; padj=0.001 after the adjustment for

age Figure 1C), thereby suggesting that these comorbidities may

track the course of MASLD, exerting a significant impact on carotid

plaque formation.

It is well established that T2D, hypertension and cardiovascular

diseases are closely interconnected together to the point that their

coexistence in the same individual exacerbates endothelial

dysfunction, vascular inflammation and fibrosis, arterial

remodeling, and atherosclerosis (124). However, less is known

regarding their link with the occurrence of liver cancer.

Intriguingly, at nominal logistic regression analysis, adjusted for

age, sex, BMI, T2D, and statin use, we revealed a strong correlation

between the presence of carotid artery plaques and MASLD-HCC

(OR:3.78, 95% CI: 1.16–13.84, p=0.033, Figure 2A). Additionally,

hypertension (OR:2.79, 95% CI: 1.22–6.38, p=0.015, Figure 2B)

resulted independently associated with MASLD-HCC risk at

multivariate analysis after the adjustment for age, sex, BMI, T2D

and active smoking. Again, T2D associated with more than six-fold

increase of MASLD-HCC risk at nominal logistic regression

analysis adjusted for age, sex and BMI (OR:3.01, 95% CI: 1.64–

5.49, p=0.0003, Figure 2C), thus aligning with and strengthening

previously reported studies (105, 125). Moreover, we further

revealed that the combined prevalence of carotid plaques,

hypertension, and T2D was substantially higher in MASLD-HCC

patients (18.2% in MASLD-HCC vs. 4.2% in the Hepatology service

cohort, Figure 2D). Therefore, in our cohort, the risk of liver cancer

was significantly amplified by the co-occurrence of these

comorbidities (OR:4.10, 95% CI: 1.56–10.68, p=0.004), compared

to their presence alone.

In sum, our data identifies a paradox in MASLD-HCC patients

who exhibited lower circulating lipid levels and higher incidence of

plaque formation compared to individuals at different MASLD
B CA

FIGURE 1

Cardiometabolic risk factors, including carotid plaques and hypertension and type 2 diabetes (T2D) were evaluated in the Overall cohort (n=1538)
stratified according to the liver disease severity. Contingency analysis showed the frequency distribution of carotid plaques (A), hypertension (B) and
T2D (C) in the Overall cohort. p<0.05 was considered statistically significant. P values were further adjusted for age as confounding factor.
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histological stages. This discrepancy could stem from various

factors. Firstly, among MASLD-HCC patients, those developing

plaques exhibited higher serum total cholesterol (169 mmol/L vs

148 mmol/L), LDL (163 mmol/L vs 78 mmol/L), and TGs (117

mmol/L vs 99 mmol/L) concentrations compared to subjects with

MASLD-HCC without plaques. This observation possibly suggests

that MASLD-HCC patients developing plaques have a worsened

lipid profile which may contribute to their heightened

cardiovascular risk. Additionally, at the time of HCC diagnosis,

many patients may be in a deteriorated state of health, often with

significant weight loss, which inherently affects lipid levels.

Moreover, the advanced liver dysfunction, characteristic of HCC,

impacts the liver’s capacity to produce lipoproteins and TGs,

leading to altered circulating lipid profiles. Equally important is

the prevalence of cardiometabolic conditions such as T2D,

hypertension, insulin-resistance, and hyperglycemia in our

MASLD-HCC cohort, which may predominantly contribute to

plaque formation, possibly overshadowing the influence of lipids.

Finally, we cannot rule out that genetic predispositions and the

usage of cholesterol-lowering medications are likely to have

significant effects on both the l ipid metabolism and

cardiovascular risk profiles. Collectively, our findings may

contr ibute to the growing body of evidence l inking
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cardiometabolic factors with HCC and highlight the necessity for

comprehensive clinical evaluations in patients with MASLD.
7 Conclusion

Given the ever-increasing global incidence of HCC, effective

strategies of prevention, surveillance and personalized therapeutic

approaches are still mandatory. In particular, since around 40% of

HCC cases are attributable to metabolic disorders, including MetS,

T2D, obesity, and hyperlipidemia (126, 127), preventive approaches

aimed to counteract the development of cardiometabolic risk

factors may be useful in limiting the oncologic predisposing

background. In patients with MASLD-driven HCC, we could

postulate that the introduction of an integrated dietary regimen

and more healthy lifestyles, including physical exercise may be

useful to reduce the incidence of advanced stages of disease and

HCC. However, conflicting results are currently available and

further studies are required to better dissect the association

between metabolic risk factors, cardiovascular diseases and HCC

onset. To shed light on this steamy landscape, we carry out an

observational study in our large biopsied MASLD cohort, including

86 MASLD-HCC. Our findings sustained the critical role of T2D
B

C D

A

FIGURE 2

Association of cardiometabolic risk factors (carotid plaques and hypertension, T2D), with MASLD-HCC risk in the Overall cohort (n=1538). Nominal
logistic regression models adjusted for confounding factors correlating MASLD-HCC occurrence with carotid plaques (A), hypertension (B), T2D (C)
and cumulative presence of plaques, hypertension and T2D (D). OR: odds ratio, p<0.05 was considered statistically significant.
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and hypertension in enhancing HCC risk and emphasized the

pivotal contribution of cardiometabolic comorbidities, particularly

when they coexist, on disease prognosis. Interestingly, while our

data revealed that MASLD-HCC patients showed lower circulating

lipid levels, a paradoxical increase in IMT thickness and plaque

formation was observed. Nonetheless, within the MASLD-HCC

subgroup, patients with plaques present a worse lipid profile

compared to HCC subjects without plaques, potentially elevating

their cardiovascular risk. Indeed, some population-based studies

have supported our statements, pointing out that patients affected

by HCC are more vulnerable to develop stroke/cardiovascular

events than patients with other types of cancers (128–130).

Therefore, these findings highlighted the complexity of lipid

profiles in MASLD-HCC and the importance of a detailed

assessment of cardiovascular risk, advocating for an integrated

approach which considers the spectrum of both metabolic and

cardiovascular factors.
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