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It is well established that high-protein diets (i.e. ~25–30% of energy intake from

protein) provide benefits for achieving weight loss, and subsequent weight

maintenance, in individuals with obesity, and improve glycemic control in type

2 diabetes (T2D). These effects may be attributable to the superior satiating

property of protein, at least in part, through stimulation of both gastrointestinal

(GI) mechanisms by protein, involving GI hormone release and slowing of gastric

emptying, as well as post-absorptive mechanisms facilitated by circulating amino

acids. In contrast, there is evidence that the beneficial effects of greater protein

intake on body weight and glycemia may only be sustained for 6–12 months.

While both suboptimal dietary compliance and metabolic adaptation, as well as

substantial limitations in the design of longer-term studies are all likely to

contribute to this contradiction, the source of dietary protein (i.e. animal vs.

plant) has received inappropriately little attention. This issue has been highlighted

by outcomes of recent epidemiological studies indicating that long-term

consumption of animal-based protein may have adverse effects in relation to

the development of obesity and T2D, while plant-based protein showed either

protective or neutral effects. This review examines information relating to the

effects of dietary protein on appetite, energy intake and postprandial glycemia,

and the relevant GI functions, as reported in acute, intermediate- and long-term

studies in humans. We also evaluate knowledge relating to the relevance of the

dietary protein source, specifically animal or plant, to the prevention, and

management, of obesity and T2D.
KEYWORDS

animal protein, appetite, food intake, gastrointestinal function, glycemic control,
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1 Introduction

In the last ~20 years, there has been substantial, and increasing,

interest in promoting dietary protein intake to improve health

outcomes (1–5). We believe that the first official recommendation

for daily protein intake, reported in 1936 by the League of Nations

(6), was 1.0 g/kg of body weight. This has been subsequently

challenged by several joint Food and Agriculture Organization

(FAO)/World Health Organization (WHO) expert committees,

who made the current recommendation of 0.8 g/kg daily protein

intake in healthy adults, accounting for ~10–15% of daily energy

intake, in 2007 (7). There is now compelling evidence that high-

protein diets, which can entail a protein intake up to 5-fold greater

than the recommended daily amount, and are in most cases

characterized by ~25–30% of energy intake from protein, facilitate

weight loss and attenuate weight (re)gain, in individuals with

obesity, and improve glycemic control in type 2 diabetes (T2D),

in the intermediate-term, i.e. during 6–12 months’ consumption

(8–10). Protein suppresses energy intake (11–16), and reduces

postprandial glycemia (17–20). These effects may be attributable

to the capacity of protein to stimulate both gastrointestinal (GI)

hormones (11–13) and postabsorptive, possibly ‘central’,

mechanisms in response to meals (21, 22). Key GI hormones

include cholecystokinin (CCK), the so-called ‘incretin’ hormones,

glucose-dependent insulinotropic polypeptide (GIP) and glucagon-

like peptide 1 (GLP-1), as well as peptide tyrosine-tyrosine (PYY),
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which are pivotal to the regulation of both energy intake and/or

postprandial blood glucose, in some cases, at least in part, through

slowing of gastric emptying (23–25) (Figure 1).

In contrast to these potent acute/intermediate-term effects of

protein, there is evidence that the beneficial effects of greater protein

intake on body weight and glycemia may only be sustained for 6–12

months (26–28), which has been attributed to both suboptimal

dietary compliance and metabolic adaptation. However, the

substantial variations, as well as limitations in the design of

longer-term studies, including inconsistencies in the amount and

composition of tested foods, and the characteristics of study

participants (e.g. age, ethnicity and race) are also likely to be

relevant. There are also considerable variations in the source of

dietary protein between individuals worldwide (29, 30), which may

be derived from animal- and/or plant-based foods. This issue has

received less attention despite compelling evidence that animal and

plant proteins may have different metabolic effects in the longer-

term (31–33). This issue has assumed increasing importance,

particularly in view of emerging evidence derived from recent

epidemiological studies to indicate an increased risk of T2D with

animal, but a protective effect of plant, protein (34–36).

The focus of this review relates to the effects of dietary protein

on appetite, energy intake and postprandial glycemia, and the

relevant GI functions, including the stimulation of GI hormones

and slowing of gastric emptying, as reported in acute, intermediate-

and long-term studies in humans. We also evaluate knowledge
FIGURE 1

Schematic representation of protein-induced stimulation of gastrointestinal (GI) functions, including GI hormone release and slowing of gastric
emptying, which are integral to the regulation of energy intake and glycemia. The presence of protein digestion products, including peptides and
amino acids, in the GI lumen stimulates key GI hormones, including CCK, the incretins, GIP and GLP-1, and PYY (1). These hormones exert their
effects through various pathways, including activation of hormone-specific receptors on vagal afferent endings (2) or following transport through the
bloodstream (3). These inputs, together, are conveyed to higher brain centers to modulate eating behaviors (4), as well as feedback regulation of GI
motor functions, particularly stimulation of pyloric pressures, associated with the slowing of gastric emptying (5). GIP and GLP-1, when transported
in the bloodstream and/or by activating receptors on vagal afferent endings, also stimulate insulin secretion from pancreas (6). Together, these
signals contribute to the effects of protein to reduce energy intake and blood glucose (7).
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relating to the relevance of the dietary protein source, specifically

animal or plant, to the prevention, and management, of obesity and

T2D. While dietary protein is also of importance to other areas,

including muscle mass, particularly in elderly and malnourished

people, these and other issues are not addressed.
2 Acute effects of protein on appetite,
energy intake and
postprandial glycemia

A number of studies have shown that acute oral administration

of protein preloads, in doses ranging from 20–70 g, dose-

dependently reduce hunger, and induce fullness, associated with

suppression of energy intake at a subsequent meal, in both healthy

lean individuals and those with obesity (11–16, 20, 37). A

comprehensive meta-analysis comprising 49 trials, which

investigated the acute effects of protein preloads on commonly

used markers of appetite, revealed decreases in hunger, desire to eat,

prospective food consumption, and an increase in fullness in both

lean and obese participants (38). These effects were associated with

a reduction in subsequent food intake, when participants were

presented with a standardized meal (38). These effects of protein are

also often accompanied by reductions in postprandial glycemia.

Indeed, a higher protein intake, either as a ‘preload’ before, or as

part of, a carbohydrate meal, has been shown to reduce postprandial

glycemic excursions, in both lean and obese individuals with and

without T2D (10, 13, 17–20, 39–42). Accordingly, the outcomes of

these acute studies are consistent, showing that a higher protein
Frontiers in Endocrinology 03
intake at a meal has beneficial effects to reduce both energy intake

and postprandial glycemia.

The acute appetite- and glucoregulatory effects of protein have

been shown to vary between different sources of protein (43–59)

(Table 1). For example, when the effects of preloads, containing either

milk proteins (whey or casein protein), egg, turkey, tuna, or soy

protein, were compared, each suppressed hunger and energy intake,

but whey protein had the most profound effects (44, 49, 51, 53, 56). In

contrast, a number of studies reported that whey protein was less

satiating than some other proteins (46, 47, 55). For example, when the

effects of whey protein, pea protein hydrolysate, a combination of

whey protein and pea protein hydrolysate, and control milk protein

(80% casein and 20% whey) were compared, pea protein hydrolysate

was the most effective in suppressing hunger and desire to eat, with

no difference in their effects on subsequent energy intake (46).

Veldhorst et al. also reported that both alpha-lactalbumin and

gelatin are ~40% more satiating than whey protein, inducing a

related ~20% reduction in subsequent energy intake (55). However,

when compared with casein or soy, whey protein was still more

effective in suppressing energy intake (56). Milk proteins have also

been found, in some studies, to exert more potent effects to reduce

blood glucose than turkey, fish, egg, or pea proteins (52–54, 57). For

example, when 45 g of protein, of different sources (either gluten, cod,

casein, or whey), was added to a high-fat meal, the postprandial blood

glucose response in T2D was less with whey, compared to the other

proteins (52). In contrast, in another study in healthy and prediabetic

adults, there was no difference in postprandial glycemic excursions

between whey and casein, when added to a drink containing

maltodextrin (50). Whether variations in the effects of different
TABLE 1 Acute effects of different protein preloads (animal vs. plant) on ad-libitum energy intake and postprandial blood glucose levels.

First
author

Country Design Sample
size
(n)

Age
(y)

BMI
(kg/
m2)

Health
status

Protein
source

Protein
dose

Duration1

(min)
EI2

(kcal)
BG3 Ref

Hall et al.
(2003)

UKD Cross-
over

16 (M/F) 22 21.7 Healthy
lean

Casein
Whey

48 g 90 1084
878

NR (49)

Anderson
et al.
(2004)

Canada Cross-
over

13 (M) 22 22 Healthy
lean

Egg
Soy
Whey

0.65 g/kg
(~46 g)

60 912
729
661

NR (44)

Nilsson
et al.
(2004)

Sweden Cross-
over

12 (M/F) 20-
28

21.9 Healthy
lean

Gluten
Cod

Cheese
Milk
Whey

18.2 g 90 NR 35.4*
43.9
39.3
19.3
21.8

(57)

Bowen et al.
(2006)

Australia Cross-
over

72 (M) 50-
56

23-30 Healthy
lean
and

overweight

Soy
Gluten
Whey

50 g
51 g
51 g

180 766
718
769

5.8
5.9
5.9

(45)

Diepvens
et al.
(2008)

The
Netherlands

Cross-
over

39 (M/F) 42 27.6 Overweight Pea
Whey
Pea

+ Whey

15 g 180 304
299
309

NR (46)

Veldhorst
et al. (2009)

The
Netherlands

Cross-
over

25 (M/F) 22 23.9 Healthy
lean

Soy
Casein
Whey
Gelatin

25% of high-
protein custard

(~40 g)

180 767
736
687

122*
68
95

(55,
56)

(Continued)
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protein sources to reduce postprandial glycemia are associated with

the magnitude of their effect on appetite remains uncertain, with

some studies suggesting a strong relationship, particularly for whey

(43, 53, 60). The latter is potentially attributable to the rapid digestion

of whey protein, due to its high solubility in the acidic environment of

the stomach, leading to the stimulation of GI mechanisms more

effectively than other proteins (49, 60). However, comprehensive

evidence comparing all types of protein sources, particularly different

plant-based proteins, is lacking and further investigation is required.
2.1 Mechanisms underlying the effects of
protein on energy intake and glycemia

The stimulation of both GI mechanisms, involving GI hormone

release and slowing of gastric emptying (23–25), as well as post-

absorptive mechanisms facilitated by specific circulating amino
Frontiers in Endocrinology 04
acids (21, 22), have been shown to be integral to these effects of

protein. Protein, and its digestion products (amino acids), when

administered directly into the GI lumen, stimulate key GI

hormones, including CCK, the incretins, GIP and GLP-1, and

PYY (61–70). In addition to the direct activation of receptors on

submucosal vagal afferent and enteric neurons to modulate eating

behavior (71), these hormones are transported in the bloodstream

to affect peripheral organs, including the stomach, to stimulate

pyloric pressures, which are important to the regulation of gastric

emptying, and the pancreas, to stimulate insulin secretion (72),

overall resulting in a reduction in postprandial glycemia (Figure 1).

The rate of gastric emptying plays a key role in determining the

postprandial glycemic response, particularly in the first 30–60 min

following a meal, accounting for up to 35% of the variance in the

initial glycemic response to a meal in healthy participants (73).

With progressive impairment in glucose tolerance, this relationship

exhibits a ‘shift to the right’, so that the 120-min blood glucose in a
TABLE 1 Continued

First
author

Country Design Sample
size
(n)

Age
(y)

BMI
(kg/
m2)

Health
status

Protein
source

Protein
dose

Duration1

(min)
EI2

(kcal)
BG3 Ref

Alpha-
lactalbumin

556
501

82
84

Mortensen
et al.
(2009)

Denmark Cross-
over

12 (M/F) 64 28.9 T2D Gluten
Cod

Casein
Whey

45 g 480 NR 495*
396
375
233

(52)

Pal et al.
(2010)

Australia Cross-
over

22 (M) 23 22.6 Healthy
lean

Egg
Turkey
Tuna
Whey

50.8 g 240 844
839
782
705

5.45
5.49
5.39
4.59

(53)

Acheson
et al.
(2011)

Switzerland Cross-
over

23 (M/F) 32 22.7 Healthy
lean

Soy
Casein
Whey

0.81 g/kg
(~56.7 g)

330 NR 5.9
6.1
6.1

(43)

Gunnerud
et al.
(2012)

Sweden Cross-
over

14 (M/F) 20-
28

21.9 Healthy
lean

Soy
Whey

9 g 60 NR 60.6*
54.7

(48)

Teunissen-
Beekman

et al. (2014)

The
Netherlands

Cross-
over

48 (M/F) 58 28.6 Overweight
or obesity

Egg
Pea
Milk

0.6 g/kg
(~70 g)

240 NR -3.8**
-3.8
-4.2

(54)

Hoefle et al.
(2015)

Germany Cross-
over

15 (M)
15 (M/F)

26
62

23.9
29

Healthy
lean

Prediabetes

Casein
Whey
Casein
Whey

50 g 240 NR 5.7
5.4
7.5
7.7

(50)

Dougkas
et al. (2018)

Sweden Cross-
over

28 (M) 28 23.4 Healthy
lean

Plant
proteins
(oat, pea

and potato)
Milk

proteins
50:50

mixture

25% of high-
protein
pudding
(~25 g)

210 760
816
795

7.5
7.9
7.5

(47)

Melson
et al.
(2019)

USA Cross-
over

17 (M/F) 27 24.6 Healthy
lean

Soy
Whey

50 g
43.3 g

180 664
654

NR (51)
frontier
M, Male; F, Female; Y, Years; BMI, Body mass index; EI, Energy intake; BG, Blood glucose; NR, Not reported; T2D, Type 2 diabetes.
1 Time interval between protein preload and an ad-libitum test meal; 2 Energy intake at an ad-libitum test meal; 3 Reported as peak concentration of postprandial glucose in mmol/L, otherwise
indicated as areas under the curve (AUCs) (mmol/L.h*) or changes from baseline (mmol/L**).
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75 g oral glucose tolerance test is inversely related to the rate of

gastric emptying in healthy participants, but directly in people with

T2D (74). Proteins also stimulate glucagon secretion, which may

affect postprandial glycemia adversely (75). Moreover, postprandial

glucagon secretion is characteristically exaggerated in individuals

with T2D (76).

As alluded to, these acute effects of protein to modulate GI

functions are dependent on the type of protein, with evidence that

whey protein is more potent than other protein sources, including

casein, fish, soy, gluten and pea protein (45, 46, 48, 49, 53, 56, 57).

Accordingly, the majority of studies have focused predominantly on

whey protein. For example, in healthy men, a 60-min intraduodenal

infusion of whey protein, in loads of 0.5, 1.5 and 3 kcal/min,

reflecting the physiological range of gastric emptying of ~1–3

kcal/min, has been shown to stimulate plasma CCK and GLP-1

concentrations, and pyloric pressures, all in a dose-dependent

manner, associated with suppression of subsequent energy intake

in both lean men (61) and those with obesity (62). At the highest

load (3 kcal/min), whey protein also reduced blood glucose levels in

individuals without T2D (61, 62). Oral preloads of whey protein, in

doses of 30 and 70 g, also stimulated plasma CCK, GLP-1, glucagon,

and slowed gastric emptying, associated with suppression of energy

intake, and improved glycemia, in healthy men (13). In T2D, acute

administration of whey protein, ingested as a preload, in a dose of

55 g, 30 min before a mashed potato meal, also stimulated GLP-1,

GIP and insulin and slowed gastric emptying, associated with a

substantial reduction in peak postprandial glucose of ~3 mmol/L

(17). Moreover, these effects were shown to be sustained when whey

protein (25 g) was given 30 min before each of three main meals, for

4 weeks (18). Similar acute effects of whey protein were evident

when a preload incorporating whey (17 g) together with guar (5 g),

a viscous polysaccharide that can itself reduce postprandial

glycemic excursions, was given to individuals with T2D or

prediabetes (77). 12 weeks’ treatment with this preload, consumed

twice daily before breakfast and dinner in individuals with well-

controlled T2D, had sustained effects to slow gastric emptying and

reduce postprandial blood glucose (78).

There is evidence that the high content of branched-chain

amino-acids (BCAAs), particularly leucine and isoleucine, in

whey protein, contributes to its efficacy in reducing energy intake

and glycemia, through stimulation of GI hormone secretion (57, 79,

80). For example, intraduodenal administration of L-leucine, in a

load of 0.45 kcal/min (9.9 g over 90 min), stimulated CCK secretion

and suppressed subsequent energy intake (63). Moreover, both L-

leucine and L-isoleucine, when administered intragastrically, in a

dose of 10 g, 30 min before a mixed-nutrient drink (500 kcal),

lowered postprandial blood glucose (67). In contrast, valine was

ineffective, potentially reflecting the concurrent stimulation of

glucagon (67). L-leucine also stimulated C-peptide, a marker of

insulin secretion, and both L-leucine and L-isoleucine slowed

gastric emptying of the drink modestly (67). However, these

effects of L-leucine and L-isoleucine were not evident in

individuals with T2D for uncertain reasons (68). There is also

compelling evidence that these effects of amino acids are type-

specific, with some, such as L-proline (81), and L‐lysine (82), being

less potent, compared to the aromatic amino acids, L-tryptophan
Frontiers in Endocrinology 05
(65, 66, 83) and L-phenylalanine (69). In a comparative analysis of

the effects of four different amino acids (L-tryptophan, L-

phenylalanine, L-leucine and L-glutamine) administered

intraduodenally, L-tryptophan and L-leucine were shown to have

the most potent effects to reduce energy intake, which was related to

greater stimulation of plasma CCK (70). Both L-tryptophan (dose

of 3 g) (66) and L-phenylalanine (dose of 10 g) (69), when

administered intragastrically before a carbohydrate-containing

drink, also lowered the blood glucose response in healthy lean

participants (66, 69) and those with obesity (66).

The concept that these amino acids may also mediate the effects

of dietary protein, after absorption, via both vagal mechanisms and

direct effects on specific brain regions, including the hypothalamus

and brainstem (21, 22, 84), was first introduced in 1956, as the so-

called ‘aminostatic hypothesis’, which recognized that while amino

acids are used primarily for protein synthesis, the amino acids

remaining in the circulation might serve as a food intake-regulatory

signal (84). BCAAs, particularly L-leucine, were shown to activate

the mammalian target of rapamycin complex 1 (mTORC1), to act

as a cellular fuel sensor in which hypothalamic activity is tied

directly to the regulation of energy intake. In a variety of model

systems, mTOR activity has been shown to be highly sensitive to

plasma levels of L-leucine (85, 86). There is also emerging

preclinical evidence to support a major role for BCAAs,

particularly L-leucine and L-isoleucine, in b-cell signaling and

metabolism, to acutely stimulate insulin secretion through

activation of mTORC1, which is also responsible for increasing b-
cell mass and function (87, 88). Elevated plasma concentrations of

other amino acids, particularly L-tryptophan, which serves as a

precursor for the neurotransmitter serotonin, a key regulator of

appetite (89), have also been reported to be associated with reduced

energy intake. A lesser number of studies have addressed the role of

other amino acids. Both tyrosine and histidine can be converted

into anorexigenic neurotransmitters, including dopamine,

norepinephrine and histamine, but their contributions to protein-

induced food intake suppression remain uncertain (90, 91). Thus,

amino acids appear to mediate, at least in part, the effects of protein

through distinct physiological pathways. This is likely to be

important given that the amino acid composition of different

sources of proteins may represent a major factor to account for

their diverse metabolic effects in the longer-term.
3 Intermediate-term effects of protein
on food intake, body weight
and glycemia

The capacity of high-protein diets to induce weight loss has

been examined primarily through two approaches; ‘ad-libitum’

diets, in which participants are allowed to consume based on

their desire to eat, and ‘energy-restricted’ diets, where the

proportion of protein is increased while restricting and then

maintaining a constant total energy intake. Irrespective of the

type of dietary protocol, in a majority of studies, enriching diets

with a relatively high protein content has been shown to facilitate
frontiersin.org
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weight loss more than standard-protein diets (~10–15% of energy

intake from protein) with intervention durations of up to 6 months

(92–96). Ad-libitum high-protein diets, however, have shown more

consistent efficacy, while under iso-energetic conditions, strict

control of energy intake has invariably been associated with

clinically relevant weight loss that compromised assessment of

potential metabolic effects of protein. A number of meta-analyses

have reported favorable effects of high-protein diets on weight loss

(8, 9, 97). For example, a meta-analysis of 24 randomized clinical

trials that only compared energy-restricted isocaloric high-protein

(27–35% protein) and standard-protein (16–21% protein) diets,

with a mean diet duration of 12 weeks, revealed modestly greater

reductions in weight (-0.79 kg) and fat mass (-0.87 kg) with a high-

protein diet (8). Another meta-analysis of 74 randomized controlled

trials, investigating the effects of high-protein diets with or without

energy restriction, with a mean duration of 6 months, also found

reductions in body weight (-0.36 kg), body mass index (-0.37 kg/

m2), and waist circumference (-0.43 cm) in the high-protein (16–

45% protein) compared to the standard-protein (5–23% protein)

diet group (97).

In contrast to the promising and relatively consistent outcomes

of the shorter-term effects (≤6 months duration) of high-protein

diets on weight loss in numerous studies, the majority of longer-

term studies (at least 12 months in duration), albeit much fewer in

number, found no effect of higher protein intake (26–28, 98–102).

For example, in a follow-up to an intensive 6-month weight-loss

trial, Due et al. reported that, at 12 months, weight loss was no

greater in participants assigned to a high-protein diet (30% protein),

compared with a medium-protein diet (12% protein) (98). A 2013

meta-analysis, which included 15 trials, in which the intervention

period was for a minimum of 12 months, also revealed neither a

beneficial, nor detrimental, effect of higher protein intakes on

weight loss (28). In contrast, in a 12-month study, McAuley et al.

reported modestly improved weight-loss maintenance (-6.6 kg)

with a higher-protein diet (30% protein) than either a high-

carbohydrate diet (-4.4 kg) or a high-fat diet (-5.5 kg), each

containing 15% protein (99). Clifton et al. also found a direct

relationship between weight loss and protein intake when

comparing high-protein (34% protein) with high-carbohydrate

diets (containing 17% protein) for 12 months, however, there was

no difference in weight loss effects of the two diets (101). In two

trials by Brinkworth et al, one in people with T2D (27), the other in

normoglycemic individuals with obesity (26), the effects of a high-

protein diet (30% protein) and a standard-protein diet (15%

protein), both low in fat, during 8 to 12 weeks of energy

restriction and 12 months of energy balance were compared,

reporting a net weight loss in both groups, which was slightly

greater in the high-protein group (-3.7 to -4.1 kg) compared with

the standard-protein group (-2.2 to -2.9 kg). Accordingly, while the

majority of evidence indicates that the efficacy of high-protein diets

is attenuated in the longer-term, adherence to such diets may still

facilitate weight maintenance, for at least up to 12 months (103). In

addition, it should be noted that the interpretation of these studies

is, in many cases, compromised by poor compliance and high

dropout rates, precluding definitive conclusions regarding the long-

term effects of high-protein diets on weight loss. However, there is
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unequivocal evidence that a progressive decrease in adherence is

very common with any dietary intervention and, not surprisingly,

irrespective of the macronutrient composition, a greater adherence

to any energy-restricted diet is associated with a greater weight loss

at both one (104) and two years (105). An inherent challenge in

longer-term studies is to minimize the impacts of potential

cofounders, including the unavoidable lack of blinding, as well as

differences in participant characteristics (age, ethnicity and race),

which may impact on the GI-induced effects of protein (106, 107).

While there is a lack of definitive evidence regarding the optimal

dietary approach for T2D management, in the majority of cases,

weight loss represents a primary strategy for improved glycemic

control, usually assessed by measurement of glycated hemoglobin

(HbA1c). In individuals with prediabetes or newly diagnosed T2D, a

modest (5–10%) reduction in body weight improves glycemic

control significantly (108). Accordingly, high-protein diets,

because of their established weight loss effects, at least in studies

of up to 6 months duration, have been advocated as a strategy to

improve glycemic control (109). In a recent network meta-analysis

of 42 randomized controlled trials, involving 4,809 patients with

T2D, comparing the impacts of 10 different dietary approaches on

glycemic control, high-protein diets were shown to be among the

most effective in reducing both HbA1c and fasting glucose (110).

The beneficial effects of high-protein diets to reduce the

postprandial blood glucose response, which, in individuals with

relatively well-controlled T2D (i.e. baseline HbA1c ≤8.0%), is the

major determinant of glycemic control, have been reported in

several trials (10, 111–113). However, there are also inconsistent

observations, particularly in studies with duration of >6 months

(26–28, 114–116). A 2012 meta-analysis, summarizing nine clinical

trials with intervention durations between 4 to 24 weeks, revealed a

modest, but significant, reduction of 0.52% in HbA1c, but not fasting

glucose, in individuals with T2D following a high-protein diet

(~25–32% of energy intake) (9). However, no significant effects,

on either HbA1c or fasting glucose, were evident in a more recent

meta-analysis of 13 trials with intervention durations ranging from

12 weeks to 52 months (116), although, given the large variations in

study conditions, this is probably not surprising. Another meta-

analysis, which included 15 trials with longer intervention durations

(at least 12 months) in individuals with or without T2D, also found

no effects on either HbA1c or fasting glucose (28). Therefore, it

remains uncertain whether sustained adherence to a high-protein

diet improves glycemic control in T2D or prediabetes. It is also not

known whether the positive outcomes of shorter-term trials reflect

the use of protein per se, the concurrent reduction in weight, or

both, particularly since these trials were often based on energy-

restricted high-protein diets or incorporated a prior weight-loss

period. This issue is, to some extent, semantic given that since 90%

of people with T2D are obese in Western countries (117), there is a

rationale for high-protein diets as a weight-loss strategy to improve

glycemic control. However, whether this represents an effective

longer-term approach remains to be established.

A number of studies have investigated the effects of high-

protein diets on glycemic variability, which has recently emerged

as a target for glycemic control and, potentially, an independent risk

factor for the micro- and macrovascular complications of T2D,
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particularly when glycemic control is ‘reasonable’ (i.e. HbA1c

≤8.0%) (113, 118–122). For example, in 16 well-controlled T2D

patients, replacing an isocaloric standard-protein (16% protein)

with a high-protein (29% protein), diet, for two separate 48-hour

periods, was associated with reductions in indices of glycemic

variability by 34 to 45%, supporting the concept that a higher

intake of protein should be incorporated in dietary advice for

patients with T2D (120). Comparable effects were also observed

among 20 insulin-resistant women with obesity, where a high-

protein diet was more effective in reducing glycemic variability,

compared with a Mediterranean diet, in a 21-day trial (121).

Furthermore, in a study by Fabricatore et al., in which 26

participants with obesity and T2D underwent a 3-day continuous

glucose monitoring (CGM), a higher protein intake was associated

with reduced glycemic variability (122). While these findings are

promising, confirmation in longer-term studies is required before

recommending changes to clinical practice.

A lesser number of studies have examined the effects of selected

animal- and plant-based protein sources on weight and glycemia,

again with inconsistent outcomes (123–136) (Table 2). While these

studies have focused primarily on weight loss, rather than glycemia,

observed glucoregulatory effects of different protein sources were in

the majority of these studies found not to differ. For example, when

the effects of supplemental whey and soy protein (~56 g/d) were

compared to an isoenergetic amount of carbohydrate among free-

living overweight and obese participants, slightly, but significantly,

greater weight loss was observed with whey (-1.8 kg), compared

with soy protein (-0.9 kg), with no differences in their effects on

fasting glucose (123). In another study of 48 participants with

obesity, the effects of two formulas containing either soy (12 g) and

milk proteins (9 g) or only milk protein (22 g), given daily every

morning for 20 weeks, were compared, and milk protein (-2.5 kg)

had superior effects in inducing weight loss than soy protein

(-1.1 kg), and also led to a greater reduction in HbA1c levels

(124). Another study reported that milk induced a greater

reduction in body weight (-4.43 kg) over a period of 8 weeks

compared with calcium-fortified soy milk (-3.46 kg) (126). In

contrast, greater weight loss effects were reported after 12 weeks

with soy- (-9%), rather than milk-based (-7.9%), meal replacements

within an energy-restricted diet (125). Interestingly, reductions in

fasting glucose were only evident with the soy-, but not with milk-

based, meals in this study (125). Consumption of either 3 soy, or 3

casein, shakes daily as part of a 16-week, energy-restricted diet, in

two groups of women with obesity, had comparable effects on

weight loss and body composition, as well as fasting insulin, while a

greater reduction in fasting glucose was evident in the soy group

(127). In another study, no difference was found between the

weight-reducing effects of a meat-based (-2.2 kg), and a soy-based

(-2.4 kg), diet (~30% of energy from protein), with a significant

reduction in fasting glucose observed with both diets (130). Two

studies reported that beef and chicken, as the primary sources of

protein in an energy-restricted diet, had comparable weight loss

effects (128, 129). Abete et al. reported that an energy-restricted diet

with a high content of legumes (consumed 4 days per week with

17% protein from energy intake) led to body weight reductions

comparable to those achieved with a high-protein diet (30%
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protein) mainly composed of animal proteins, which was

associated with significantly greater reduction in fasting glucose

only in legume diet group (131). Altogether, there is, therefore, no

compelling evidence that a particular protein source leads to greater

weight loss, or improvement in glycemia, than another, indicating

that plant-based proteins are likely to be as effective for weight loss

as animal-based proteins. Moreover, in some cases, plant-based

sources were associated with more potent positive glucoregulatory

effects (125, 127, 131). Importantly, it remains uncertain whether

the effects of the source of protein are independent of other macro-

and micronutrient contents.
4 Longer-term effects of dietary
protein intake in obesity and T2D

While protein has, for many years, represented the

cornerstone of dietary approaches for weight management in

obesity, associated with improved glycemic control, there is a

lack of consensus regarding the maximal amount of dietary

protein that can be consumed in the long-term without adverse

effects. Interestingly, in contrast to the beneficial acute and

intermediate-term effects of protein on weight loss and glycemic

control discussed above, outcomes of large prospective studies

investigating the association between the long-term consumption

of protein with body weight and/or T2D have indicated no overall

beneficial effects (137–139). Moreover, there is evidence that the

long-term health effects of protein may vary according to the

source of protein, thus, long-term consumption of animal-based

proteins may have adverse effects in relation to obesity and T2D,

while plant-based proteins have either protective or neutral

effects (Figure 2).

Several epidemiological studies, investigating the role of greater

protein intake from different sources in the development of obesity

in large populations, have consistently reported a direct association

between prospective weight gain and higher animal protein intake,

and by inference, the risk of obesity (137, 140–142) (Table 3). For

example, in the European Prospective Investigation into Cancer and

Nutrition (EPIC) study, of 89,432 weight-stable men and women

from five countries, overall associations were evident between

higher daily intakes of total and animal protein and subsequent

weight gain over 6.5 years, which was mainly attributed to protein

derived from red and processed meats and chicken, rather than to

fish and dairy products (137). In contrast, there were neither

protective, nor adverse, associations with plant-based proteins

(137). A 2015 analysis, examining the relationships between

consumption of different protein sources with long-term weight

gain across three separate prospective cohorts of US men and

women (the Nurses’ Health Studies (NHS) I and II and the

Health Professionals Follow-Up Study (HPFS)) revealed that

animal-based protein sources were independently associated with

long-term weight gain (i.e. each increased serving/day of red meat,

chicken and regular cheese was associated with a 0.13–1.17 kg

weight gain), whereas plant-based proteins were independently

associated with relative weight loss (i.e. each increased serving/

day of peanut butter, walnuts or other nuts was associated with
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TABLE 2 Intermediate-term effects of different protein sources (animal vs. plant) on energy intake, body weight and glycemia.

ource Protein
dose1

Duration2

(week)
EI3

(kcal/
d)

Weight
loss4

Glycemia5 Ref

56 g/d 23 2,268
2,184

0.9 kg
1.8 kg

0.255*
0.255

(123)

12 g/d SP+9 g/d
MP

22 g/d MP

20 1,719
1,799

1.1 kg
2.5 kg

-0.9%**
-1.4%

(124)

18 g/d
13 g/d

12 NR 9.0%*
7.9%

-3.6%***
-2%

(125)

ified soy 18% of EI
(~57 g/d)

8 1,280
1,297

3.6 kg
4.4 kg

NR (126)

n
67.2 g/d
62.1 g/d

16 NR 11.9 kg
13.4 kg

5.1
5.2

(127)

tein-based

ed diet
diet

50 g/d
80 g/d
80 g/d

9 1,158
1,098
1,114

5.6 kg
7.9 kg
6.6 kg

5.6
5.6
5.6

(128)

diet
d diet

153 g/d
154 g/d

2 2,072
2,098

2.4 kg
2.2 kg

5.4
5.3

(130)

ed diet
in diet

17% of EI (~74 g/
d)

30% of EI (~137
g/d)

8 1,537
1,765

8.3 kg
8.6 kg

-5.1%***
-4.2%

(131)

ed diet
diet

76.3 g/d
72 g/d

12 NR 6 kg
5.6 kg

NR (129)

in-diet
in-diet

124 g/d 20 NR 7.6 kg
9.6 kg

NR (132)

ed.
ly energy intake (kcal); 4Reported as changes in body weight (kg), otherwise indicated as percentage of weight change (*);
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First author Country Design Sample
size
(n)

Age
(y)

BMI
(kg/
m2)

Health status Protein s

Baer et al. (2011) USA Parallel 48
(M/F)

49-
53

31 Overweight
and obesity

Soy
Whe

Takahira
et al.
(2011)

Japan Parallel 48
(M/F)

54-
57

29 Obesity with/
without T2D

Soy
Milk

Anderson
et al. (2005)

USA Parallel 52
(M/F)

46-
47

34 Overweight
and obesity

Soy
Milk

Faghih et al
(2011)

Iran Parallel 43
(F)

37-
38

31 Overweight
and obesity

Calcium-for
milk
Milk

Anderson
et al. (2007)

USA Parallel 43
(F)

44-
46

35 Obesity Soy
Case

Mahon et al.
(2007)

USA Parallel 54
(F)

58 29.6 Obesity
with prediabetes

Non-meat pro
diet

Chicken-ba
Beef-base

Neacsu et al.
(2014)

UKD Cross-
over

20
(M)

51 34.8 Obesity Soy-base
Meat-base

Abete et al.
(2009)

Spain Parallel 25
(M)

38 31.8 Obesity Legume-ba
High-prot

Melanson
et al. (2003)

USA Parallel 61
(F)

43 32.1 Overweight Chicken-ba
Beef-base

Aldrich et al.
(2011)

USA Parallel 12
(M/F)

50 30 Overweight Mixed prot
Whey prot

M, Male; F, Female; Y, Years; BMI, Body mass index; EI, Energy intake; T2D, type 2 diabetes; SP, Soy protein; MP, Milk protein; NR, Not repor
1 Reported as grams per day intake of protein, otherwise indicated as percentage of daily energy intake (*); 2Intervention duration; 3 Reported as da
5 Reported as fasting glucose levels in mmol/L (or log mmol/L*), otherwise indicated as changes in either HbA1c levels% (**) or fasting glucose
y
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-0.14 to -0.71 kg weight loss) over 4 years (140). Similarly, in a

recent analysis of the NHS II study, over a 26-year follow-up,

intakes of red meat (both fresh and processed products) and high-

fat dairy products, were associated with an increased risk of

nonalcoholic fatty liver disease (NAFLD), with obesity found to

be the major contributor, while a higher intake of nuts was

associated with a reduced risk (143). In another cohort of 1,730

employed men, aged 40 to 55 years from the Chicago Western

Electric Study, which were followed from 1958 to 1966, animal

protein was positively associated with a 4 times greater risk of

obesity, while plant protein reduced the risk by 50% (141). Recent

studies have also found that substituting different animal protein

sources, particularly processed red meats, with plant protein was
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associated with reduced risks of coronary heart disease (CHD) and

all-cause mortality (144–146).

The majority of studies have also reported that long-term

consumption of animal protein increased the risk of T2D, while

plant proteins had protective or neutral effects (34–36, 147–154)

(Table 4). For example, in two large cohort studies (Women’s

Health Initiative and the UK Biobank), with 16,505 incident cases

of T2D (out of 143,297 adults without T2D at baseline), during a

median follow-up of 15.8 years, replacing consumption of animal

protein (5% of energy intake) with plant protein was associated with

a 21% lower risk of T2D, attributable to reductions in obesity-

related inflammatory factors (36). Moreover, in another study, a

higher intake of animal, but not plant, protein was associated with
FIGURE 2

Summary of acute, intermediate-, and longer-term effects of dietary animal and plant protein consumption on metabolic health. Acute intakes of
protein (animal or plant-based protein), either in an isolated form as ‘preloads’, or as part of a meal, stimulate GI hormones, associated with
reductions in energy intake and postprandial blood glucose. These acute effects are associated with greater weight loss, and improved glycemic
control, when consumed as part of a high-protein diet, with comparable outcomes observed with both types of protein. In contrast, the outcomes
of longer-term studies suggest that long-term consumption of animal-based protein may have adverse effects in relation to the development of
type 2 diabetes (T2D), while plant-based protein have either protective or neutral effects. This may reflect animal protein-specific effects to increase
insulin resistance, leading to increased risk of T2D.
TABLE 3 Long-term effects of total, animal and plant protein intake on body weight.

First
author

Country Design Sample
size
(n)

Age
(y)

BMI
(kg/
m2)

Protein
source

Protein
dose1

Duration2

(y)
Weight change3 Ref

Halkjær
et al.
(2011)

European
countries

Prospective
cohort

89,432
(M/F)

35-
65

20-33 Total protein
Animal
protein

Plant protein

Per increased
150 kcal/d

6.5 +0.052 kg/year (+0.025
to +0.079)

+0.056 kg/year (+0.026
to +0.085)

+0.017 kg/year (-0.032
to +0.068)

(137)

Bujnowski
et

al. (2011)

USA Prospective
cohort

1,730
(M)

40-
55

24->30 Total protein
Animal
protein

Plant protein

17.2 vs. 13% of
EI*

13.8 vs. 9.3%
4.1 vs. 2.9%

7 3.27 (1.94 to 5.51)*
4.62 (2.68 to 7.98)
0.58 (0.36 to 0.95)

(141)

Smith et al.
(2015)

USA Prospective
cohort

120,784
(M/F)

30-
50

22->25 Animal
protein

Plant protein

Per increased
serving/d

16-24 +0.13 to +1.17 kg/4
years

-0.14 to -0.71 kg/
4 years

(140)
frontier
M, Male; F, Female; Y, Years; BMI, Body mass index; EI, Energy intake.
1 Reported as grams per day intake of protein, otherwise indicated as percentage of daily energy intake (*); 2 Follow up duration; 3 Reported as either body weight change (kg), otherwise indicated
as risk of obesity (*).
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TABLE 4 Long-term effects of total, animal and plant protein intake on glycemic control.

First
author

Country Design Sample
size
(n)

Age
(y)

BMI
(kg/
m2)

Protein
source

Protein
dose1

Duration2

(y)
T2D
cases
(n)

T2D risk Ref

Song
et

al. (2004)

USA Prospective
cohort

37,309 (F) >45 20->30 Animal
protein

Plant protein

77 vs. 40 g/d
37 vs. 17 g/d

8.8 1,558 1.44 (1.16
to 1.78)
0.85 (0.70
to 1.03)

(150)

Sluijs
et

al. (2010)

The
Netherlands

Prospective
cohort

38,094
(M/F)

21-70 24->30 Total protein
Animal
protein

Plant protein

Per increased
10 g/d

10.1 918 1.16 (1.06
to 1.26)
1.13 (1.04
to 1.22)
1.04 (0.83
to 1.29)

(147)

van Nielen
et

al. (2014)

European
countries

Prospective
cohort

26,253
(M/F)

53
(mean)

<25-
>30

Total protein
Animal
protein

Plant protein

Per 10 g/d 12 11,637 1.06 (1.02
to 1.09)
1.05 (1.02
to 1.08)
1.04 (0.93
to 1.16)

(152)

Malik
et

al. (2016)

USA Prospective
cohort

205,802
(M/F)

30-50 22->25 Total protein
Animal
protein

Plant protein

22 vs. 14% of
EI*

17 vs. 9%
7 vs. 4%

20.1 15,580 1.07 (1.01
to 1.17)
1.13 (1.06
to 1.21)
0.91 (0.84
to 0.98)

(34)

Shang
et

al. (2016)

AUS Prospective
cohort

21,523
(M/F)

27-80 20->30 Total protein
Animal
protein

Plant protein

Per 5%
of EI*

11.7 929 1.15 (1.00
to 1.32)
1.15 (1.00
to 1.33)
1.00 (0.69
to 1.46)

(149)

Sugihiro
et

al. (2019)

USA Prospective
cohort

765 (M/F) 58.1
(mean)

≥25 Total protein
Animal
protein

Plant protein

Per 1%
of EI*

10.7 36 1.22 (1.03
to 1.45)
1.20 (1.04
to 1.38)
0.82 (0.62
to 1.09)

(151)

Chen
et

al. (2020)

The
Netherlands

Prospective
cohort

6,813
(M/F)

≥45 – Total protein
Animal
protein

Plant protein

Per 5%
of EI*

7.2 643 1.37 (1.18
to 1.58)
1.37 (1.19
to 1.58)
1.21 (0.83
to 1.77)

(154)

Yuan
et

al. (2021)

China Prospective
cohort

7,312
(M/F)

48.3
(mean)

22->25 Total protein
Animal
protein

Plant protein

92 vs. 41 g/d
41 vs. 3 g/d
65 vs. 25 g/d

5.8 209 2.38 (1.43
to 3.98)
1.93 (1.17
to 3.17)
1.20 (0.71
to 2.04)

(153)

Li et al.
(2022)

USA

UKD

Prospective
cohort

108,681 (F)

34,616 (F)

50-80 22->30 Total protein
Animal
protein

Plant protein

Total protein

86 vs. 50 g/d
67 vs. 28 g/d
28 vs. 13 g/d

Per 5%
of EI*

15.8

11.4

15,842

663

1.24 (1.18
to 1.30)
1.31 (1.24
to 1.37)
0.82 (0.78
to 0.86)
1.14

(0.99-1.32)

(36)
F
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M, Male; F, Female; Y, Years; BMI, Body mass index; T2D, Type 2 diabetes; EI, energy intake.
1 Reported as grams per day intake of protein, otherwise indicated as percentage of daily energy intake (*); 2 Follow up duration.
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increased risks of both prediabetes and T2D; so that each 5%

increment in energy intake from animal protein at the expense of

carbohydrate was associated with increased risks of prediabetes of

35% and T2D of 37% (154). This was attributable primarily to

increased insulin resistance, as assessed by the indirect homeostatic

model (HOMA-IR) (154). A number of recent reviews and meta-

analyses have also concluded that higher animal, but not plant,

protein intake is associated with an increased risk of T2D

(155–160).

The mechanisms through which a high protein intake, from

animal vs. plant-based sources, may have differential impacts in the

long-term are poorly defined. However, there are several potential

explanations, including differences in amino acid composition,

glycemic load and potential deleterious effects of the high

insulinotropic properties of animal protein, which, in turn,

promotes fat storage and impedes fat oxidation (161, 162).

Preclinical models also indicate that increased levels of specific

amino acids, particularly BCAAs, which are abundant in animal-

based proteins, could lead to insulin resistance by activating mTOR,

to initiate a detrimental feedback loop toward insulin receptor

substrate 1 signaling (163, 164). Indeed, insulin-mediated glucose

uptake decreases when body tissues are chronically overexposed to

high levels of insulin. Thus, prolonged hyperinsulinemia may lead

to insulin resistance and, ultimately, T2D. Elevated postprandial

levels of BCAAs have also been shown to inhibit muscle glucose

transport and/or glucose phosphorylation directly, to reduce

glycogen synthesis, further contributing to insulin resistance

(165). Limited human studies also indicate that an increase in

protein intake in the longer-term can reduce insulin sensitivity (166,

167). For example, in healthy participants, a higher consumption of

protein (~1.87 g/kg of body weight) for six months was associated

with greater glucose-stimulated insulin secretion and a modest

reduction in insulin sensitivity (166). In another study, in

overweight participants, comparing an isoenergetic high-protein

diet (~25–30% protein) with a conventional-protein (~15% protein)

control diet over 18 weeks, a reduction in insulin sensitivity, as

measured by the euglycemic hyper-insulinemic clamp, was

observed (167). The differential impacts of animal and plant

protein may also be influenced by other dietary nutrients. For

example, plant-based foods are rich in dietary fiber, which is known

to mitigate T2D risk and may interact additively with plant protein

(168). In contrast, a number of dietary components in red and

processed meats, as the primary sources of animal protein, such as

heme iron, animal fat, and advanced glycation end products, may

be, both directly and indirectly, associated with an increased T2D

risk. This association may reflect factors including obesity and its

related inflammatory markers (leptin and endothelial dysfunction

biomarkers) (36, 154, 169).

It is important to also appreciate other potential deleterious

effects of high-protein diets, particularly increased risks of

osteoporosis and renal diseases (170–174). A potential link with

osteoporosis was supported by the observation of increased urinary

calcium excretion during a high protein intake (170–172). High-

protein diets (>2 g/kg/day) may also increase bone resorption by

increasing the acid load in the body, compared with diets of low- to
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normal-protein content of 0.7-1.0 g/kg/day (172). Indeed, it has

been suggested that high consumption of animal-based protein, in

particular, leads to an acidification of the blood that may increase

carbonate, and subsequently calcium, release from the skeleton to

decrease bone mineral density (171). In an epidemiological study of

older men (>60 years), a greater dietary acid load due to a chronic

high-protein intake was associated with femoral bone loss only

under conditions of very low calcium intake <800 mg/d dietary

calcium (173). An increased renal acid load, such as the sulfuric acid

produced from the oxidation of different amino acids, has also been

suggested to increase the risk of kidney stones, and/or increase the

glomerular filtration rate, which may lead to renal dysfunction over

time (174). While these findings are yet to be confirmed in different

populations, they further support that recommendations for a

higher protein intake in the long-term should be circumspect.
5 Conclusions and recommendations/
priorities for future studies

There is strong evidence from short-term studies (i.e.

<6 months in duration) that a higher dietary protein intake

facilitates weight loss in obesity and improves glycemic control

in T2D. In contrast, the outcomes of longer-term studies, of which

there are less, are not convincing, precluding clear-cut

recommendations. Suboptimal dietary adherence and metabolic

adaptations are likely to contribute to this apparent anomaly, as

well as methodological limitations with respect to the type and

duration of studies, characteristics of study participants, and how

well-controlled the studies are. While acute studies are well-

controlled and provide the most reliable findings, these are

characteristically performed among a smaller number of

participants, who are predominantly young. Accordingly,

longer-term studies with larger and more heterogeneous

populations are required. An important issue, which has

received inappropriately little attention, is the source of dietary

protein (i.e. animal vs. plant). The importance of this issue is

highlighted by recent epidemiological studies, which strongly

support the concept that animal-, but not plant-, based protein

intake may have adverse effects in relation to the development of

obesity and T2D. Importantly, the longer-term comparative

effects of high-protein diets, based on different sources, on body

weight and glycemic control remain to be formally evaluated.

Despite this limitation, it would be appropriate for current dietary

guidelines to consider the source of dietary protein in relation to

the use of high-protein diets, and reasonable to advise a reduction

in the consumption of animal protein and a relatively increased

intake of plant protein. Such a nuanced approach may prove

fundamental to longer-term outcomes. Moreover, future studies

should focus on the relevance of animal vs. plant-based protein

sources, particularly how longer-term consumption of different

protein sources may affect GI-related food intake- and gluco-

regulatory mechanisms. The outcomes of such studies are likely to

lead to more personalized and effective use of protein in the

prevention and management of obesity and T2D.
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