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Background: Oxidative Balance Score (OBS) is a novel indicator of the overall

antioxidant/oxidant balance, providing a comprehensive reflection of the body’s

overall oxidative stress status, with higher OBS suggesting more substantial

antioxidant exposures. We aimed to investigate the possible relationship

between OBS with serum uric acid (SUA) and hyperuricemia.

Methods: Data utilized in this study were sourced from the 2011–2018 National

Health and Nutrition Examination Survey (NHANES). Participants under 18 years

old, those with ≤16 complete data out of 20 OBS components, incomplete

serum uric acid data, and missing covariates were excluded from the analysis.

OBS was computed by evaluating 16 nutrients and 4 lifestyle factors,

encompassing 5 pro-oxidants and 15 antioxidants, guided by a priori

knowledge of their relationship with oxidative stress.

Results: A total of 1,5096 individuals were included in our analysis with 49.7%

being male, and an average age of 49.05 ± 17.56 years. The mean OBS was 19.76

± 7.17. Hyperuricemia was present in 19.28% of participants. Due to the right-

skewed distribution of the OBS, a natural log transformation was applied to

address this issue, and Quartiles of lnOBS 1, 2, 3, and 4 were 1.10–2.56 (N=3526),

2.64–2.94 (N=3748), 3.00–3.22 (N=4026), and 3.26–3.61 (N=3796),

respectively. Multivariable logistic regression showed that higher lnOBS

quantiles were correlated with lower serum uric acid levels. Compared with

the lowest lnOBS quantile, participants in the highest lnOBS quantile had a

significant serum uric acid decrease of 16.94 mmol/L for each unit increase in

lnOBS (b=-16.94, 95% CI: -20.44, -13.45). Similar negative associations were

observed in the second-highest (b=-8.07, 95% CI: -11.45, -4.69) and third-

highest (b=-11.69, 95% CI: -15.05, -8.34) lnOBS quantiles. The adjusted odds

ratios (ORs) for hyperuricemia in Quartiles 1, 2, 3, and 4 were 1.00, 0.84 (95% CI:

0.75, 0.95), 0.78 (95% CI: 0.69, 0.88), and 0.62 (95% CI: 0.55, 0.71), respectively.

Compared to Quartile 1, participants in Quartile 4 had a 38% lower prevalence of

hyperuricemia. Subgroup analysis and interaction test showed that there was a

significant dependence of sex between OBS and serum uric acid (p for

interaction <0.05), but not hyperuricemia (p for interaction >0.05). Subgroup
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analysis stratified by age, BMI, hypertension, diabetes, and hyperlipidemia

showed there is no significant dependence on these negative correlations (all

p for interaction >0.05).

Conclusions: The serum uric acid levels and prevalence of hyperuricemia in US

adults exhibited a negative association with OBS. By exploring this connection,

our research aims to gain a better understanding of how oxidative balance affects

the prevalence of hyperuricemia. This could provide valuable insights for

developing preventive strategies and interventions for hyperuricemia.

Additional large-scale prospective studies are required to explore the role of

OBS in hyperuricemia further.
KEYWORDS

oxidative balance score (OBS), Serum uric acid (sUA), hyperuricemia, national health and
nutrition examination survey (NHANES), oxidative stress
Introduction

Uric acid, the final oxidation product of purine metabolism, is

primarily excreted by the kidneys. Elevated serum uric acid (SUA)

levels can lead to hyperuricemia due to uric acid supersaturation

(1). Hyperuricemia is commonly defined as serum uric acid

concentrations exceeding 7.0 mg/dL in men or 6.0 mg/dL in

women (2). While uric acid serves as a vital antioxidant in

plasma, it also contributes to blood pressure regulation and

resilience against oxidative stress (3). However, intracellular uric

acid has been linked to elevated inflammation and heightened

oxidative stress (4). Extensive research has identified high serum

uric acid levels as an independent risk factor for various chronic

kidney and joint disorders (5), including gout (6), chronic arthritis

(7), joint deformity, and uric acid kidney stones (8), as well as

chronic metabolic diseases such as hypertension (9), diabetes (10),

and metabolic syndrome, along with cardiovascular disease (11).

Oxidative stress is a condition where the cell’s antioxidant

scavenging system is overwhelmed by the overproduction of ROS,

leading to an oxygen paradox. This paradox occurs when free radicals,

necessary for cellular processes, are produced in excessive amounts and

begin to interfere with essential metabolic processes (12). Current

evidence suggests a correlation between hyperuricemia and elevated

levels of oxidative stress, as evidenced by increased serum pro-oxidant-

antioxidant balance values (13). Pro-oxidants are implicated in

inducing oxidative stress through the generation of reactive oxygen

species (ROS) or by impeding the defensive capacity of the antioxidant

system (14). A multitude of studies have investigated the relationship

between hyperuricemia and oxidative stress, establishing that elevated

blood uric acid levels promote oxidative stress within the body (15),

thereby triggering inflammation (16).

Despite this, there is a notable gap in the research exploring the

fluctuations in individual antioxidant/oxidant balance status and

their impact on the development of hyperuricemia. The OBS is an
02
effective tool that allows us to evaluate an individual’s antioxidant

status by ranking the antioxidant and pro-oxidant components of

their diet and lifestyle factors. Numerous epidemiological studies

have investigated the association between OBS and conditions such

as diabetes, non-alcoholic fatty liver disease (17), periodontitis (18),

lung health (19), and vascular endothelial function (20).

In this study, we aim to use data from the National Health and

Nutrition Examination Survey (NHANES) to perform a cross-

sectional analysis among adults in the United States. Our goal is to

assess the relationship between OBS and hyperuricemia. By exploring

this connection, our research aims to gain a better understanding of

how oxidative balance affects serum uric acid levels and the

prevalence of hyperuricemia. This could provide valuable insights

for developing preventive strategies and interventions.
Method

Research question and hypothesis

The primary research question of this study is to investigate the

association between OBS and hyperuricemia among adults in the

United States. We hypothesize that higher OBS is associated with

lower serum uric acid levels and a reduced risk of hyperuricemia.
Data source

The NHANES has a complex multistage probabilistic sampling

design. It annually examines a nationally representative sample of

5000 individuals at 15 different sites selected from a sampling frame

of all counties in the United States (21). It is conducted by the

National Center for Health Statistics (NCHS) and is a periodic survey

approved by the NCHS Ethics Review Board. All participants provide
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informed consent before participation. NHANES data collection

takes place throughout the year, including weekdays and weekends.

It involves a household interview, a visit to a mobile examination

center (MEC), and follow-up activities after the MEC visit. In the

household screening interview, eligible household members are

identified using a computer-assisted personal interview tool.

Potential participants receive a comprehensive list of topics and

categories, such as health examination, blood- and urine-based

tests, and dietary intake, that will be assessed. After obtaining

informed consent, a detailed in-person interview is conducted in

the homes of consenting individuals. This interview covers

demographic, socioeconomic, dietary (including supplement use),

and health-related questions (22). The data are released in 2-year

cycles. four consecutive NHANES 2-year cycles (2011–2012, 2013–

2014, 2015–2016, and 2017–2018) are collected. All NHANES data

are publicly available at https://www.cdc.gov/nchs/nhanes/.
Study participants

From the NHANES 2011−2018 dataset, a total of 39,156

individuals were identified to investigate the relationship between

OBS and hyperuricemia. Exclusion criteria comprised individuals

below 18 years of age (n=15,331), those with ≤16 complete data out

of 20 OBS components (n=3,144), incomplete SUA data (n=1,149),

and missing other covariates (n=4,436). Ultimately, 15,096 eligible

participants were included in the final analysis (Figure 1).
Outcome variables

Serum samples were obtained from participants and stored at –

30°C until transported to the National Center for Health Statistics
Frontiers in Endocrinology 03
(NCHS) at the Centers for Disease Control and Prevention (CDC)

for serum uric acid (SUA) testing. Hyperuricemia was defined as an

SUA level ≥416 mmol/L (7 mg/dL) in men and ≥357 mmol/L (6 mg/

dL) in women (23).
Exposure assessment

The OBS was computed by assessing 16 nutrients and 4 lifestyle

factors, comprising 5 pro-oxidants and 15 antioxidants, based on a

priori knowledge of their association with oxidative stress. OBS

components were categorized into four groups: (1) dietary

antioxidants (fiber, b-carotene, riboflavin, niacin, vitamin B6,

total folate, vitamin B12, vitamin C, vitamin E, calcium,

magnesium, zinc, copper, and selenium), (2) dietary pro-oxidants

(total fat and iron), (3) lifestyle antioxidants (physical activity), and

(4) lifestyle pro-oxidants (alcohol, smoking, and body mass index

[BMI]). Alcohol consumption was stratified into three groups:

heavy drinkers (≥15 g/d for women and ≥30 g/d for men), non-

heavy drinkers (0–15 g/d for women and 0–30 g/d for men), and

non-drinkers, with corresponding scores of 0, 1, and 2 points,

respectively. Subsequently, other components were stratified by sex

and divided into tertiles. Antioxidants were assigned points on a

scale from 0 to 2 for tertile groups 1 to 3, respectively, with higher

points indicating increased antioxidant levels. Conversely, pro-

oxidants were assigned points inversely, with 0 points for the

highest tertile and 2 points for the lowest tertile, reflecting higher

pro-oxidant levels (24). Refer to Table 1 for the specific calculation

method of OBS. The overall OBS was calculated by summing the

points assigned for each component, ranging from 3 to 37, with

higher scores indicating greater antioxidant exposure.
Covariates

Our study incorporated various covariates potentially

influencing the outcome, including gender, age, race, education

level, poverty-to-income ratio (PIR), body mass index (BMI),

drinking status, smoking status, hypertension, diabetes, and

hyperlipidemia. Race/ethnicity categories comprised Non-

Hispanic White, Non-Hispanic Black, Mexican American, Other

Hispanic, or Other Race. Body mass index (BMI) was calculated as

weight in kilograms divided by height in meters squared and

categorized as underweight (<18.5 kg/m²), normal weight (18.5–

24.9 kg/m²), overweight (25.0–29.9 kg/m²), and obese (≥30.0 kg/

m²). Education level was classified as less than 9th grade, 9–11th

grade, high school graduate, college degree, and college graduate or

above. Smoking status was categorized as never smoking (defined as

smoking < 100 cigarettes in life) or current smoking (defined as

smoking ≥ 100 cigarettes in life) while drinking status was divided

into non-drinking (defined as drinking < 12 times in the last year)

or drinking (defined as drinking ≥ 12 times in the last year).

Information on the prevalence of hypertension, diabetes, and

hyperlipidemia among participants was obtained through self-

reported questionnaires.
FIGURE 1

Flow diagram of clinical research from NHANES 2011–2018.
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Statistical analysis

All statistical analyses followed the guidelines outlined by the

Centers for Disease Control and Prevention (CDC). Continuous

variables were reported as means with standard error (SE), while

categorical variables were presented as proportions. Differences

among participants stratified by OBS quantiles were evaluated

using either a weighted Student’s t-test (for continuous variables)

or a weighted chi-square test (for categorical variables).

Multivariable logistic regression, adjusted for various covariates,

was employed to investigate the association between continuous

OBS or quartile OBS and SUA levels, as well as hyperuricemia.

Model 1 represented the unadjusted model, Model 2 was adjusted

for age, sex, and race/ethnicity, and Model 3 adjusted for all

covariates. Beta (b) coefficients with 95% confidence intervals

(CIs) were used to evaluate the association between OBS and

SUA levels. In comparison, odds ratios (ORs) with 95%

confidence intervals (CIs) were used to assess the association

between OBS and hyperuricemia. Subgroup analyses were
Frontiers in Endocrinology 04
conducted to explore the association between OBS and SUA

levels, and hyperuricemia across gender, age, BMI, hypertension,

diabetes, and hyperlipidemia subgroups. Due to the right-skewed

distribution of OBS, natural log transformation was applied, and

OBS values were categorized into four subgroups based on quartiles

for inclusion in the models as continuous and categorical variables.

The statistical study was carried out using the statistical

computing and graphics software R (version 4.1.3) and

EmpowerStats (version 2.0).
Results

Baseline characteristics of participants

A total of 15,096 participants were enrolled in the study, with

49.7% being male, and an average age of 49.05 ± 17.56 years. The

mean OBS concentration was 19.96 ± 7.17. When the population

was divided into hyperuricemia and non-hyperuricemia groups, we
TABLE 1 Ingredients that make up the oxidative balance score.

OBS
components

Property Male Female

0 1 2 0 1 2

Dietary OBS components

Dietary fiber (g/d) A ≤13.20 13.20–20.80 >20.80 ≤11.30 11.30–17.30 >17.30

Carotene (RE/d) A ≤53.58 53.58–176.81 >176.81 ≤57.60 57.60–198.53 >198.53

Riboflavin (mg/d) A ≤1.80 1.80–2.64 >2.64 ≤1.40 1.40–2.02 >2.02

Niacin (mg/d) A ≤22.93 22.93–32.73 >32.73 ≤16.29 16.29–23.49 >23.49

Vitamin B6 (mg/d) A ≤1.74 1.74–2.59 >2.59 ≤1.29 1.29–1.89 >1.89

Total folate (mcg/d) A ≤328.33 328.33–495 >495.00 ≤257.39 257.39–385.50 >385.50

Vitamin B12 (mcg/d) A ≤3.66 3.66–4.40 >4.40 ≤2.56 2.56–4.50 >4.50

Vitamin C (mg/d) A ≤43.23 43.23–104.13 >104.13 ≤41.45 41.45–90.35 >90.35

Vitamin E (ATE)
(mg/d)

A ≤6.02 6.02–9.57 >9.57 ≤5.03 5.03–7.98 >7.98

Calcium (mg/d) A ≤751.00 751.00–1130.50 >1130.50 ≤610.67 610.67–921.50 >921.50

Magnesium (mg/d) A ≤262.33 262.33–366.50 >366.50 ≤211.00 211.00–293.00 >293.00

Zinc (mg/d) A ≤10.00 10.00–14.65 >14.65 ≤7.24 7.24–10.54 >10.54

Copper (mg/d) A ≤1.08 1.08–1.53 >1.53 ≤0.88 0.88–1.25 >1.25

Selenium (mcg/d) A ≤102.60 102.6–145.48 >145.48 ≤74.77 74.77–105.73 >105.73

Total fat (g/d) P ≤70.92 70.92–104.62 >104.62 ≤53.03 53.03–77.44 >77.44

Iron (mg/d) P ≤12.72 12.72–18.74 >18.74 ≤9.79 9.79–14.12 >14.12

Lifestyle OBS components

Physical activity A Low Moderate High Low Moderate High

Alcohol (g/d) P ≥30 0–30 None ≥15 0–15 None

Obesity P Obesity Overweight Normal Obesity Overweight Normal

Smoking status P Current smoker Former smoker Never smoker Current smoker Smoking status Never smoker
OBS, oxidative balance score; A, antioxidant; P, prooxidant; RE, retinol equivalent; ATE, alpha-tocopherol equivalent; MET, metabolic equivalent.
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found that hyperuricemia was present in 19.28% (N=2911) of

participants. The average age of individuals with hyperuricemia

was 52.96 ± 17.72 years, with an average OBS of 18.22 ± 7.03. In

contrast, the average age of individuals without hyperuricemia was

48.12 ± 17.40 years, with an average OBS of 20.12 ± 7.15 (Figure 2).

The clinical characteristics of participants, stratified by

hyperuricemia status, are detailed in Table 2. We can use the

education level as an example. Among participants with

hyperuricemia, those with an education level of 9–11th grade

accounted for 10.96% (N=319) of the total education levels

(N=2911) . In contras t , among par t i c ipants wi thout

hyperuricemia, those with an education level of 9–11th grade

accounted for 12.00% (N=1462) of the total education levels

(N=12185). Significant associations were observed between

hyperuricemia and age, sex, race, education level, BMI,

hypertension, hyperlipidemia, diabetes, smoking status, and OBS

(p < 0.05). Participants with hyperuricemia tended to be older,

male, obese, have lower OBS, and have a higher proportion of

hypertension, hyperlipidemia, diabetes, and smoking status

compared to those without hyperuricemia.

Table 3 displays the clinical characteristics of participants based on

quartiles of OBS. The mean OBS was 19.96 ± 7.17, ranging from 3 to

37. Quartiles of OBS 1, 2, 3, and 4 were 3–13 (N=3526), 14–19

(N=3748), 20–25 (N=4026), and 26–37 (N=3796), respectively. The

average age of individuals in Quartiles 1–4 was 50.98 ± 17.88, 50.02 ±

17.73, 48.57 ± 17.44, and 46.82 ± 16.95. The SUA levels of Quartiles 1–

4 were 339.15 ± 92.37 umol/L, 327.89 ± 84.98 umol/L, 320.90 ± 83.99

umol/L, and 309.84 ± 80.71 umol/L, respectively. We observed that

compared to Quartile 1 (24.73%), the prevalence of hyperuricemia was

lower in Quartile 2 (20.57%), Quartile 3 (18.53%), and Quartile 4

(13.75%) (Figure 3). Significant differences were observed across OBS

quartiles in age, race, BMI, SUA levels, PIR, education level,

hypertension, hyperlipidemia, diabetes, hyperuricemia, drinking

status, and smoking status (all p < 0.05). Participants in higher OBS

quartiles tended to be younger, have higher income, normal weight,

lower SUA levels, and a lower proportion of hypertension,

hyperlipidemia, diabetes, hyperuricemia, and smoking status, with a

higher proportion of drinking status compared to those in the lowest

OBS quartile (p < 0.05).
Frontiers in Endocrinology 05
Association between lnOBS and SUA

A natural log transformation was applied to address the right-

skewed distribution of the OBS and Quartiles of lnOBS 1, 2, 3, and 4

were 1.10–2.56 (N=3526), 2.64–2.94 (N=3748), 3.00–3.22 (N=4026),

and 3.26–3.61 (N=3796), respectively. Table 4 shows the results of the

multivariate regression analysis. In the unadjusted model, lnOBS

exhibited a negative association with SUA levels (b=25.33, 95% CI:

-28.59, -22.06). Even after full adjustment for age, sex, body mass

index (BMI), race/ethnicity, educational level, smoking, drinking,

diabetes, hypertension, and hyperlipidemia, the negative association

between lnOBS and SUA levels remained consistent (b=-14.47, 95%
CI: -17.41, -11.53). This indicated that each unit increase in lnOBS

was associated with a decrease of 14.47 mmol/L in SUA levels,

suggesting that higher OBS was correlated with lower SUA levels.

We further converted the lnOBS from a continuous variable to a

categorical variable (quantiles) to conduct a comparison. Compared

with the lowest lnOBS quantile, participants in the highest lnOBS

quantile had a significant serum uric acid decrease of 16.94 mmol/L

when each unit of lnOBS increased with statistical significance (b=-
16.94, 95% CI: -20.44, -13.45). Similar negative associations were

observed in the second-highest (b=-8.07, 95% CI: -11.45, -4.69) and

third-highest (b=-11.69, 95% CI: -15.05, -8.34) lnOBS quantiles.
Association between lnOBS
and hyperuricemia

Table 5 shows that a negative association was observed between

lnOBS and hyperuricemia (OR 0.68, 95% CI 0.61, 0.75) in multiple

logistic regression analysis adjusting for all covariates. This

indicates that a one-unit increase in lnOBS is associated with a

32% lower prevalence of hyperuricemia. When lnOBS was

categorized into quartiles, similar negative associations were

observed compared to continuous lnOBS. The adjusted odds

ratios (ORs) for Quartiles 1, 2, 3, and 4 in model 3 were 1.00,

0.84 (95% CI 0.75, 0.95), 0.78 (95% CI 0.69, 0.88), and 0.62 (95% CI

0.55, 0.71), respectively. Compared to Quartile 1, participants in

Quartile 4 had a 38% lower prevalence of hyperuricemia.
FIGURE 2

Hyperuricemia Prevalence and Demographic Analysis.
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Subgroup analysis for the association
between lnOBS and SUA

We conducted a subgroup analysis to assess the stability of the

relationship between lnOBS and SUA levels across different

population settings (Figure 4). Stratification by gender revealed a

significant and independently negative association between lnOBS

and SUA levels in both men and women (p for interaction < 0.05).

However, for other stratifications including age, BMI, hypertension,

diabetes, and hyperlipidemia status, the negative association

between lnOBS and SUA levels remained unaffected and was not

significantly influenced (p for interaction > 0.05).
Subgroup analysis for the association
between lnOBS and hyperuricemia

Further stratified analyses between lnOBS and hyperuricemia

were conducted (Figure 5). These analyses indicated that gender,

age, BMI, hypertension, diabetes, and hyperlipidemia status did not

significantly influence the modification of the association between

lnOBS and hyperuricemia (all P for interaction > 0.05).
Discussion

In the cross-sectional study involving 15,096 participants, our

research demonstrated a significant negative association between

OBS and both SUA and hyperuricemia, indicating that increased

OBS may contribute to lower SUA levels and decreased

hyperuricemia prevalence. The association remained stable after

covariate adjustment. Subgroup analysis stratified by sex, age, BMI,

hypertension, diabetes, and hyperlipidemia showed that there is a

significant sex dependence on lowering SUA levels but not

hyperuricemia. No significant dependence was observed for age,

BMI, hypertension, diabetes, or hyperlipidemia.

As far as we know, this is the first study to assess the

relationship between OBS and both SUA and hyperuricemia

based on NHANES (from 2011 to March 2018). Previous studies

have explored the relationship between oxidative stress and SUA

(25) or hyperuricemia (16). The dietary components of OBS include

many ingredients, and many of them have been proven to have

antioxidant effects in previous studies. Studies found increasing

dietary fiber intake could increase probiotics in the gut which is

closely related to the occurrence and development of hyperuricemia
TABLE 2 Baseline characteristics of participants according
to hyperuricemia.

Characteristic non-
hyperuricemia

hyperuricemia P
value

N=12185 N=2911

Age(years) 48.12 ± 17.40 52.96 ± 17.72 <0.001

Sex,% <0.001

Male 5818 (47.75%) 1685 (57.88%)

Female 6367 (52.25%) 1226 (42.12%)

Race,% <0.001

Mexican American 1713 (14.06%) 282 (9.69%)

Other Hispanic 1287 (10.56%) 230 (7.90%)

Non-
Hispanic White

4983 (40.89%) 1237 (42.49%)

Non-Hispanic Black 2475 (20.31%) 749 (25.73%)

Other Race 1727 (14.17%) 413 (14.19%)

BMI,%(kg/m2) <0.001

<18.5 208 (1.71%) 11 (0.38%)

18.5–24.9 3652 (29.97%) 370 (12.71%)

25.0–29.9 4024 (33.02%) 847 (29.10%)

≥30 4301 (35.30%) 1683 (57.82%)

Education Level,% <0.001

Less than 9th grade 937 (7.69%) 209 (7.18%)

9–11th grade 1462 (12.00%) 319 (10.96%)

High
school graduate

2718 (22.31%) 715 (24.56%)

College degree 3850 (31.60%) 994 (34.15%)

College graduate
or above

3218 (26.41%) 674 (23.15%)

PIR 2.53 ± 1.63 2.52 ± 1.62 0.929

Hypertension,% <0.001

Yes 3873 (31.78%) 1587 (54.52%)

No 8312 (68.22%) 1324 (45.48%)

Hyperlipidemia,% <0.001

Yes 4021 (33.00%) 1252 (43.01%)

No 8164 (67.00%) 1659 (56.99%)

Diabetes,% <0.001

Yes 1553 (12.75%) 580 (19.92%)

No 10632 (87.25%) 2331 (80.08%)

Smoking Status,% <0.001

Yes 5298 (43.48%) 1384 (47.54%)

No 6887 (56.52%) 1527 (52.46%)

Drinking Status,% 0.940

(Continued)
TABLE 2 Continued

Characteristic non-
hyperuricemia

hyperuricemia P
value

N=12185 N=2911

Yes 8032 (65.92%) 1921 (65.99%)

No 4153 (34.08%) 990 (34.01%)

OBS 20.12 ± 7.15 18.22 ± 7.03 <0.001
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TABLE 3 Baseline characteristics of participants according to the oxidative balance score’s quartile.

Characteristic
Quartiles of OBS

P-value
Q1(N=3526) Q2(N=3748) Q3(N=4026) Q4(N=3796)

Age(years) 50.98 ± 17.88 50.02 ± 17.73 48.57 ± 17.44 46.82 ± 16.95 <0.001

SUA(umol/L) 339.15 ± 92.37 327.89 ± 84.98 320.90 ± 83.99 309.84 ± 80.71 <0.001

Gender,% 0.163

Male 1793 (50.85%) 1890 (50.43%) 1958 (48.63%) 1862 (49.05%)

Female 1733 (49.15%) 1858 (49.57%) 2068 (51.37%) 1934 (50.95%)

Race,% <0.001

Mexican American 372 (10.55%) 486 (12.97%) 559 (13.88%) 578 (15.23%)

Other Hispanic 317 (8.99%) 395 (10.54%) 426 (10.58%) 379 (9.98%)

Non-Hispanic White 1362 (38.63%) 1533 (40.90%) 1688 (41.93%) 1637 (43.12%)

Non-Hispanic Black 1092 (30.97%) 834 (22.25%) 743 (18.46%) 555 (14.62%)

Other Race 383 (10.86%) 500 (13.34%) 610 (15.15%) 647 (17.04%)

BMI,%(kg/m2) <0.001

<18.5 56 (1.59%) 41 (1.09%) 50 (1.24%) 72 (1.90%)

18.5–24.9 692 (19.63%) 906 (24.17%) 1076 (26.73%) 1348 (35.51%)

25.0–29.9 1101 (31.23%) 1213 (32.36%) 1316 (32.69%) 1241 (32.69%)

≥30 1677 (47.56%) 1588 (42.37%) 1584 (39.34%) 1135 (29.90%)

Education Level,% <0.001

Less than 9th grade 322 (9.13%) 325 (8.67%) 297 (7.38%) 202 (5.32%)

9–11th grade 578 (16.39%) 453 (12.09%) 433 (10.76%) 317 (8.35%)

High school graduate 959 (27.20%) 891 (23.77%) 908 (22.55%) 675 (17.78%)

College degree 1144 (32.44%) 1240 (33.08%) 1292 (32.09%) 1168 (30.77%)

College graduate or above 322 (9.13%) 325 (8.67%) 297 (7.38%) 202 (5.32%)

PIR 2.10 ± 1.50 2.47 ± 1.60 2.62 ± 1.63 2.87 ± 1.68 <0.001

Hypertension Status,% <0.001

Yes 1504 (42.65%) 1437 (38.34%) 1412 (35.07%) 1107 (29.16%)

No 2022 (57.35%) 2311 (61.66%) 2614 (64.93%) 2689 (70.84%)

High Cholesterol Status,% <0.001

Yes 1269 (35.99%) 1374 (36.66%) 1414 (35.12%) 1216 (32.03%)

No 2257 (64.01%) 2374 (63.34%) 2612 (64.88%) 2580 (67.97%)

Diabetes Status,% <0.001

Yes 641 (18.18%) 582 (15.53%) 534 (13.26%) 376 (9.91%)

No 2885 (81.82%) 3166 (84.47%) 3492 (86.74%) 3420 (90.09%)

Smoking Status,% <0.001

Yes 1861 (52.78%) 1740 (46.42%) 1672 (41.53%) 1409 (37.12%)

No 1665 (47.22%) 2008 (53.58%) 2354 (58.47%) 2387 (62.88%)

Drinking Status,% <0.001

Yes 2223 (63.05%) 2442 (65.15%) 2657 (66.00%) 2631 (69.31%)

No 1303 (36.95%) 1306 (34.85%) 1369 (34.00%) 1165 (30.69%)

(Continued)
F
rontiers in Endocrinology
 07
 frontiersin.org

https://doi.org/10.3389/fendo.2024.1414075
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2024.1414075
by participating in the synthesis of purine metabolizing enzymes

and the release of inflammatory factors (26). Some clinical studies

support the beneficial role of vitamin B, C, D, and E

supplementation in reducing SUA levels amongst healthy adults

and, consequently, hyperuricemia (25, 27–29). A cross-sectional

study presented a negative correlation between dietary magnesium

intake and hyperuricemia in both males and females among US

adults after adjusting for major confounding factors (30). In

addition, a basic study also suggested that Cu or Cu-containing

compounds significantly inhibited xanthine dehydrogenase (XDH)

activity and reduced uric acid production by XDH in mouse liver

homogenates (31). A significant positive association between higher

serum iron and the risk of hyperuricemia was demonstrated in an

observational cohort study of different regions of the Chinese

population (32). However, some recent studies suggest that

antioxidants do not provide significant benefits to the body and

may even pose certain health risks. For instance, a prospective study

involving 345,000 people found no significant association between

antioxidant use and all-cause, cancer, or non-cancer mortality (33).

Additionally, other research indicates that antioxidant

supplementation may interfere with the body’s defense

mechanisms and possess pro-oxidant properties, potentially

increasing the risk of cancer and cardiovascular diseases (34).

Therefore, it is important to note that a single component of
Frontiers in Endocrinology 08
trace elements may not be adequate to fully elucidate its

antioxidant effects on the body.

The impact of lifestyle on hyperuricemia has been extensively

explored in numerous studies. A cross-sectional analysis involving

38,855 participants revealed that higher sitting time was

independently associated with an increased prevalence of

hyperuricemia, whereas engaging in vigorous physical activity was

associated with a decreased prevalence of hyperuricemia (35).

Additionally, a Mendelian randomization study conducted on

Korean hyperuricemic individuals indicated a significant causal

relationship between increased alcohol consumption and the

incidence of hyperuricemia (36). Furthermore, two nationwide

cross-sectional surveys of the non-institutionalized Korean

population suggested that cotinine-verified smoking was

significantly associated with serum uric acid levels in women, and

the risk of hyperuricemia increased in a dose-response manner with

higher smoking exposure (37, 38). Additionally, we observed a

positive association between obesity and hyperuricemia, which

appears to be mediated by insulin resistance (39). In this study,

the OBS serves as an indicator of the overall antioxidant/oxidant

balance, providing a more comprehensive reflection of the body’s

overall oxidative stress status (40).

Oxidative stress denotes a pathological imbalance between pro-

oxidative and anti-oxidative factors, favoring the generation of pro-
TABLE 3 Continued

Characteristic
Quartiles of OBS

P-value
Q1(N=3526) Q2(N=3748) Q3(N=4026) Q4(N=3796)

Hyperuricemia <0.001

Yes 872 (24.73%) 771 (20.57%) 746 (18.53%) 522 (13.75%)

No 2654 (75.27%) 2977 (79.43%) 3280 (81.47%) 3274 (86.25%)
FIGURE 3

Distribution of Average Age, Serum Uric Acid Levels, and Hyperuricemia Prevalence Across OBS Quartiles.
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oxidants, which often manifests as an overproduction of reactive

oxygen species (ROS) (14). Chronic inflammation leads to a pro-

oxidative state, which is closely linked to the development or

progression of cardiovascular disease (CVD) (41), hypertension (42)

and metabolic syndrome (43). In many disease states, the expression of

oxidase-producing enzymes, the primary sources of ROS, is

upregulated (44). In humans and great apes, uric acid represents the

end product of purinemetabolism, with xanthine oxidase (XOR) acting

as the rate-limiting enzyme in purine catabolism (45). XOR catalyzes

the final two steps of purine catabolism, converting hypoxanthine to

xanthine and then to uric acid, a process accompanied by ROS

production, thereby contributing to oxidative stress (46). This

oxidative stress can lead to damage to proteins, lipids, DNA, and

RNA, and participate in various cellular processes such as cell signaling,

cardiovascular disease, inflammation, aging, and cancer (47). The

intricate relationship between oxidative stress and serum uric acid

concentration has been the focus of research for decades (16).

Numerous observational cross-sectional studies have affirmed the

association of individual pro-oxidative and oxidative factors with uric
Frontiers in Endocrinology 09
acid and hyperuricemia. However, determining the precise impact of

individual oxidative stress-related components on serum uric acid

poses a considerable challenge (18). Moreover, pro-oxidants and

antioxidants may exhibit antagonistic or synergistic effects.

Furthermore, antioxidants can promote oxidation at high doses,

while exhibiting poor solubility, low permeability, and lacking

stability and specificity in biofilms (48). Hence, we employed the

OBS as a comprehensive evaluation index to assess individual

oxidative balance. Our findings revealed a negative correlation

between higher OBS and SUA levels, suggesting that elevated OBS is

associated with a reduced prevalence of hyperuricemia.

This phenomenon can be explained through the following

mechanisms: 1. Impact of Antioxidants on Uric Acid Production:

Antioxidants such as vitamin C (49), vitamin E (50), and zinc (51) have

been shown to reduce serum uric acid levels. Vitamin C, for example,

can alter the activity of URAT1 in renal tubular epithelial cells,

promoting uric acid excretion and thus lowering serum uric acid

levels (52, 53). Antioxidants reduce uric acid production by inhibiting

pathways that generate uric acid. 2. Relief of Oxidative Stress by

Antioxidants: Oxidative stress, characterized by an imbalance

between ROS production and antioxidant defense, is closely related

to hyperuricemia (46). Behaviors such as smoking and alcohol

TABLE 5 Multiple logistic regression associations of lnOBS with
hyperuricemia in adults.

lnOBS Model 1 OR
(95% CI)
P value

Model 2 OR
(95% CI)
P value

Model 3 OR
(95% CI)
P value

Continuous 0.55 (0.50,
0.60) <0.0001

0.59 (0.54,
0.65) <0.0001

0.68 (0.61,
0.75) <0.0001

Categories

Q1 1.0(ref) 1.0(ref) 1.0(ref)

Q2 0.79 (0.71,
0.88) <0.0001

0.82 (0.73,
0.91) 0.0004

0.84 (0.75,
0.95) 0.0039

Q3 0.69 (0.62,
0.77) <0.0001

0.75 (0.67,
0.83) <0.0001

0.78 (0.69,
0.88) <0.0001

Q4 0.49 (0.43,
0.55) <0.0001

0.54 (0.47,
0.61) <0.0001

0.62 (0.55,
0.71) <0.0001
OBS, oxidative balance score; Q, quartile; CI, Confidence Interval; ref, reference category.
FIGURE 4

Subgroup analysis for the association between OBS and SUA
in adults.
TABLE 4 Multiple logistic regression associations of lnOBS with SUA
in adults.

lnOBS Model 1 b
(95% CI)
P value

Model 2 b
(95% CI)
P value

Model 3 b
(95% CI)
P value

Continuous -25.33 (-28.59,
-22.06) <0.0001

-21.69 (-24.70,
-18.68) <0.0001

-14.47 (-17.41,
-11.53) <0.0001

Categories

Q1 0 0 0

Q2 -11.27 (-15.20,
-7.34) <0.0001

-9.80 (-13.37,
-6.23) <0.0001

-8.07 (-11.45,
-4.69) <0.0001

Q3 -18.26 (-22.12,
-14.39) <0.0001

-14.61 (-18.13,
-11.08) <0.0001

-11.69 (-15.05,
-8.34) <0.0001

Q4 -29.31 (-33.23,
-25.39) <0.0001

-24.86 (-28.46,
-21.26) <0.0001

-16.94 (-20.44,
-13.45) <0.0001
OBS, oxidative balance score; SUA, serum uric acid; Q, quartile; CI, Confidence Interval.
FIGURE 5

Subgroup analysis for the association between OBS and
hyperuricemia in adults.
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consumption increase oxidative stress, and antioxidants can neutralize

these oxidants, reducing oxidative damage to cells. Since uric acid has

antioxidant properties, reduced oxidative stress would decrease the

body’s need for uric acid as an antioxidant, thus lowering serum uric

acid levels (36, 38). 3. Protection of Renal Function: Antioxidants

protect renal function by preventing oxidative damage to glomeruli and

renal tubules. The kidneys play a crucial role in uric acid excretion, and

renal damage can directly affect uric acid clearance. By preserving renal

function, antioxidants facilitate normal uric acid excretion, thereby

reducing serum uric acid levels (54, 55). 4. Improvement of

Metabolism: The OBS includes antioxidants that play a significant

role in improving insulin resistance and metabolic syndrome. Insulin

resistance is closely linked to hyperuricemia because it increases uric

acid production and decreases its excretion. By improving insulin

sensitivity, antioxidants help maintain normal uric acid metabolism

and reduce the risk of hyperuricemia (56, 57). 5. Antioxidants and Gut

Health Synergistic Uric Acid Reduction: The intake of antioxidants and

gut health have a closely linked bidirectional relationship, which plays a

crucial role in reducing uric acid levels and preventing hyperuricemia.

Antioxidants reduce oxidative stress and inflammation-induced

damage to intestinal epithelial cells, thereby decreasing intestinal

permeability, promoting cell repair, and enhancing gut barrier

function. Additionally, antioxidants inhibit the production and

release of inflammatory mediators, protecting the gut microbiota and

maintaining the balance and integrity of the gut flora (58–60). A

healthy gut environment aids in the absorption and utilization of

antioxidants, further enhancing their bioactivity. Certain gut microbes

can metabolize antioxidants, converting them into more effective

forms, thus boosting their antioxidant effects (61–63). This positive

feedback loop not only helps lower uric acid levels in the body but also

promotes uric acid excretion by regulating uric acid transporters in the

gut, effectively preventing and controlling hyperuricemia.

Subgroup analysis and interaction tests were employed to

observe gender differences in the effect of OBS on SUA, revealing

that the increase of lnOBS by one unit led to a greater reduction in

SUA levels in men compared to women. We analyzed and

speculated that several factors may contribute to this

phenomenon. Firstly, relevant literature indicates that men have

higher levels of physical activity compared to women. This higher

level of physical activity helps men manage their weight more

effectively, resulting in lower obesity rates among men compared to

women. Additionally, in the OBS index, physical activity acts as an

antioxidant, while obesity is a pro-oxidant. This may explain why

uric acid levels decrease more rapidly in men than in women (64,

65). Moreover, sex-specific differences in physiological responses of

the respiratory, musculoskeletal, and cardiovascular systems to

physical activity result in a higher prevalence of metabolic

syndrome in women (66). Metabolic syndrome, characterized by

insulin resistance, enhances uric acid reabsorption and reduces uric

acid excretion through upregulation of urate transporter 1

(URAT1) expression (67). Secondly, sex hormones also influence

blood uric acid levels (68). Studies have shown that testosterone can

directly regulate uric acid excretion by affecting the function of the

URAT (69). Additionally, the binding degree of testosterone to

hormone-binding globulin can also impact blood uric acid levels

(70). Estradiol can promote intestinal urate excretion by regulating
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the intestinal ATP binding cassette subfamily G member 2

(ABCG2), thereby affecting uric acid levels (71). However, no

significant difference was observed in the reduction of

hyperuricemia prevalence among subgroups with different gender,

ages, weight, diabetes statuses, hypertension status, and

hyperlipidemia status. This is because the occurrence of

hyperuricemia is the result of multiple factors and may not be

solely influenced by oxidative balance. Genetic background (72),

physiological factors (73), metabolic factors (74), medication effects

(75), and environmental factors (76) may all play significant roles in

the development of hyperuricemia. Therefore, although OBS can

affect uric acid levels, relying solely on OBS regulation may not be

sufficient to significantly reduce the incidence of hyperuricemia.

This suggests that a comprehensive approach considering multiple

factors is necessary for effective intervention and prevention.

This study possesses several strengths. Firstly, it is the first to

establish associations between OBS and SUA levels as well as

hyperuricemia within a US population. Secondly, the utilization of

data from the NHANES, a nationwide population-based sample

acquired through standardized protocols, enhances the robustness of

our findings. The stratified, multistage sampling method employed in

the NHANES ensures the representation of the noninstitutionalized

population, thus increasing the external validity of our results. Thirdly,

sophisticated statistical methods were employed to ensure

comprehensive and reliable outcomes. Complex models were

developed, accounting for multiple confounders, and OBS were

adjusted to accommodate continuous and categorical variables,

mitigating potential effects on the observed associations. Additionally,

subgroup analyses were conducted to explore the potential influence of

other factors on the association between OBS and SUA levels as well as

hyperuricemia. However, our study also has limitations. Firstly, due to

its cross-sectional design, we cannot infer a causal relationship between

OBS and SUA levels as well as hyperuricemia. Prospective studies are

needed to further validate the predictive value of OBS in

hyperuricemia. What’s more, the self-reported dietary and lifestyle

data in the NHANES database have limitations, including recall bias

and social desirability bias. These biases may affect the accuracy of the

data and the reliability of the study results, so they should be considered

when interpreting the findings. Lastly, while our study revealed a

significant difference in uric acid reduction between genders, no

significant difference was observed in the reduction of hyperuricemia

prevalence. However, previous relevant trials have suggested a sex

difference. Therefore, further studies are warranted to elucidate

this correlation.
Conclusion

In conclusion, findings from a nationally representative sample

of US adults indicated a negative correlation between OBS and SUA

levels as well as hyperuricemia. Both an antioxidant-rich diet and

improvements in lifestyle were found to be crucial in reducing SUA

levels and decreasing the prevalence of hyperuricemia.

Furthermore, we observed that the negative correlation between

OBS and SUA levels was more pronounced among male

participants compared to female participants. Future research
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should explore the mechanisms behind gender differences in the

relationship between OBS and uric acid levels, particularly in the

metabolism of antioxidants and pro-oxidants. Investigating how

gender differences influence the occurrence and development of

hyperuricemia is also essential. More randomized controlled trials

are needed to assess whether improving OBS through dietary

changes, such as increasing antioxidant intake or reducing pro-

oxidant exposure, can effectively lower uric acid levels and reduce

hyperuricemia incidence. Additionally, long-term cohort studies are

necessary to determine the lasting impact of OBS on uric acid levels

and the development of hyperuricemia over time, as well as to

evaluate potential cumulative effects.
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