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High coverage of targeted
lipidomics revealed lipid changes
in the follicular fluid of patients
with insulin-resistant polycystic
ovary syndrome and a positive
correlation between
plasmalogens and oocyte quality
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Ye Liu1, Yixin Zhang1, Bowen Li2, Simeng Qi2, Xiaomin Cao1,
Li Liu1, Shouzeng Liu1 and Fengqin Xu1*

1Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China, 2LipidAll Technologies
Company Limited, Changzhou, Jiangsu, China
Background: Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the

most common endocrine and metabolic disease in women of reproductive age,

and low fertility in PCOS patients may be associated with oocyte quality;

however, the molecular mechanism through which PCOS-IR affects oocyte

quality remains unknown.

Methods: A total of 22 women with PCOS-IR and 23 women without polycystic

ovary syndrome (control) who underwent in vitro fertilization and embryo

transfer were recruited, and clinical information pertaining to oocyte quality

was analyzed. Lipid components of follicular fluid (FF) were detected using high-

coverage targeted lipidomics, which identified 344 lipid species belonging to 19

lipid classes. The exact lipid species associated with oocyte quality

were identified.

Results: The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of

2PN cleaved embryos, and the number of high-quality embryos were

significantly lower in the PCOS-IR group. A total of 19 individual lipid classes

and 344 lipid species were identified and quantified. The concentrations of the 19

lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L

and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the

PCOS-IR group, among which plasmalogens were positively correlated with

oocyte quality.
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Conclusions: This study measured the levels of various lipids in follicular fluid,

identified a significantly altered lipid profile in the FF of PCOS-IR patients, and

established a correlation between poor oocyte quality and plasmalogens in

PCOS-IR patients. These findings have contributed to the development of

plasmalogen replacement therapy to enhance oocyte quality and have

improved culture medium formulations for oocyte in vitro maturation (IVM).
KEYWORDS

polycystic ovary syndrome, follicular fluid, lipidomics, oocyte quality, plasmalogens
Introduction

Polycystic ovary syndrome (PCOS) is the most common

endocrine and metabolic disorder in women of reproductive age,

with an incidence of 6% to 25% in women of reproductive age (1).

PCOS manifests as various metabolic conditions, including obesity,

hyperinsulinemia, insulin resistance (IR), and low-grade chronic

inflammation. These metabolic disorders not only increase the

severity of PCOS but also affect reproductive function. IR

accounts for 50% to 70% of PCOS cases caused by metabolic

disease (2). PCOS patients account for 30% to 40% of infertile

patients. The ESHRE/ASRM guidelines recommend in vitro

fertilization (IVF) treatment for infertile PCOS patients with

sparse ovulation and abnormal ovarian function (3). However, a

considerable number of PCOS patients still struggle to conceive

even after ovulation induction and IVF treatment. Moreover, PCOS

patients typically require a significantly highernumber of IVF

treatment cycles compared to non-PCOS patients (4). Studies

have suggested that poor fertility in PCOS patients may be related

to endometrial receptivity (5) and oocyte quality (6, 7).

Oocyte quality can be assessed by various clinical parameters,

including the morphology of oocyte corona cumulus complexes,

oocyte maturity, and embryonic developmental potential. In

patients with PCOS, adverse fertility outcomes, such as impaired

oocyte maturation, decreased fertilization, blastulation, and

implantation, as well as increased miscarriage rates, have been

observed during different stages of reproduction (7). However, to

our knowledge, only a few studies have evaluated the IVF outcomes

related to oocyte quality in women with PCOS-IR, and the

conclusions and limitations of these studies vary. With the

exception of one study where no significant difference was found

(8), other studies have suggested that PCOS-IR significantly reduces

the number of oocytes retrieved, the number of mature oocytes, the

number (rate) of normally fertilized oocytes, and the number (rate)

of top-quality embryos (9–12). Moreover, these oocyte quality

parameters decrease with increasing Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR) in patients with

PCOS, suggesting that IR exacerbates adverse clinical outcomes in

patients with PCOS (11).
02
However, the molecular mechanism of poor oocyte quality

induced by PCOS-IR remains unclear. IR has been proven to be

related to abnormal glucose, amino acid, and lipid metabolism (13).

These abnormal metabolites are not only present in plasma but also

accumulate abnormally in follicular fluid (FF), which is a complex

microenvironment for oocyte growth and development (14).

Lipidomics, an important branch of metabolomics, has become a

promising technique for examining lipid profiles in body fluids,

blood, and tissues. Currently, only a few studies on untargeted

lipidomics in women with PCOS have been published (12, 15).

However, targeted quantitative lipidomic analysis of FF from

PCOS-IR patients has not been well performed. In this study, we

used high-coverage targeted lipidomics to analyze lipid

concentrations in follicular fluid from non-PCOS women and

elucidated the different lipid profiles associated with PCOS-IR.

Moreover, this study revealed that the level of plasmalogens was

positively correlated with the normal fertilization rate, 2PN cleavage

rate, and number of top-quality embryos. These findings could lead

to further investigations of the molecular mechanisms of action of

plasmalogens in PCOS-IR patients, which could help improve the

clinical outcomes of individuals with PCOS-IR.
Materials and methods

Ethical approval

This study was approved by the Ethics Boards of Tianjin First

Central Hospital (Research License 2019N047KY), and written

informed consent was obtained from all participants at

enrollment. This study was conducted in accordance with the

Declaration of Helsinki (16).
Subjects and sample collection

The present study was performed at the reproductive medicine

center of Tianjin First Central Hospital from November 2019 to

May 2021. A total of 45 Chinese Han women of similar age were
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divided into two groups: 22 PCOS-IR patients and 23 non-PCOS

control women. PCOS was diagnosed according to the 2003

Rotterdam criteria, i.e., the presence of two or more cycles of

oligo- and/or anovulatory hyperandrogenism, clinical and/or

biochemical signs, and polycystic ovaries after the exclusion of

other etiologies such as congenital adrenal hyperplasia, androgen-

secreting carcinomas, and Cushing’s syndrome. The assessment of

insulin resistance was based on the HOMA-IR, which was

calculated as fasting insulin (mIU/L) × fasting glucose (mmol/L)/

22.5. The control subjects were infertile primarily due to tubal

occlusion and endometrial translocations, and these subjects had

regular menstrual cycles, normal ovarian morphology, no clinical or

biochemical hyperandrogenism, and no insulin resistance or

obesity. All subjects can undergo routine IVF.

Grossly clear FF was collected from a single large follicle on the first

puncture of each ovary from oocyte retrieval. The FF samples were

centrifuged for 10min at 3,000×g and then stored at -80°C until further

use. Fasting blood samples from all the participants were collected on

days 2–5 of their natural menstrual cycle or if amenorrhea had

occurred for more than 40 days with follicle diameters not exceeding

10mm for the analysis of levels of sex hormones and some biochemical

parameters. Follicle-stimulating hormone (FSH), luteinizing hormone

(LH), prolactin (PRL), and testosterone (T) were assessed using

enzyme-linked fluorescent assays (VIDAS, Biomérieux, France). The

concentration of anti-Müllerian hormone (AMH) was measured using

a chemiluminescence immunoassay analyzer (iFlash 3000-H, YHLO,

Shenzhen, China). Fasting serum insulin levels were assessed using

electrochemiluminescence (cobas e601, Roche Diagnostics,

Indianapolis, IN, USA). Fasting glucose levels, total cholesterol (TC),

triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-

density lipoprotein cholesterol (LDL-C), and very low-density

lipoprotein (VLDL) were assessed using the enzymatic method with

an automated biochemistry analyzer (cobas c701, Roche Diagnostics,

Indianapolis, IN, USA) in accordance with stringent quality standards.
Lipid extraction

Lipids were extracted from FF using a modified version of Bligh

and Dyer’s method, as described previously (16). Briefly, 750 µL of

chloroform:methanol (1:2, v/v) was added with 10% deionized

water. Then, samples were incubated at 1500 rpm for 1 h at 4 °C.

At the end of the incubation, 350 µL of deionized water and 250 µL

of chloroform were added to induce phase separation. The samples

were then centrifuged, and the lower organic phase containing

lipids was extracted into a clean tube. Lipid extraction was repeated

once by adding 500 µL of chloroform to the remaining tissues in the

aqueous phase, and the lipid extracts were pooled into a single tube

and dried in a SpeedVac in OH mode. The samples were stored at

-80 °C until further analysis.
Lipidomics analyses

Polar lipids were analyzed using an Exion Ultra Performance

Liquid Chromatography (UPLC) system coupled with a triple
Frontiers in Endocrinology 03
quadrupole/ion trap mass spectrometer (6500 Plus Qtrap; SCIEX)

as described previously (17–20). Separation of individual lipid classes

of polar lipids by normal phase High Performance Liquid

Chromatography (HPLC) was carried out using a Phenomenex

Luna 3 µm-silica column (internal diameter 150 × 2.0 mm) with

the following conditions: mobile phase A (chloroform: methanol:

ammonium hydroxide, 89.5:10:0.5) and mobile phase B (chloroform:

methanol: ammonium hydroxide: water, 55:39:0.5:5.5). Multiple

reaction monitoring (MRM) transitions were set up for

comparative analysis of various polar lipids. Individual lipid species

were quantified by referencing spiked internal standards. Dimyristoyl

phosphatidylglycerol (DMPG), C14- lysobisphosphatidic acid

(LBPA), dimyristoyl phosphatidylcholine (DMPC), dimyristoyl

phosphatidylethanolamine (DMPE), C12-sphingomyelins (SM),

dic8-phosphatidylinositols (PI), monosialodihexosyl gangliosides

(GM3)-d18:1/18:0-d3, C17-phosphatidic acids (PA), C17:0-

ysophosphatidylcholine (LPC), C17:0-lysophosphatidic acid (LPA),

and C17:1-lysophosphatidylinositols (LPI) were obtained from

Avanti Polar Lipids. Glycerol lipids, including diacylglycerols

(DAGs) and triacylglycerols (TAGs), were quantified using a

modified version of reversed-phase HPLC/MRM. The separation of

neutral lipids was achieved on a Phenomenex Kinetex-C18 2.6 µm

column (i.d. 4.6x100 mm) using an isocratic mobile phase conprising

chloroform: methanol: 0.1 M ammonium acetate 100:100:4 (v/v/v) at

a flow rate of 170 µL for 17 min. The levels of short-, medium-, and

long-chain TAGs were calculated by referencing spiked internal

standards of TAG (14:0)3-d5, TAG (16:0)3-d5, and TAG (18:0)3-

d5 obtained from CDN isotopes, respectively. DAGs were quantified

using d5-DAG17:0/17:0 and d5-DAG18:1/18:1 as internal standards

(Avanti Polar Lipids). Free cholesterols and cholesteryl esters were as

described previously, with d6-cholesterol and d6-C18:0 cholesteryl

ester (CE) (CDN isotopes) serving as internal standards. Free fatty

acids were quantitated using d31-16:0 (Sigma-Aldrich) and d8-20:4

(Cayman Chemicals) as internal standards.
Statistical analyses

The significant differences between the PCOS-IR and non-

PCOS FF samples were determined using the Student’s t-test, the

chi-square test, or the Mann-Whitney test. Correlations were

assessed by Pearson’s correlation coefficient. The results were

statistically significant at p < 0.05.
Results

Baseline characteristics of patients and
ART outcomes

We collected FF samples from 22 PCOS-IR patients and 23

non-PCOS controls. The baseline characteristics of the PCOS-IR

and control groups are summarized in Table 1. These two groups

were similar in age. However, the women in the PCOS-IR group

had significantly higher BMIs, fasting glucose levels, insulin levels,

and HOMA-IR scores than those in the control group. Compared
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with the control group, the PCOS-IR group exhibited a broad

spectrum of metabolic and endocrine changes, such as

significantly elevated TG levels, AMH, and testosterone, an

increased LH to FSH ratio and notably decreased FSH, and PRL

levels. These changes were consistent with the clinical phenotypes

of PCOS-IR. In addition, we analyzed the assisted reproductive
Frontiers in Endocrinology 04
technology (ART) outcomes from IVF cycles in the PCOS-IR and

control groups (Table 1). There were no significant differences in

the total dose of gonadotrophins, peak estradiol levels, number of

oocytes retrieved, number of fertilized oocytes, number of

transferable embryos, and clinical pregnancy rate between the

PCOS-IR and control groups. The number (rate) of 2PN zygotes,
TABLE 1 The clinical parameters in control and PCOS patients.

Parameters Control PCOS p value test

n 23 22

Baseline Characteristics

Age (years) 33 (26-39) 30 (22-39) ns a

BMI (kg/m2) 21.53 (2.37) 23.20 (2.24) 0.019 b

FSH (mIU/mL) 6.20 (1.74) 5.05 (1.69) 0.03 b

LH (mIU/mL) 4.02 (1.67) 5.25 (3.55) ns b

LH/FSH 0.65 (0.21) 1.17 (0.91) 0.01 b

Testosterone (ng/mL) 0.32 (0.14) 0.44 (0.19) 0.022 b

Prolactin (ng/mL) 21.17 (9.86) 16.09 (6.49) 0.048 b

AMH (ng/mL) 3.85 (1.67) 9.17 (5.38) <0.001 b

Fasting Glucose (mM) 4.84 (0.36) 5.31 (0.30) <0.001 b

Fasting Insulin (mIU/mL) 5.47 (1.45) 17.02 (9.26) <0.001 b

HOMA-IR 1.17 (0.31) 4.02 (2.22) <0.001 b

TC (mM) 4.45 (0.63) 4.39 (1.08) ns b

TG (mM) 0.90 (0.31) 1.58 (1.18) 0.011 b

HDL-C (mM) 1.46 (0.25) 1.34 (0.32) ns b

LDL-C (mM) 2.79 (0.59) 2.89 (0.74) ns b

VLDL (mM) 0.15 (0.09) 0.18 (0.22) ns b

ART outcomes

Total dose of gonadotrophins (IU) 2674.24 (858.40) 2540.45 (1539.32) ns b

Peak Estradiol (pg/mL) 4815.52 (1935.51) 4799.27 (2071.00) ns b

Oocytes retrieved (n) 15.00 (4.34) 13.45 (3.70) ns b

Fertilized oocytes (n) 13.04 (4.42) 11.18 (3.61) ns b

Fertilized oocytes (%) 86.90 (12.96) 82.72 (10.68) ns b

2PN (n) 12.26 (4.00) 9.23 (3.05) 0.007 b

2PN (%) 82.17 (13.12) 68.87 (15.46) 0.003 b

2PN cleavage embryos (n) 12.09 (4.06) 9.18 (3.06) 0.01 b

2PN cleavage embryos (%) 93.07 (6.80) 82.54 (13.37) 0.002 b

transferable embryos (n) 6.22 (2.56) 5.32 (2.19) ns b

transferable embryos (%) 53.48 (20.34) 62.15 (27.22) ns b

Top-quality embryos (n) 5.09 (3.06) 3.36 (2.08) 0.033 b

Top-quality embryos (%) 43.19 (21.97) 40.19 (26.23) ns b

Clinical pregnancy (%) 22 (12) 21 (8) ns c
p-values > 0.05 were considered non-significant (ns). a, two-sample Mann-Whitney test. Values are median (minimum–maximum). b, two-sample t-test. Values are the mean (SD). c, Chi-square
test. Values are counts.
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the number (rate) of 2PN cleavage, and the number of top-quality

embryos were significantly lower in women with PCOS-IR.
Concentrations of individual lipid classes in
non-PCOS follicle (control) fluid

Using targeted lipidomics technology, we identified and

quantified a total of 344 lipid species of 19 lipid classes

(Figure 1A), which included cholesterol (Cho, 1), CE (16), free

fatty acids (FFA, 13), TAG(91), DAG (11), phosphatidylcholines

(PC, 54), PC plasmalogens (20), phosphatidylethanolamines (PE,

20), PE plasmalogens (20), PI (23), phosphatidylglycerols (PG, 5),

PA (1), LPC (10), lysophosphatidylethanolamine (LPE, 5), LPA (9),

LPI (3), bis(monoacylglycerol)phosphate (BMP, 5), SM (26), and

GM3 (6) (Figure 1A). To analyze the profile of 19 lipid classes in

follicle fluid, follicle fluid samples from 23 non-PCOS patients were

quantitatively measured. The results showed that the level of CE

was the highest (8.93E-4 ± 2.97E-4 mol/L), followed by that of FFA,

PC, SM, LPC, TAG, Cho, and plasmalogen PE, and that of PG was

the lowest (1.10E-8 ± 4.12E-9 mol/L) (Figure 1B).
Identification of significantly altered lipid
molecular species in PCOS-IR follicle fluid

Out of the 344 lipids analyzed, 39 showed significant differences

between the study and control groups. These lipids included PE

plasmalogens, PC plasmalogens, SM, PC, PI, GM3, and DAG, with

PE plasmalogens being the most abundant (Figure 2A). The

distribution of p-values for differential lipids is shown in Figure 2B.

Furthermore, significantly different lipid concentrations in 22 PCOS-

IR patients and 23 control patients were normalized to Z values and

visualized in a heatmap (Figure 2C). Plasmalogens are distributed in

various membrane systems and play important roles in many

biological functions. The level of PE plasmalogens predominated
Frontiers in Endocrinology 05
over the level of plasmalogen PC in most tissues (21). In this study,

the concentrations of 19 PE plasmalogens in PCOS-IR follicular fluid

were lower than those in the control group(p < 0.05) (Figures 3A, B),

and the concentrations of five PC plasmalogens molecules were

significantly lower in PCOS-IR follicular fluid than in the control

group(p < 0.05) (Figure 3C). SM, the primary sphingomyelin in

mammalian cell membranes, interacts with cholesterol, and

this interaction has numerous significant functional consequences

(22). In this study, twenty-six SM species were detected, and the

concentrations of five SM molecules in PCOS-IR follicular fluid were

lower than those in the control group (p < 0.05) (Figures 3D, E). PC is

the primary phospholipid on the surface monolayer of all

lipoproteins, and the concentrations of five PC molecules in PCOS-

IR follicular fluids were significantly lower than those in the control

group (p < 0.05) (Figure 3C). In addition, the concentrations of three

PIs, one GM3, and one DAG in the PCOS-IR group were significantly

lower than those in the control group (p < 0.05) (Figure 3D).
The level of plasmalogens in follicular fluid
was positively correlated with
oocyte quality

The above study demonstrated that the number (rate) of

2PN zygotes, the number (rate) of 2PN cleavage embryos, and

the number of top-quality embryos, which are related to oocyte

quality, were significantly lower in the PCOS-IR group compared to

the control group (Table 1). To further assess whether the changes

in individual lipid classes affect the levels of these indicators related

to oocyte quality, we analyzed the relationships between lipid levels

and these indicators in 45 patients. Among the 19 significantly

altered PE plasmalogens, 13 were positively correlated with the

number of top-quality embryos. These include PE40:6p

(18:0p_22:6), PE40:5p (18:0p_22:5), PE38:5p(18:1p_20:4),

PE36:2p(18:0p_18:2), PE36:2p(18:1p_18:1), PE36:1p(18:0p_18:1),

PE40:6p, PE40:5p, PE40:4p, PE38:5p, PE36:3p, PE36:2p, and
A B

FIGURE 1

Levels of 19 lipid classes in normal non-PCOS follicular fluid. (A) Counts of 344 lipid species in 19 lipid classes for targeted lipidomic analysis.
(B) Concentration profiles of 19 lipid classes in normal non-PCOS follicular fluid.
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PE34: 2p. Additionally, the 2PN cleavage rate showed a positive

correlation with two PE plasmalogens, PE40:6p (18:0p_22:6)

and PE40:5p., Furthermore, the PE plasmalogen that was

positively correlated with the 2PN rate was PE40:5p. In addition,

the only PC plasmalogen that was positively correlated with

the 2PN number and 2PN cleavage number was PC38:4p

(18:0p_20:4) (Table 2).
Frontiers in Endocrinology 06
Discussion

In this case-control study of 22 women with PCOS-IR and 23

women without PCOS, the number (rate) of 2PN zygotes, the

number (rate) of 2PN cleaved embryos, and the number of high-

quality embryos, which are associated with oocyte quality, were

significantly lower in the PCOS-IR group. High-coverage targeted
B

C D E

A

FIGURE 3

Quantitative analysis of significantly different lipid species between PCOS-IR and non-PCOS follicular fluid samples. (A, B) 19 significantly altered PE
plasmalogens. (C) Significantly altered PC and PC plasmalogens. (D) Patients with significantly altered PE, PI, and GM3. (E) Patients with significantly
altered SM. *P < 0.05, **P < 0.01. Error bars show the standard deviation.
B

CA

FIGURE 2

Identification and bioinformatics analysis of significantly differential lipid species. (A) Thirty-nine lipid species with significant differences were
distributed in 7 lipid classes, such as PE/PC plasmalogen, SM, and PC. (B) Volcano plot showing statistical significance (p values) and fold changes for
344 lipids. (C) Heatmap of 39 significantly differentially abundant lipids.
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lipidomic analysis of the follicular fluid revealed that 19 lipid classes

in the non-PCOS group had concentrations ranging from 10-3 to

10-9 mol/L., The most abundant lipid class was CE, while the lease

abundant class was PG. Fifty-nine lipids were significantly reduced

in the PCOS-IR group, with PE being the most abundant lipid

species, followed by the other PC plasmalogens, SM, PC, PI, GM3,

and DAG. The correlations between these lipids and oocyte quality-

related indicators showed that the presence of plasmalogens

positively correlated with oocyte quality or competence.

Lipidomic analysis technology is generally based on liquid

chromatography-mass spectrometry (LC-MS) platforms and can

be divided into nontargeted and targeted analyses. Non-targeted
Frontiers in Endocrinology 07
lipidomics can be used to systematically analyze various types of

lipids in a sample without bias, while targeted lipidomics is

primarily employed for selective and specific quantitative analysis

of specific lipids (15). Advances in targeted lipidomics have made it

possible to quantitatively analyze the entire lipid pool of biological

samples. This study is the first to use a high-coverage targeted

lipidomics technique to quantify lipids in five categories and

19 classes of follicular fluid from non-PCOS women. The fatty

acyls(FFA), glycerolipids (DAG, TAG), glycerophospholipids

(PC, PC plasmalogen, PE plasmalogen, LPC, PE, LPE, PG, BMP,

PI, LPI, PA, LPA), sphingolipids (SM, GM3), and sterol lipids

(Cho, CE) were detected. Among the 344 lipids, CE18:2 had the

highest level(4.6E-3 ± 1.2E-3 mol/L), and PG38:6 (18:2:4) had the

lowest level (1.26E-9 ± 5.25E-10 mol/L) (unpublished). The non-

PCOS group excluded women who had irregular menstruation,

abnormal ovarian morphology, hyperandrogenism, insulin

resistance or hyperinsulinemia, and obesity. Therefore, the lipid

levels in non-PCOS follicular fluid may represent those in normal

follicular fluid. These determined lipid concentrations can serve as a

reference to enhance the culture system for oocyte IVMand

embryonic development.

Plasmalogens are a lipid subclass characterized by a vinyl ether-

bonded aliphatic group attached to the sn-1 position of glycerol, a

fatty acid esterified at the sn-2 position, and typically a

phosphatidylethanolamine or phosphatidylcholine attached to the

sn-3 position. The sn-2 fatty acids of plasmalogens are usually

enriched with polyunsaturated fatty acids such as arachidonic acid

(20:4) or docosahexaenoic acid (22:6). The steady-state level of

plasmalogens is determined by the balance between the biosynthesis

rate and degradation rate. The biosynthesis of plasmalogens begins

in the peroxisome and ends in the endoplasmic reticulum (ER) (23).

In the peroxisome, plasmalogen biosynthesis begins with

dihydroxyacetone phosphate (DHAP), which undergoes three

sequential reactions to generate 1-alkyl-2-lyso-sn-glycerol-3-

phosphate (AGP). AGP is transported to the ER, where final

biochemical reactions occur. Fatty acyl-CoA reductase 1 (Far1),

an enzyme that binds to peroxisomes, is the rate-limiting enzyme in

the biosynthesis of plasmalogens (24). Plasmalogen degradation can

occur through either non-enzymatic or enzymatic biochemical

reactions. The mechanism of nonenzymatic plasmalogen

degradation is chemical in nature and depends on the oxidation

or hydrolysis of the vinyl-ether bond, i.e., removal of the alkyl chain

at the sn-1 position of the glycerol molecule by free radical or acid

attack (25). The enzymatic mechanism mainly depends mainly on

the action of phospholipases, each of which may have different

substrate specificities. Plasmalogens may be involved in the

pathophysiological processes of hypoxia, inflammation, oxidative

stress, and ferroptosis in patients with PCOS.

In addition to atmospheric oxygen tension, developing and

postovulatory ruptured follicles are in a hypoxic state that is

thought to be maintained by the hypoxia-inducible factor-1alpha

(HIF-1a) signaling pathway expressed by granulosa cells (26).

However, women with PCOS have reduced levels of HIF-1a and

its target gene, indicating that the hypoxic state of granulosa cells is

disrupted in PCOS patients (27). It has been shown that

plasmalogen biosynthesis is increased in hypoxia. The genes
TABLE 2 Correlation of 39 lipid species in follicle liquid samples with
significantly lower oocyte quality parameters (n = 45).

Lipid
species

Pearson
correlation
coefficient

P value

2PN

PC38:4p
(18:0p_20:4)

0.299 0.046

DAG38:4
(18:1/20:3)

0.38 0.01

2PN Rate PE40:5p 0.302 0.044

2PN
Cleavage
Embryos

DAG38:4
(18:1/20:3)

0.385 0.009

PC38:4p
(18:0p_20:4)

0.294 0.05

2PN
Cleavage Rate

PE40:6p
(18:0p_22:6)

0.329 0.028

PE40:5p 0.303 0.043

Top-
quality
Embryos

total
plasmalogen PE

0.308 0.04

PE40:6p
(18:0p_22:6)

0.35 0.018

PE40:5p
(18:0p_22:5)

0.327 0.028

PE38:5p
(18:1p_20:4)

0.34 0.022

PE36:2p
(18:0p_18:2)

0.384 0.009

PE36:2p
(18:1p_18:1)

0.348 0.019

PE36:1p
(18:0p_18:1)

0.337 0.023

PE40:6p 0.351 0.018

PE40:5p 0.332 0.026

PE40:4p 0.341 0.022

PE38:5p 0.308 0.039

PE36:3p 0.31 0.038

PE36:2p 0.309 0.039

PE34:2p 0.305 0.042
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involved in plasmalogen synthesis, such as glyceronephosphate O-

acyltransferase (GNPAT), alkylglycerone phosphate synthase

(AGPS), FAR1/2, and transmembrane protein 189 (TMEM189),

are also essential for growth under hypoxic conditions (28).

Therefore, we speculate that the disturbed hypoxic status of

granulosa cells in PCOS patients may disrupt plasmalogen

biosynthesis and reduce the level of plasmalogens, which is

consistent with our findings.

GCs from patients with PCOS show clear signs of inflammation

and oxidative stress, resulting in a significant decrease in

proliferation and an increase in apoptosis (29, 30). In this study,

we found that the plasminogen levels in the follicular fluid of

patients with PCOS were significantly lower than those in the

follicular fluid of control group. Plasminogens and their

metabolites are known to possess antioxidant potential and

immunomodulatory effects. This is due to the increased electron

density of the vinyl ether bond at the sn-1 position, which enhances

susceptibility to cleavage bt reactive oxygen species (ROS) (31).

Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic

acid and arachidonic acid, located at the sn-2 position, can be

released by phospholipase A2 (PLA2)., Arachidonic acid can then

be further metabolized by cyclooxygenases, lipoxygenases, and

cytochrome P450 enzymes to produce a variety of bioactive

mediators., These include prostaglandins, leukotrienes,

e icosatr ienoic acids , dihydroxyeicosatetraenoic acids ,

eicosatetraenoic acids, and lipotoxins, which play a crucial role in

immunomodulatory functions (32). Docosahexaenoic acid is a

precursor of the anti-inflammatory lipid mediators resolvins and

protectins (33–35). However, it remains to be further determined

whether these metabolic pathways involving plasmalogens are

involved in the pathophysiological processes of PCOS. It has been

shown that AA (C20:4n6) levels are higher in PCOS patients

compared to healthy controls, and AA may induce oxidative

stress (OS) and upregulate the expression of growth

differentiation factor 15 in human ovarian granulosa tumor cell

lines (KGN) (36).

Ferroptosis is a form of regulated cell death characterized by

iron-dependent phospholipid (PL) peroxidation. The substrates of

PL peroxidation in ferroptosis are PLs containing PUFA chains at

the sn2 position, which are presumably largely plasmalogens (37).

Ferroptosis contributes to cellular and tissue damage in various

human diseases, such as cancer, cardiovascular diseases,

neurodegeneration, liver disease, and ovarian diseases. The

pathogenesis of PCOS may be related to the ferroptosis of

granulosa cells. Previous studies have shown that ferroptosis in

patients with PCOS is regulated by iron homeostasis, redox balance,

lipid metabolism, and glutathione metabolism (38–47). However,

studies on the PL substrate have not yet been reported. This study

revealed that follicular plasmalogen levels were reduced in PCOS

patients, suggesting that plasmalogens might also be involved in the

ferroptosis of granulosa cells as a substrate for PL peroxidation.

Plasmalogens are essential for neuronal cell survival and neuron

excitability regulation through the ERK and AKT signaling

pathways in Alzheimer’s and Parkinson’s diseases (48, 49).

Eicosapentaenoic acid-enriched ethanolamine plasmalogen

improved learning and memory deficits by inhibiting neuronal
Frontiers in Endocrinology 08
apoptosis and enhancing the brain-derived neurotrophic factor

(BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response

element-binding protein (CREB) signaling pathway in cultured

cells and mice (50, 51). Plasmalogens also accelerate hair growth

and enhance the phosphorylation of AMP-activated protein kinase

(AMPK) by stimulating the activity of transient receptor potential

cation channel subfamily C member 4 in fibroblasts and hair

follicles (52). These findings suggest a potential role of

plasmalogens in regulating signaling pathways. However, it is

necessary to further investigate whether these signaling pathways

involving plasmalogens are implicated in the pathological process of

PCOS-IR.

This study found that the level of plasmalogens in the follicular

fluid of PCOS-IR patients was significantly lower than that of the

control group. It was hypothesized that plasmalogens may be

involved in the pathophysiological processes of hypoxia,

inflammation, oxidative stress, and ferroptosis in the granulosa

cells (GC) of PCOS patients. The disturbed hypoxia in the GC of

patients with PCOS may disrupt plasmalogen biosynthesis and

reduce the levels of plasmalogens. The granulosa cells of patients

with PCOS exhibit noticeable inflammation and oxidative stress,

potentially involving catabolic metabolites of plasmalogens such as

docosahexaenoic acid and arachidonic acid. Plasmalogens are major

substrates for ferroptosis, but the role of plasmalogens in the

ferroptosis of granulosa cells in PCOS patients has not been

reported. All of the aforementioned pathophysiological processes

can result in abnormal granulosa cell function and impact oocyte

quality in patients with PCOS. However, the molecular mechanisms

associated with plasmalogens need to be further investigated.

It should be noted that this study had some limitations. Firstly,

the follicular fluid (FF) analyzed in this study is not fully

representative of its natural state because this FF was collected

from patients undergoing gonadotropin stimulation. Therefore, the

concentrations of various lipids in “normal” follicular fluid may be

skewed. Secondly, the dysregulation of plasmalogens enrichment

observed in PCOS patients awaits further mechanistic validation.

Our preliminary evidence suggests that the decreases in

plasmalogens might be associated with poor oocyte quality.

Furthermore, we used 22 PCOS-IR and 23 control participants to

elucidate the differences in lipid composition between the two

groups. However, the relatively small sample size could impact

the statistical power of the analysis.
Conclusions

In conclusion, our study presented the first comprehensive and

quantitative analysis of the lipid composition of human follicular

fluid using high-coverage targeted lipidomics. This information is

valuable for enhancing oocyte in vitro maturation culture systems.

By comparing the differences in lipid content between normal and

PCOS-IR follicular fluid, we identified several unique lipid classes

and lipid molecular species associated with PCOS-IR. This

discovery opens up new possibilities for further mechanistic

studies. To our knowledge, this is the first study to establish a

correlation between oocyte quality and plasmalogen levels.
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Plasmalogens are anticipated to serve as a novel biomarker for the

diagnosing and treating of infertility in women with PCOS-IR.
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