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dedifferentiation, not an
irreversible process?
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Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin

resistance in peripheral tissues and impaired insulin secretion by the pancreas.

While the decline in insulin production and secretion was previously attributed to

apoptosis of insulin-producing b-cells, recent studies indicate that b-cell
apoptosis rates are relatively low in diabetes. Instead, b-cells primarily undergo

dedifferentiation, a process where they lose their specialized identity and

transition into non-functional endocrine progenitor-like cells, ultimately

leading to b-cell failure. The underlying mechanisms driving b-cell
dedifferentiation remain elusive due to the intricate interplay of genetic factors

and cellular stress. Understanding these mechanisms holds the potential to

inform innovative therapeutic approaches aimed at reversing b-cell
dedifferentiation in T2D. This review explores the proposed drivers of b-cell
dedifferentiation leading to b-cell failure, and discusses current interventions

capable of reversing this process, thus restoring b-cell identity and function.
KEYWORDS

diabetes, type 2 diabetes (T2D), b-cell, identity, dysfunction, dedifferentiation,
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Introduction

The international diabetes federation (IDF) determined that approximately 643 million

people will have diabetes by the end of 2030 (1). Type 1 diabetes (T1D) is an autoimmune

disorder leading to the destruction of the insulin producing b-cells, triggering a

dysregulation of glucose homeostasis (2). Type 2 diabetes (T2D) is the commonest form

of diabetes accounting for the 90% of the cases. T2D is a metabolic disorder driven by

polygenes and environmental risk factors, which is characterized by impaired insulin

secretion arising from progressive pancreatic b-cell dysfunction and loss of b-cell mass and

insulin resistance in the target peripheral tissues, resulting in multiple long-term health

complications (3–5). It had been widely accepted that the progressive decline in b-cell mass

in T2D was due to increased apoptosis (6), however, apoptosis alone is not sufficient to
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explain the marked loss of functional b-cell mass (7–9), suggesting

other causes. It is now known that chronic metabolic stress in T2D

can lead to loss of b-cell identity with b-cell dedifferentiation,

transdifferentiation or degranulation ultimately resulting in b-cell
dysfunction (10–12). In this review, we discuss the findings

regarding b-cell dedifferentiation and transdifferentiation in

diabetes, and evidence supporting prevention and even reversion

of these processes leading to restoration of b-cell identity

and function.
Loss of b-cell identity and
dedifferentiation in diabetes

Beta-cell dedifferentiation involves loss of mature b-cell identity
and expression of markers of islet progenitors and other normally

repressed (“disallowed”) genes, which may be one of the driving

factors of loss of functional b-cell mass in diabetes. Disallowed

genes such as lactate dehydrogenase (LdhA) and monocarboxylate

transporter-1 (Mct1) that are highly expressed in other tissues for

non-oxidative glucose metabolism are weakly expressed in the b-
cells to prevent abnormal insulin secretion (13, 14). Upregulation of

LdhA and Mct isoforms has been shown in the islets of rodent

models of hyperglycemia and diabetes (15–20). Acyl-CoA

thioesterase (Acot7) that encodes for the enzyme that catalyzes

the hydrolysis of long-chain acyl-CoA esters into free fatty acids and

coenzyme A, is another b-cell disallowed gene (14, 21). Increased

expression levels of Acot7 have been shown in laser microdissected

b-cell–enriched tissue from patients with T2D (22) and in Zucker

diabetic fatty rat islets (23). Overexpression of mitochondrial Acot7

in b-cells of adult mice impaired insulin secretion worsening

glucose tolerance (14). Therefore, altered metabolism through

altered expression of forbidden genes in diabetes also drives b-
cell dysfunction.
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The notion that b-cell identity, rather than b-cell apoptosis,
may be compromised was first shown in rats exposed to chronic

hyperglycemia (15). Additional studies in rodent, non-human

primates and human have furthered supported the notion

that loss of b-cell identity and dedifferentiation underlies b-cell
failure in diabetes (10, 20, 24–34). Although human diabetes

studies are limited to terminal endpoints and are reliant on

immunofluorescence techniques, b-cell dedifferentiation is more

evident than apoptosis (24, 27, 29). Loss of b-cell identity in human

T2D samples was shown by reduction of mRNA and protein levels

of key b-cell identity markers: MAF BZIP Transcription Factor A

(MafA) and NKX6 Homeobox 1 (Nkx6.1) and pancreatic and

duodenal homeobox 1 (Pdx1) (27). These findings were further

supported by another study that showed that isolated human T2D

islets exhibited a similar reduction of mRNA levels of b-cell identity
markers: Forkhead Box O1 (FoxO1), MafA and Nkx6.1. Further,

immunostaining of T2D pancreata showed b-cells with increased

Aldehyde dehydrogenase 1A3 (ALDH1A3) reactivity, indicative of

dedifferentiation (24). Single-cell RNA seq (scRNA-Seq) studies

from islets of non-diabetic and T2D individuals revealed that a-
and b-cells from T2D exhibit similar transcriptomic profiles to islets

from juvenile donors (35, 36). Polycomb repressive complex 2

(PRC2), has been identified as an essential chromatin regulatory

complex involved in defining cell fate trajectories by repressing

transcription and maintenance of b-cell identity. Loss of PRC2

function is observed in islets from human T2D. Elimination of

PRC2 in mouse b-cells triggered progressive b-cell dedifferentiation
(37). This suggests that disruption of the global gene silencing

machinery in b-cells drives b-cell dedifferentiation in diabetes.

Animal models overcome the limitation of lineage-tracing in

human studies, and have shown that b-cells do not undergo

apoptosis but rather lose their mature b-cell identity and revert to

progenitor-like state through dedifferentiation (10, 26, 28, 32–34).

Early studies in mice deficient of FoxO1 in b-cells under chronic
FIGURE 1

Fates of b-cell in diabetes. Chronic metabolic stress in diabetes can lead to loss of b-cell insulin granules known as b-cell degranulation (light grey
cell). b-cells can also incur loss or reduction of mature b-cell identity markers and convert to an endocrine or pancreatic progenitor-like state
known as b-cell dedifferentiation (red cell), a process which can be reversible. b-cells can also transition to a different endocrine cell subtype in a
process called b-cell transdifferentiation (purple cell) to a- or d-cells (blue and orange, respectively). The notion that b-cells can undergo apoptosis
(dark grey cell) remains controversial, as b-cell apoptosis remains relatively low.
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metabolic stress exhibited a marked decrease in b-cell mass due to

loss of b cell identity markers such asMafA and Pdx1, accompanied

by dedifferentiation of b-cells into progenitor-like cells expressing

Neurogenin3 (Ngn3), Oct4, Nanog, and L-Myc (10). Loss of b-cell
identity and dedifferentiation was also evident in leptin receptor

deficient (db/db) and insulin-resistant diabetic (GIRKO) mice,

suggesting b-cell dedifferentiation as a cause of b-cell dysfunction
in diabetes (10, 38) (Figure 1). Beta-cell-specific inactivation of

NKX6.1, another marker of b-cell identity, in mice also showed

increased expression of Ngn3 (39). Loss of Urocortin 3 (Ucn3),

signifying an early trigger of dedifferentiation, was seen in pancreata

from obese diabetic (ob/ob and db/db) mice and from insulin-

dependent diabetic mice (Ins2Akita) (33). Interestingly, islets

from ob/ob, db/db and Ins2Akita diabetic mice treated with a

TGFb pathway inhibitor Alk5 inhibitor II, demonstrated

increased mRNA levels of Ucn3, MafA, Nkx6.1 and Pdx1. b-cell
dedifferentiation has been reported in non-obese diabetic (NOD)

mouse model of T1D (40, 41). A subpopulation of b-cells (~15%) in
NOD mice that evaded early immune attack exhibited decreased

mRNA levels of b-cell identity markers: Ins1, Ins2, Glut2, FoxO1,

Nkx6.1 and Pdx1, and increased levels of dedifferentiation markers

Ngn3 and ALDH (40). IRE1a is a kinase involved in triggering

unfolded protein response (UPR) due to elevated endoplasmic

reticulum stress. NOD mice exhibit elevated UPR response, and

b-cell specific deletion of IRE1a in NODmice resulted in decreased

mRNA and protein expression levels of b cell maturity markers

MafA and Ucn3. It was further shown from scRNA-seq and bulk

RNA-seq that b cell specific deletion of IRE1a increased expression

of Aldh1a3, Gastrin (Gast), and Ngn3, indicative of dedifferentiation

as a protection against immune detection (41). Treating human b-
cells with polyinosinic-polycytidylic acid (PolyI:C), which mimics

viral infections contributing to the development of T1D, resulted in

decreased expression of b cell–specific genes such as Ins,MafA, and

Slc30A8, along with a marked increase in progenitor markers such

as Sox9, Hes1, and Myc (42).

ALDH1A3 is an enzyme primarily involved in the catalysis of

the oxidation of all-trans retinal to retinoic acid (RA) during RA

synthesis (43). ALDH1A3 is a marker that is abnormally expressed

in various cancers (44). Murine and human progenitor cells

demonstrated increase in ALDH levels in comparison to other

hematopoietic cells (45). As previously mentioned, dedifferentiated

b-cells also exhibit a progenitor-like state that is similar to the

differentiation observed in tumor progression (24, 26). ALDH1A3

was recently shown as a marker of b-cell dedifferentiation, with
increased levels in failing b-cells from b-cell-specific FoxO1

knockout mice, with ALDH1A3 positive cells being less glucose

responsive and demonstrating increased markers of uncommitted

endocrine progenitors (Pax6, Rfx6, Rfx7, andMlxipl) and decreased

levels of mature b-cell markers (Glucokinase andMafA) (25). It was

also demonstrated that while ALDH1A3 positive cells were almost

undetectable in islets from pancreatic organ donors without

diabetes, it was three-fold higher in islets from T2D individuals

despite of adequate glucose control (24, 46). Db/db mice exhibit

increased number of b-cells expressing ALDH1A3, compared to

controls (30). In addition, ALDH1A3 protein expression was
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significantly elevated in b-cells of C57BL/6J mice subjected to

high fat diet (HFD) for 13 weeks compared to 6 weeks on HFD (47).

Remarkably, mice lacking SUR1 (Abcc8) subunit of the KATP

channels in b-cells showed increased ALDH1A3 expression,

indicative of b-cell dedifferentiation potentially caused by

chronically elevated intracellular Ca2+ (48). Moreover, Abcc8

knockout mice subjected to HFD exhibited upregulation of

Aldh1a3 (49), suggesting that chronic b-cell depolarization

coupled with overnutrition drives b-cell dedifferentiation. KATP-

GOF mouse model of human neonatal diabetes also demonstrated

increased ALDH1A3 expression in b-cells, potentially due to

hyperstimulated glucose metabolism (50). Indeed, decreasing

glucose metabolism by genetic reduction of glucokinase

(Gck), reduced b-cell ALDH1A3 to control levels (50). Moreover,

b-cell specific deletion of microRNA-483 (miR-483) in mice

subjected to HFD led to impaired glucose homeostasis and

increased b-cell ALDH1A3 expression (51), suggesting that

microRNAs may play a critical role in protecting b-cell function
by repressing dedifferentiation. Increased ALDH1A3 expression

levels accompanied by decreased expression of CHGA

(Chromogranin A) and PDX1 was also reported in b-cells of

HFD/STZ (streptozotocin)-induced T2D and db/db mice. ScRNA-

seq of b-cells from multiple-low-dose model of STZ-induced

diabetic mice revealed a subset of b-cells with low expression of

b-cell identity transcription factors such as Pdx1, Nkx2.2, Nkx6.1,

Pax6, Isl1 and NeuroD1, and increased Aldh1a3 (52).
b-cell dedifferentiation: a
reversible process?

Early introduction of intensive insulin therapy in patients newly

diagnosed with T2D has showed attainment of long-term remission

in approximately 50% of patients, indicating a rescue of b-cell
function from glucotoxicity (53). Moreover, a recent report has

shown that early short-term insulin intervention coupled with

metformin (biguanide) in newly diagnosed T2D patients improved

b-cell function with superior and longer lasting glycemic and lipid

control compared to glimepiride (sulfonylurea) coupled with

metformin (54). Further, transgenic mouse models of monogenic

neonatal diabetes with activated KATP channels resulting in

hypoinsulinemia and hyperglycemia also showed loss of b-cell
identity and dedifferentiation, evidenced by decreased in Ins,

Nkx6.1, Pdx1 and a marked increase in Ngn3 expression (20, 55).

Interestingly, these mice not only exhibited normalization of blood

glucose levels but also redifferentiation of the same dedifferentiated

NGN3-positive cells into insulin-positive mature b-cells upon

intensive insulin therapy (20). Notably, neither treatment with

insulin, phloridzin nor rosiglitazone could reduce b-cell ALDH1A3
expression, but calorie restriction was able to curtail b-cell
dedifferentiation in db/db mice (30). Interestingly, infusions of

human umbilical cord-derived MSCs (UC-MSCs) in HFD/STZ

and db/db mice at an early stage of diabetes prevented b-cell
dedifferentiation and protected b-cell function by increasing

expression levels of CHGA and PDX1 (56). ALDH1A3 protein and
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mRNA levels were upregulated in islets upon disrupting the activity

of CNOT3 in b-cells, an important post-transcriptional regulator

of b-cell maturation and identity (57). Furthermore, db/db mice

with specific deletion of Aldh1a3 in b-cells showed improved

glucose homeostasis, enhanced glucose tolerance paralleled by

improved b-cell function, and increased expression levels of PDX1,

NKX6.1, E-Cadherin and MAFA (58). To further show that b-cell
dedifferentiation can be curtailed, a recent report demonstrated

enhanced b-cell function, enhanced glucose tolerance and

increased expression of Insulin and PDX1 in db/db mice treated

with an ALDH1A3 inhibitor (KOTX1) (34). Moreover, recent studies

demonstrated loss of b-cell identity with reduction of NKX6.1 and

PDX1 expression, and increased ALDH1A3 gene and protein levels

in KK and KKAy polygenic mouse models of T2D. Strikingly, KK and

KKAy diabetic mice subjected to intermittent fasting for 16 weeks

demonstrated enhanced NKX6.1 and PDX1 expression, and

decreased ALDH1A3, suggesting protection from loss of b-cell
identity in T2D by intermittent fasting (20). Intermittent fasting

also showed improved glucose tolerance especially in the severe

polygenic KKAy model of T2D. Together, these findings further

strengthen that b-cell dedifferentiation is a reversible process.
b-cell transdifferentiation: another
crisis in diabetes?

In addition to dedifferentiation, b-cells have also been shown to

transdifferentiate into a-, d- or PP cells. Increased a/b-cell ratio has
been reported in human T2D studies (59–61), with the increased

attributed to decreased b-cell mass with unchanged a-cell mass

(61–63). Ex vivo studies of human islets showed that b-cells after
undergoing degranulation can transdifferentiate into a-cells, with
expression of PDX1 and NKX6.1 (11). Moreover, conversion of b-
cells to a-cells can be curtailed by knockdown of Aristaless-related

homeobox (Arx), an a-cell lineage marker. The presence of

NKX6.1+GCG+INS− cells in macaques and humans with diabetes

was indicative of that loss of functional b-cell mass could partly be

due to conversion of b-cells to a-cells (64).
Beta-cell specific deletion of FoxO1 led to b-cell dedifferentiation

as discussed above, but also transdifferentiation into a- and d-cells
(10). Overexpression of Paired Box 4 (PAX4) in mouse a-cells led to

their transdifferentiation into b-cells (65), and inactivation of Arx in

mouse a-cells led to conversion of a-cells to b-cells expressing key b-
cell identity markers such as Pdx1, MafA and Glut2 (66, 67).

Mutation of the NK2 homeobox 2 (Nkx2.2) tinman (TN)

domain or deletion of DNA-methyltransferase 3A (DNMT3a) in

mouse b-cells caused Arx-dependent b-to-a-cell transdifferentiation
(68). Deletion of Nkx2.2 in adult b-cells also demonstrated

transdifferentiation into a- or d-cells (69). Simultaneous deletion of

Arx and Dmnt1 (DNA-methyltransferase 1) in mouse a-cells
promoted conversion into functional b-cells (70). Meanwhile,

ectopic expression of Arx in embryonic and adult b-cells led

to their transdifferentiation into a- and PP cells (71). Recent

findings have shown that X-box binding protein 1 (XBP1), an

important regulator of the ER stress response in b-cells also plays a
Frontiers in Endocrinology 04
role in maintaining b-cell identity, with inactivation of Xbp1 in

adult mouse b-cells leading to b-cell dedifferentiation, b-to a-cell
transdifferentiation and increased a cell mass (72). Therefore, based

on the findings, b-cell transdifferentiationmay also play an important

role in b-cell dysfunction in diabetes.
Conclusions and perspectives

Compelling evidence of b-cell dedifferentiation and

transdifferentiation in diabetes demonstrates plasticity of b-cells
and that these processes can be circumvented to restore functional

b-cell mass. Recent findings of converting dedifferentiated cells into

functional b-cells, either genetically or pharmacologically, provide

insights into restoring b-cell identity and function during

progression of diabetes. Future studies with advances in omics

exploring the differences between dedifferentiated b-cells
(ALDH1A3+ cells) and endocrine progenitor cells will help to

identify potential mechanisms and new targets for preventing b-
cell dedifferentiation. This will further enhance our understanding

of how ALDH1A3 suppresses b-cell identity through epigenetic and
transcriptional regulation. Moreover, identifying subpopulations of

b-cells that are susceptible to metabolic stress and vulnerable to

dedifferentiation and/or transdifferentiation, versus b-cells
“resistant” to metabolic stress could be critical for preventing or

even reverting loss of b-cell identity and function in diabetes. A

major strength of this review is the comprehensive discussion of the

latest studies in rodents demonstrating loss of b-cell identity,

dedifferentiation, and transdifferentiation in diabetes. However, a

significant limitation stems from the scarcity of human studies

addressing loss of b-cell identity and dedifferentiation, mainly due

to the limited availability of human pancreatic samples.

Consequently, only a handful of reports using human samples are

covered in this review.
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