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for Causes and Drug Discovery of Chronic Diseases, Shenyang, China, 3Pharmacy Department,
Shenyang Tenth People’s Hospital, Shenyang, China, 4Department of Ultrasound, People’s Hospital of
Liaoning Province, Shenyang, China, 5Department of Pharmacy, Affiliated Zhongshan Hospital of
Dalian University, Dalian, China
Background: Bisphenol A (BPA), a characteristic endocrine disruptor, is a

substance that seriously interferes with the human endocrine system and

causes reproductive disorders and developmental abnormalities. However, its

toxic effects on the gut-liver-hormone axis are still unclear.

Method: Male and female rats were exposed to BPA (300 mg/kg) by oral gavage

for 60 consecutive days. H&E staining was used for histopathological evaluation,

and the serum biochemical indexes were determined using an automatic

analyzer. The 16S rRNA gene sequencing was used to detect the intestinal

microbial diversity, and the GC-MS was used to analyze the contents of short-

chain fatty acids (SCFAs) in colon contents. UPLC-QTOF MS was used to analyze

the relatedmetabolites. The ELISAmethod was used to assess the levels of serum

inflammatory factors.

Results: Histopathological analysis indicated that the liver, heart, and testis were

affected by BPA. There was a significant effect on alanine aminotransferase (ALT),

triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) in the

male-BPA group (P < 0.05), and globulin (GLB), indirect bilirubin (IBIL), alkaline

phosphatase (ALP), ALT, TG, TC, high-density lipoprotein (HDL), and creatinine

(Cr) in the female-BPA group (P < 0.05). Metagenomics (16S rRNA gene

sequencing) analysis indicated that BPA reduced the diversity and changed the

composition of gut microbiota in rats significantly. Compared with the control

and blank groups, the contents of caproic acid, isobutyric acid, isovaleric acid,

and propanoic acid in the colon contents decreased in the male-BPA group (P <

0.05), and caproic acid, isobutyric acid, isovaleric acid, and valeric acid in the

colon contents decreased in the female-BPA group (P < 0.05). Metabolomic

analysis of the serum indicated that BPA could regulate bile acid levels, especially

ursodeoxycholic acid (UDCA) and its conjugated forms. The contents of amino

acids, hormones, and lipids were also significantly affected after exposure to BPA.
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The increase in interleukin-6 (IL-6), interleukin-23 (IL-23), and transforming

growth factor-b (TGF-b) in the serum of the male-BPA group suggests that

BPA exposure affects the immune system.

Conclusion: BPA exposure will cause toxicity to rats via disrupting the gut-liver-

hormone axis.
KEYWORDS

bisphenol A, gut-liver axis, toxicity mechanism, intestinal flora, metabolism
1 Introduction

BPA is a plasticizer commonly used in the manufacture of

plastic bottles, food, toys and other supplies (1). It is widely found in

the environment and contaminates water, dust, sewage, and air (2).

BPA exposure in humans occurs through the respiratory pathway,

gastrointestinal tract, skin contact, and food and water

contaminated with BPA (3, 4). It can be widely distributed

throughout the body after human exposure, which can been

detected in serum, urine, umbilical cord blood, amniotic fluid,

and placental tissue (5). Global production of BPA was 6.2

million tons (MT) in 2020, which exhibited a gradually increasing

trend and is expected to reach 7.1 MT by 2027 (6). There are many

ways for BPA to enter the aquatic environment, including direct

and disorderly discharges during production and manufacturing,

contaminated soil being introduced into the aquatic environment

through stormwater wash-off or surface runoff, and discarded

plastics that can leach BPA into water. Finally, BPA can be
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detected in water environments including rivers (1800-107700

ng L−1), lakes (1260-106900 ng L−1), and drinking water (5.3-128

ng L−1) (7–11). BPA can replace endogenous hormones and bind to

receptors, altering hormone levels in the bloodstream (12). It can

also disrupt the function and development of the reproductive

system. A recent study has linked BPA exposure to increased levels

of serum luteinizing hormone (LH), estradiol (E2), progesterone,

and testosterone, as well as decreased cortisol levels (13). BPA

intake has also been linked to a higher risk of various cancers, such

as breast, ovarian, uterine, prostate, and testicular cancer (14).

Because of these adverse effects on human health, several

countries have banned the addition of BPA to infant and

children’s products (15).

The ‘gut-liver axis’ was formally proposed in 1998 as a complex,

interlinked network that involves the interaction between various

cytokines and inflammatory mediators between the intestine and

liver. It is an important pathway between the intestine and liver that

can be regulated in both directions (16). Its changes affect the

nutrients, microbial antigens, metabolites, and bile acids in the host

(17); regulate the metabolism and immune response in the gut and

liver (18); and affect the structure and function of their respective

microbial communities (19).

In recent years, research on the interaction between the

intestinal flora and the reproductive system has shown that the

intestinal flora and hormones regulate each other (20). Intestinal

bacteria play an important role in estrogen metabolism. It can

metabolize estrogens into deconjugated forms by secreting b-
glucuronidase (21). It is possible that gut microbes participate in

the regulation of sex hormones and, conversely, that sex hormones

modify microbial diversity (22). Based on the close relationship

between sex hormones and intestinal flora, the ‘gut-liver-hormone

axis’ was proposed on the basis of the gut-liver axis to elaborate on

the influence of external factors on organisms from the aspects of

liver, intestine, and hormone levels. Studies have shown that BPA

causes hepatotoxicity by affecting genes involved in oxidative

phosphorylation and fatty acid metabolism in the liver (23).

Intestinal flora is a significant component of the gut-liver axis.

Changes in the abundance and types of intestinal flora can also

reflect the effects of toxic substances on the body. There is a

significant relationship between disruption of the gut microbiota
frontiersin.org
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and imbalances in re lated intest inal smal l molecule

metabolites (24).

Bile acid metabolism is intricately linked to the intestinal flora

and liver (25). Primary bile acids are produced by cholesterol in the

liver, then catalyzed by sterol 12a-hydroxylase and sterol 27a-
hydroxylase to synthesize cholic acid (CA) and chenodeoxycholic

acid (CDCA) (26). Intestinal flora can regulate the composition and

physicochemical properties of bile acids by metabolizing bile acids,

and further regulate the synthesis and transport of bile acids

through the effect of specific bile acids on bile acid receptors (27).

Bile acids control intestinal microbial overgrowth and affect the

composition of intestinal flora through antibacterial and cytotoxic

effects (65). This mutual regulation causes the total amount and

composition of bile acids and the abundance and diversity of

intestinal flora to maintain a balanced state.

In addition to bile acids, there are numerous small molecule

metabolites that are closely associated with intestinal flora and the

gut-liver-hormone axis. Short-chain fatty acids (SCFAs) are the

primary metabolites produced by bacteria through the fermentation

of dietary fiber in the gastrointestinal tract (28). These SCFAs have the

ability to regulate various physiological and biochemical functions of

the host. They contribute to maintaining the natural intestinal barrier

function, intestinal motility, intestinal hormone secretion, chromatin

regulation, intestinal-brain axis, and immune function (29).

In this study, an integrated strategy that combines toxicology,

intestinal flora analysis, and metabolomics was used to

systematically assess the subchronic toxicity of BPA. Through

comprehensive data analysis, we investigated the effects of BPA

exposure on the gut-liver-hormone axis, which provided a novel

perspective on the toxic mechanisms of pollutants in

water environments.
2 Material and methods

2.1 Reagents

BPA was purchased from Jizhi Biochemical Technology Co.,

Ltd (Shanghai, China). Pentobarbital sodium was purchased from

Sigma-Aldrich Co., Ltd (Shanghai, China). Physiological saline

(NaCl 0.9%) was obtained from Harbin Sanlian Pharmaceutical

Co., Ltd (Harbin, China). Carbamazepine and mycophenolic acid
Frontiers in Endocrinology 03
were purchased from Anpel Laboratory Technologies (Shanghai,

China) Inc (Shanghai, China). Chemical references including bile

acids, amino acids, lipids, and hormones were purchased from

Yuanye Biotechnology Co., Ltd (Shanghai, China), Anpel

Laboratory Technologies (Shanghai, China), and Jizhi

Biochemical Technology Co., Ltd (Shanghai, China), respectively.
2.2 Animal exposure

Male and female Sprague Dawley (SD) rats aged 6 weeks (200 ±

20 g) were purchased from Liaoning Changsheng Biotechnology Co.,

Ltd. (SCXK (LN) 2020-0001). The study and included experimental

procedures were approved by the institutional animal care and use

committee of Liaoning University (Approval No. 20200723512). Rats

were housed under the following conditions: 12-hour light/12-hour

dark cycle, temperature 23 ± 2°C, and unrestricted access to food and

drinking water.

In a previous study, the LD50 value of BPA was established as

3250 mg/kg (30). Thus, in this study, 300 mg/kg, which is the 1/10

LD50 of BPA, was used as the dose according to the “Technical

Guidelines for Long-term Toxicity Testing of Chemical Drugs ([H]-

GPT2-1)” issued by the State Drug Administration of China (2005).

In total, 36 rats including 18 male rats and 18 female rats were

randomly divided into 6 groups (n=6), the specific groups are

shown in Figure 1. BPA was dissolved in olive oil as an

administration group. The same volume of normal saline and

olive oil were given in the blank and control groups, respectively.

After 1-week adaptive feeding, oral gavage was performed daily for

60 consecutive days after 6 h of fasting. Body weights were recorded

weekly and exhaustive observations were recorded weekly during

the experiment. On the 61st day, the rats were anesthetized with

pentobarbital sodium by intraperitoneal injection (50 mg/kg).

Blood samples were collected from the abdominal aorta, and then

placed for 30 min. The serum samples were obtained by

centrifugation at 3000 rpm for 15 min at 4°C. Heart, liver, spleen,

kidney, testis, and uterus were collected and fixed with 4%

paraformaldehyde for histopathological analysis. Rat feces were

carefully collected from the rectum, and the serum and fecal

samples were stored at -80°C until further analysis.

For each tissue, the average of three slides per rat was used as the

independent data for statistical analysis. Marking criterion were as
FIGURE 1

Design of BPA exposure experiment.
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follows: 0, no pathological changes; 1, mild; 2, moderate; 3, severe (31).

Data were analyzed using two-way ANOVA and Student’s t test.
2.3 Serum biochemical analysis

The contents of total protein (TP), albumin (ALB), globulin

(GLB), total bilirubin (TBIL), direct bilirubin (DBIL), indirect

bi l irubin (IBIL), alkaline phosphatase (ALP), alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

triglyceride (TG), total cholesterol (TC), high-density lipoprotein

(HDL), low-density lipoprotein (LDL), urea, creatinine (Cr),

glucose (GLU), and glomerular filtration rate (GFR) were

determined using a Cobas8000 automatic analyzer (Roche, USA).
2.4 16S rRNA sequencing of
colonic contents

Total genomic DNA samples were extracted using the OMEGA

Soil DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, USA)

following the manufacturer’s instructions, and stored at -20°C prior to

further analysis. The quantity and quality of extracted DNA were

measured using a NanoDrop NC2000 spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis,

respectively. PCR amplification of the bacterial 16S rRNA genes V3–

V4 region was performed using the forward primer 338F (5’-

ACTCCTACGGGAGGCAGCA-3’) and the reverse primer 806R (5’-

GGACTACHVGGGTWTCTAAT-3’). PCR amplicons were purified

with Vazyme VAHTSTM DNA Clean Beads (Vazyme, Nanjing,

China) and quantified using the Quant-iT PicoGreen dsDNA Assay

Kit (Invitrogen, Carlsbad, CA, USA). After the individual

quantification step, amplicons were pooled in equal amounts, and

pair-end 2×250 bp sequencing was performed using the Illlumina

NovaSeq platform with a NovaSeq 6000 SP Reagent Kit (500 cycles) at

Shanghai Personal Biotechnology Co., Ltd (Shanghai, China). The a-
diversity and b-diversity were analyzed on the online platform of

Personalbio Genescloud (https://www.genescloud.cn/).
2.5 SCFA analysis

SCFAs were detected by gas chromatography-mass

spectrometry (GC-MS) (Agilent 7890B-5977B GC/MSD). Briefly,

100 mg of fecal contents were mixed with 50 mL of phosphoric acid

(0.2%, v/v) aqueous solution containing 4-methylvaleric acid as

internal standard (0.668 mg/mL), to be tested after sealing.

The above pretreatment steps of rat feces samples were carried

out at 4°C to prevent the volatilization of SCFAs.

The initial temperature was set to 60°C, and the temperature

was first raised to 120°C at 30°C/min, then to 140°C at 5°C/min

for 1 min, after that, raised to 150°C at 10°C/min for 1 min, then to

160°C at 5°C/min for 1 min, and finally, to 230°C at 35°C/min,

where it was maintained for 5 min. Helium was used as the carrier

gas at a flow rate of 1.0 mL/min. A 70 eV EI source was adopted,

and the full scan and SIM scan modes were used.
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2.6 Metabolomics analysis

UPLC-MS/MS analysis was carried out on an X500R QTOF

LC-MS/MS system (AB Sciex, USA) equipped with ACQUITY

UPLC ® BEH C18 (1.7 mm, 2.1 × 100 mm, Waters, USA). The

mobile phase was composed of water (solvent A) and methanol

(solvent B) at 0.3 mL/min. The gradient elution program was set as

follows: 0-5 min 70% (B), 5-13 min 70-98% (B), 13-15 min 98% (B),

15-15.1 min 98-50% (B), and 15.1-18 min 50% (B). The column

temperature was 30°C, and the injection volume was 10 mL.
Furthermore, 150 mL of the serum was added into a 1.5-mL

centrifuge tube with 150 mL of methanol containing carbamazepine

and mycophenolic acid as internal standards at a concentration of

50 ng/ml, respectively. Subsequently, 600 mL of methanol was added

into the centrifuge tube, vortexed for 30 s, and centrifuged at 12,000

rpm for 15 min (4°C). Thereafter, 700 mL of the supernatant was

pipetted into a centrifuge tube and blow-dried with N2. The residues

were reconstituted in 70 mL of 50% MeOH-H2O solution, vortexed

for 30 s, and centrifuged at 12,000 rpm for 10 min. The supernatant

was then filtered using a 0.22 mm membrane before analysis.

All target metabolite standards were dissolved in double

distilled water or methanol to prepare 2 mg/mL stock solutions,

which were diluted before use.
2.7 Enzyme-linked immunosorbent assay

The contents of rat interleukin-6 (IL-6), interleukin-10 (IL-10),

interleukin-17 (IL-17), interleukin-23 (IL-23), and transforming

growth factor-b (TGF-b) were determined using commercially

available enzyme-linked immunosorbent assay (ELISA) Kits

(Nanjing Jianchen Bioengineering Institute, Nanjing, China).
2.8 Statistical analysis

All data were subjected to a normal distribution test using SPSS

20.0 (SPSS, USA). Normal distribution data were processed using

GraphPad Prism 6 (GraphPad Software, USA) and presented as

mean ± standard deviation (SD). Difference analysis was performed

using one-way analysis of variance (ANOVA) followed by

Dunnett’s multiple comparison test. Statistical analysis for paired

comparison groups was conducted using a two-tailed Student’s t-

test. Non-normal distribution data were presented as median and

range, and statistical significance was based on the Mann-Whitney

U test. P < 0.05 was considered statistically significant.
3 Results

3.1 Effect of BPA on rats

The body weights of the rats were observed and recorded during

the experiment. The initial body weight of all rats was within the

range of 200 g ± 20 g. After 8 weeks of daily BPA exposure, there
frontiersin.org
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was no significant difference between the groups (P > 0.05,

Supplementary Figure S1).

Compared with the blank and the control groups, the rat heart

tissue in the BPA groups (♂ and ♀) showed cell swelling and edema

degeneration, the myocardial cells were not densely arranged, and

the irregular white voids increased. In the BPA groups, there was a

local range of myocardial cell structure damage and muscle striation

fracture, myocardial cell necrosis, and the phenomenon of nucleus

release into the intercellular substance. HE staining of liver tissue

indicated that the liver structure of the control group was clear, and

the hepatocytes were radially arranged with rich cytoplasm and

nuclei centered on the central vein. The gap between hepatocytes in

the BPA groups (♂ and ♀) became larger and vacuolar

degeneration, and the male group showed dilated congestion.

These indicate that BPA exposure will cause damage to the livers
Frontiers in Endocrinology 05
of male and female rats. HE staining of testicle tissue indicated that

there was obvious atrophy of the seminiferous tubules, the gap

between the seminiferous tubules became larger, the arrangement

was irregular, and the Leydig cells were also relatively reduced

compared to that of the control and blank groups (Figure 2). The

pathological scores of the heart, liver, testicles, and uterus were

shown in Figure 3. There was no significant effect on the staining

results of the uterus, kidneys and spleen (Supplementary Figures

S2, S3).
3.2 Serum biochemical analysis

In the BPA group (♂), the contents of TP, ALB, and GLOB in

serum were significantly increased, but the ratio of ALB/GLOB was
FIGURE 2

HE stains of the heart, liver, testicle and uterus in control group, BPA group (300 mg/kg) and blank group (200x). The main changes are marked in
the figure (black arrow).
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decreased, compared with that of the blank and control groups.

Compared with the blank group and the control group, the contents

of TG, TC, and LDL-C were significantly increased in the BPA group.

In the BPA group (♀), the contents of TP and ALB were significantly

increased, the ratio of ALB/GLOB was decreased, the contents of TBIL

and IBIL were increased, and the contents of ALP, ALT, and AST were

decreased. The creatinine (Cr) content increased significantly, and the

ratio of Urea to Cr decreased significantly (Figure 4).
3.3 Analysis of intestinal flora

3.3.1 Intestinal flora diversity and composition
Based on the 16S rRNA gene data, the a diversity index was used

to evaluate the number of operational taxonomic units (OTUs) and the

community diversity in the sample (Figure 5). Compared with the

control group, the Chao1 and observed species indexes both decreased

in the BPA groups (♂ and ♀). Nonmetric multidimensional scaling

(NMDS) was used to visualize the b diversity analysis. NMDS is a data

analysis method that simplifies the research objects (samples or

variables) of multidimensional space into low-dimensional space for

positioning, analysis and classification, while retaining the original

relationship between objects. b diversity analysis showed that the

intestinal flora structure of the BPA group was significantly different

from that of the control group (♂ and ♀, Figure 6), and the group

gathered well, indicating that BPA altered the composition of intestinal

flora in rats.

3.3.2 Analysis of community structure and
difference at the phylum level

The top 10 dominant bacteria of the relative abundance of fecal

flora in the three groups of male rats were Firmicutes, Bacteroidetes,

Actinobacteria, Proteobacteria, TM7, Tenericutes, Cyanobacteria,

Deferribacteres, Verrucomicrobia, and Chloroflexi (Figure 7). The

top 10 dominant bacteria of female rats among the three groups
Frontiers in Endocrinology 06
were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,

Verrucomicrobia, Chloroflexi, Tenericutes, TM7, Cyanobacteria,

and Elusimicrobia (Figure 7).

LEfSe (LDA Effect Size) multi-level species difference

discriminant analysis is an analytical tool for discovering and

interpreting biomarkers of high-dimensional data by linear

discriminant analysis (LDA), the blue nodes and red nodes in the

branches represent the bacteria that are enriched in the control

group and the BPA group and have a significant effect on the

differences between the groups.

Compared with the control group, the abundance of TM7

(TM7, Saccharibacteria) and Tenericutes increased at the phylum

level, and the abundance of Proteobacteria decreased in the BPA

group (♂, Figure 8). In the BPA group (♀), the abundance of

Verrucomicrobia increased and the abundance of Cyanobacteria

decreased, compared with the control group (Figure 8).

At the class level, the abundance of 4C0d 2, Clostridia,

Mollicutes, and TM7 3 increased in the BPA group (♂, Figure 8).

While the abundance of Coriobacteriia, Erysipelotrichi, and

Betaproteobacteria decreased compared with the control group. In

the BPA group (♀), the abundance of Verrucomicrobiae increased,

and the abundance of Coriobacteriia and Chloroplast decreased

compared with the control group (Figure 8). Collectively, these

results demonstrated substantial alterations in the gut microbiota

exposed to BPA.
3.4 Analysis of short chain fatty acids

The contents of SCFAs were quantitatively analyzed by GC-MS

(Figure 9). The results revealed a significant decrease in the levels of

caproic acid, isobutyric acid, butyric acid, and valeric acid, and

propanoic acid increased significantly in the BPA group (♂) (P <

0.05). It further showed a significant decrease in the contents of

caproic acid isobutyric acid, acetic acid, caproic acid, and valeric
FIGURE 3

The pathological score of the heart, liver, testicles, and uterus in the control group, BPA group (300 mg/kg) and blank group. Data are mean ± SD.
(n = 6), marking criterion: 0, normal; 1, mild; 2, moderate; 3, severe.
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acid in the BPA group (♀) (P < 0.05). It can be seen that BPA

exposure has different effects on the SCFA levels of different sexes.
3.5 Metabolomics analysis

3.5.1 Bile acid profile
In the BPA group (♂), the levels of GUDCA and UDCA were

significantly decreased compared with the control group (P < 0.05),

and the levels of HDCA, TCA, TCDCA, TDCA, THDCA, TUDCA,

GCDCA+GHDCA, GDCA, and GCA were increased

(Supplementary Figure S7). In the female group, the levels of

CDCA+DCA, HDCA, THDCA, and GDCA were significantly

increased compared with the control group (P < 0.05), and the

levels of TUDCA, GCDCA+GHDCA, GCA, GUDCA, and UDCA

were significantly decreased (P < 0.05). A heatmap shows the

relative levels of each bile acid (Figure 10). In short, exposure to

BPA disrupts the BA metabolism in rats.

3.5.2 Lipid metabolism
In total, 13 LPCs were determined in order to study the effect of

BPA on lipid metabolism in rats (Supplementary Figure S8). In the

male group, compared with the control group, BPA exposure led to

an increase in the contents of C(18:2), LPC(14:0), LPC(16:1), LPC

(18:0), LPC(18:2), LPC(18:3), LPC(22:4), LPC(20:4), and LPC

(20:3). In the BPA group (♀), the contents of C(18:2), LPC(16:0),

LPC(18:0), LPC(18:1), LPC(18:2), LPC(20:3), and LPC(20:4)

increased compared with the control group. A heatmap shows the

relative levels of each LPC (Figure 11). In summary, BPA exposure

in rats of different sexes increases the contents of some LPCs.

3.5.3 Amino acid, TCA and oxidative
stress metabolism

The contents of 11 amino acids in rats were determined

(Supplementary Figure S9). In male rats, the contents of

Aminohippuric acid, L-Arginine, L-Lysine, L-Ornithine, L-

Phenylalanine, L-Proline, L-Threonine, L-Valine, and GABA were

significantly decreased after BPA exposure (P < 0.05). In female rats,

the contents of Aminohippuric acid, GABA, L-Citrulline, L-Lysine,

L-Ornithine, L-Phenylalanine, L-Proline, and L-Threonine were

significantly decreased, and the content of L-Arginine was

significantly increased (P < 0.05). It can be seen that BPA

exposure led to a decreasing trend in amino acid levels.

In the BPA group (♂) the contents of creatine, pantothenic acid,
and spermidine were significantly decreased compared with the

control group (P < 0.05), and the contents of ascorbic acid and p-

Cresol Glucuronide were significantly increased (P < 0.05). In the

BPA group (♀), the contents of 8-iso-PGF and p-Cresol

Glucuronide were significantly increased compared with the

control group (P < 0.05), and the contents of creatine,

spermidine, and uridine were significantly decreased (P < 0.05)

(Supplementary Figure S9). A heatmap shows the relative levels of

each metabolite of amino acids, TCA, and oxidative stress

metabolism (Figure 12). BPA had an impact on oxidative stress-

related metabolites, but it had no significant effect on the level of
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TCA-related metabolites. As a structural unit of protein, amino

acids are important substrates for energy supply in the body and are

closely related to the TCA cycle (Figure 13), which is the hub of

nutrient metabolism in the body. However, after BPA exposure, an
FIGURE 4

The effects of BPA (300 mg/kg) on 17 serum biochemical indexes in
SD rats after 60 days of exposure. (Male group: Control-M, BPA-M,
Blank-M; Female group: Control-F, BPA-F, Blank-F); n=6; ANOVA
followed by Dunnett’s multiple comparison tests; the date is
presented mean ± SD, *P < 0.05, **P < 0.01 and ***P < 0.001 versus
the control group; #P < 0.05, ##P < 0.01 and ###P < 0.001 versus
the blank group.
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increase in amino acid metabolism levels did not significantly affect

the TCA cycle.

3.5.4 Steroid hormone metabolism
In recent years, the effect of intestinal flora on the reproductive

system has become a new research focus. There is a significant

gender difference in the intestinal flora (32), and intestinal flora

transplantation can significantly change the levels of various sex

hormones (33). Hormones also have an impact on the gut

microbiota, with both gonadectomy and hormone replacement

therapy causing significant changes in the species composition of

the gut microbiota (20).
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The contents of seven hormones in the serum of rats were analyzed

to study the effect of BPA exposure on sex hormone levels

(Supplementary Figure S10). Compared with the control group and

blank group, the contents of etiocholanolone, 17-OHP, pregnenolone,

and DHEA in the BPA group (♂) were decreased significantly (P <

0.05), and the content of progesterone was increased significantly. In

the BPA group (♀), the contents of 17-OHP, etiocholanolone, DHEA,
and pregnenolone were significantly decreased (P < 0.05), and the

content of progesterone was significantly increased (P < 0.05). A

heatmap shows the relative levels of hormones (Figure 14). In

summary, BPA exposure regulated the hormone levels in rats, and it

is worth noting the significant increase in progesterone.
FIGURE 5

The effects of BPA (300 mg/kg) on four a diversity indexes in SD rats after 60 days-exposure. (A) male-BPA group; (B) female-BPA group; n=6;
ANOVA; *P < 0.05, **P < 0.01.
FIGURE 6

The NMDS analysis of bacterial structures for three groups (A) male groups; (B) female groups; n=6.
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3.6 Analysis of inflammatory factors

Compared with the control group, the contents of IL-6, IL-23, and

TGF-b in the BPA group (♂) were increased (P < 0.05) as shown in

Figure 15. BPA had no significant effect on inflammatory factors in the

female group. Th17 cells are a prominent subset of CD4+ T cells and

play a crucial role in promoting inflammatory immune responses.

Their differentiation is dependent on specific polarized cytokines such
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as TGF-b, IL-6, and IL-23 (34). The increase in IL-6, IL-23, and TGF-b,
suggests that BPA exposure affected the autoimmune inflammatory

response in the BPA group (♂).
There were statistically significant differences in the levels of

metabolites, biochemical indexes, and inflammatory factors (P <

0.05) between the BPA group (♂ or ♀) and the control group (♂ or

♀), suggesting that BPA exposure had a significant impact on the

gut-liver-hormone axis.
FIGURE 7

The metagenomics analysis at the phylum level. (A) male-BPA group; (B) female-BPA group; n=6.
FIGURE 8

LEfSe analysis of intestinal microbiota after 60-day exposure in rats. (A) male groups; (B) female groups; n=6.
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4 Discussion

BPA, a traditional endocrine-disrupting chemical, exhibits

estrogen-like effects and has been linked to various diseases

including obesity and reproductive disorders (35–37). However, a

comprehensive understanding of its toxicity mechanism is still
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lacking, particularly in relation to its impact on the liver-gut-

hormone axis.

The results of biochemical indicators showed that BPA

exposure affected the contents of biochemical indicators. TP is an

important indicator of liver function, reflecting the reserve capacity

of the liver, which is the sum of ALB and GLOB (38). When
FIGURE 9

The effect of SCFAs in BPA (300 mg/kg) in rats after 60 days-exposure. Total ion chromatogram (TIC) of 7 SCFAs (A), a: Acetic Acid, b: Propanoic
Acid, c: Isobutyric Acid, d: Butyric Acid, e: Isovaleric Acid, f: Valeric Acid, g: Caproic Acid. SCFAs in the male groups (B) and female groups (C). n=6;
ANOVA followed by Dunnett’s multiple comparison tests; the date is presented mean ± SD. *P < 0.05. and ***P < 0.001 versus the control group.
FIGURE 10

The heatmap of BAs in the serum: male group (A) and female group (B). Blue represents the lowest while red represents the highest, hierarchical
clustering separates. The X-axis of the heatmap represents different groups within 6 samples, while Y-axis stands for BA levels.
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exposed to BPA, the content of TP increased in male and female

groups, and there was also an increase in ALB and GLOB levels.

However, the ratio of ALB to GLOB (A/G) decreased, indicating

that the increase in GLOB was higher than that of ALB.

The liver plays an important role in the metabolism of bilirubin

(BIL), including the uptake, binding, and excretion of unconjugated

BIL in the blood by hepatocytes (39). TBIL is the combined amount

of DBIL and IBIL (40). Obstacles in the processes of uptake, binding,

and excretion can cause an accumulation of BIL in the blood and

increase the content of BIL. In the BPA group, the increase in TBIL

was mainly caused by an increase in DBIL. DBIL is the conversion of

IBIL in hepatocytes, which is combined with glucuronic acid. An

increase in DBIL indicates that the excretion of BIL from the bile duct

is blocked after toxicity exposure. The increase in TBIL in the female

rats was mainly due to an increase in IBIL. IBIL is a form of bilirubin
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that does not bind to glucuronic acid, making it insoluble in water

and unable to be excreted through the kidneys (41). High levels of

IBIL are produced when a significant number of red blood cells are

broken down in the body. Liver damage can impair the metabolism of

normal BIL, leading to an accumulation of IBIL in the blood. The

changes in biochemical indicators suggest that BPA may have an

effect on the liver.

The Chao1 index in the BPA group (♂) decreased significantly

(P < 0.05). This indicated that exposure to BPA reduced the species

diversity and changed the structure of gut flora. The decrease in

Faith’s PD index indicated that under the influence of BPA, the

evolutionary difference of rat intestinal flora became smaller. The

effect of BPA on male rats was higher than that on female rats.

Firmicutes and Bacteroidetes are the most important bacteria in

the body, and their relative abundance of them accounts for more
FIGURE 11

The heatmap of LPCs in the serum. Red represents the lowest while blue represents the highest, the X-axis of the heatmap represents different
groups within 6 samples, while the Y-axis stands for LPC levels.
FIGURE 12

The heatmap of amino acids, TCA, and oxidative stress metabolism: male group (A) and female group (B). Blue represents the lowest while red
represents the highest. The X-axis of the heatmap represents different groups within 6 samples, while Y-axis stands for metabolite levels.
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than 80% of the species (42). Firmicutes mainly produce butyric

acid, and Bacteroidetes mainly produce acetic acid and propionic

acid (43, 44). The ratio of Firmicutes/Bacteroidetes (F/B) is an

important indicator for evaluating gut microbes (45). In both the

male and female groups, dysbacteriosis was observed following BPA

intake, as evidenced by changes in the F/B ratio. Previous studies

have established a strong correlation between an increased F/B ratio

and fat deposition as well as metabolic disorders. Conversely, a

decreased F/B ratio has been associated with reduced levels of

SCFAs, accumulation of lipopolysaccharide, and the induction of an

immune inflammatory response (46, 47).

SCFAs are the end products of intestinal flora. SCFAs

participate in the maintenance of intestinal mucosa integrity,

improve glucose and lipid metabolism, control energy

expenditure, and regulate the immune system and inflammatory

responses (48). The bacteria responsible for producing SCFAs in the
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body primarily include Anaerobic Bacteroides, Bifidobacteria,

Eubacteria, Streptococcus, and Lactobacillus (49). Experimental

results indicate that the intake of BPA can lead to changes in

SCFA-producing bacteria and subsequently affect SCFA levels. The

impact of BPA on SCFAs varied between the male and female rats.

In the male group, SCFA levels increased to varying degrees, while

in the female group, they decreased to varying degrees.

Clostridiaceae Clostridium, a major group of bacteria producing

different SCFAs in the intestine, exhibited a changing trend similar

to SCFAs (50). This sex difference may be attributed to inherent

variations in hormone levels between sexes, potentially mediated

through a reciprocal relationship between sex hormones and gut

flora, influencing changes in levels. There were also sex differences

in hormone level results. Functional differences in murine estrogen

receptor b status have been reported between representative orders

(e.g., Lactobacillus) and specific phyla (e.g., Proteobacteria,
FIGURE 14

The heatmap of steroid hormone metabolism in male groups (A) and female groups (B). Blue represents the lowest while red represents the highest.
The X-axis of the heatmap represents different groups within 6 samples, while the Y-axis stands for metabolite levels.
FIGURE 13

Amino acids and TCA schematic diagram.
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Bacteroidetes, and Firmicutes), suggesting that nuclear steroid

receptor status and nutritional complexity may play important

roles in maintaining the microbiome (51). a-diversity has a

negative correlation with estradiol concentrations, but the

mechanism remains unclear (52). Etiocholanolone is a metabolic

product of testosterone and androstanolone, which decreases with

androstanolone level. Dehydroepiandrosterone is an important

precursor of androgens and estrogens, a decrease in it directly

affects the subsequent biosynthesis of estrogens and androgens. Sex

hormones are mainly metabolized and degraded in the liver, and

some hormones are transported into the intestine, which is affected

by the metabolites of intestinal flora (53). The abundance of

Clostridium in the family Clostridiaceae was correlated with a

change in estrogen (54). The abundance of Clostridiaceae

increased in the BPA group (♂), but decreased in the BPA group

(♀). BPA could affect the hormone contents in rats by affecting the

levels of intestinal flora.

UDCA is a secondary bile acid produced by intestinal bacteria

after conversion of CDCA. It is a key factor in the integrity of the

intestinal barrier and has an important influence on lipid

metabolism (55). After BPA exposure, its levels were significantly

reduced compared to that of control group, indicating that it may

have an impact on intestinal and lipid metabolism. In male rats,

except for GUDCA, the levels of other conjugated bile acids were

increased, and together with the transaminase results, it can be

concluded that toxic exposure led to an increase in the levels of

upstream substances such as cholesterol and bilirubin, while

promoting the release of free bile acids.

BAs are produced from cholesterol in hepatocytes. Primary

BAs, including CA and CDCA, are essential for the digestion and

absorption of lipids and vitamins (56) and 90% of them are actively

reabsorbed by the terminal ileum and recirculated in the liver
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(enterohepatic circulation). Primary BAs are also converted into

secondary BAs and deconjugated into unconjugated BAs by

intestinal microbiota (57), which can be passively reabsorbed into

the BA pool or excreted through feces. The contents of conjugated

BAs in the rats were significantly increased, which indicated that the

intake of BPA interferes with the conversion of conjugated BAs into

unconjugated bile acid via intestinal microbiota.

It is well-recognized that gut microbiota influences host lipid

metabolism (58). A high-fat diet (HFD) in mice has been found to

promote the development of colorectal cancer by causing intestinal

microbial disorders which led to an increase in lysophosphatidic

acid (59). After exposure to BPA, there was a significant alteration

in the levels of LPCs in the rats, suggesting that BPA intake can

disrupt lipid balance via intestinal microbiota, increasing the risk of

high fat and obesity.

Amino acids interact with intestinal flora, participate in

microbial metabolism, and play a role in maintaining the balance

of the intestinal environment (64). It is produced during the

fermentation of intestinal flora, proteins, and bioactive peptides

(60). Studies have shown that in the treatment of hyperlipidemia,

the positive regulation of drugs on intestinal flora can increase the

content of citrulline and ornithine (61). The results of this study

showed that toxic exposure reduced the content of some amino

acids by affecting the intestinal flora.

The results showed that the expression of the pro-inflammatory

factors IL-6, IL-23, and the anti-inflammatory factor TGF-b
increased in the serum of male rats, which indicates an

inflammatory process. GLOB is produced by the immune organs

and its increase indicates inflammation or invasion by exogenous

substances. Excessive production of GLOB by the immune system

results in a low A/G ratio (62). Research has shown that T cells can

regulate the synthesis and metabolism of BA through inflammatory
FIGURE 15

Analysis of inflammatory factors by ELISA. #P < 0.05, ##P < 0.01 vs. Blank group; *P < 0.05 vs. Control group. n=6; ANOVA followed by Dunnett’s
multiple comparison tests; the data is presented as mean ± SD.
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factors (63). It can be seen that BPA exposure has an effect on the

hepatic immune system and may be involved in the T cell-mediated

immune response.
5 Conclusions

This study reported the subchronic effects of BPA on the gut-

liver-hormone axis in rats of different sexes for the first time. There

was pathological damage in the heart, liver, and testis tissues of rats

exposed to BPA and it further affected the contents of biochemical

indicators. BPA exposure reduced the diversity of intestinal flora

and reduced the species category of flora. The metabolomic study

showed that the contents of bile acids, short-chain fatty acids,

amino acids, and other metabolites were also affected. The

detection results of inflammatory factors also suggested that BPA

exposure affects the hepatic immune system. The toxicity of BPA

based on the gut-liver-hormone axis was evaluated systematically,

which holds significant theoretical significance for understanding

its toxic mechanism. Additionally, there are valuable research

implications for studying the environmental intake, mechanism of

action, and health risk level associated with BPA. Furthermore, this

research provides important guidance for investigating the

toxicological effects of environmental pollutants and for

developing strategies to treat and improve water environments.
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