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Construction and validation of a
nomogram model for predicting
diabetic peripheral neuropathy
Hanying Liu, Qiao Liu, Mengdie Chen, Chaoyin Lu
and Ping Feng*

Department of Endocrinology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
Objective: Diabetic peripheral neuropathy (DPN) is a chronic complication of

diabetes that can potentially escalate into ulceration, amputation and other

severe consequences. The aim of this study was to construct and validate a

predictive nomogram model for assessing the risk of DPN development among

diabetic patients, thereby facilitating the early identification of high-risk DPN

individuals and mitigating the incidence of severe outcomes.

Methods: 1185 patients were included in this study from June 2020 to June

2023. All patients underwent peripheral nerve function assessments, of which

801 were diagnosed with DPN. Patients were randomly divided into a training set

(n =711) and a validation set (n = 474) with a ratio of 6:4. The least absolute

shrinkage and selection operator (LASSO) logistic regression analysis was

performed to identify independent risk factors and develop a simple

nomogram. Subsequently, the discrimination and clinical value of the

nomogram was extensively validated using receiver operating characteristic

(ROC) curves, calibration curves and clinical decision curve analyses (DCA).

Results: Following LASSO regression analysis, a nomogrammodel for predicting the

risk of DPN was eventually established based on 7 factors: age (OR = 1.02, 95%CI:

1.01 - 1.03), hip circumference (HC, OR = 0.94, 95%CI: 0.92 – 0.97), fasting plasma

glucose (FPG, OR = 1.06, 95%CI: 1.01 - 1.11), fasting C-peptide (FCP, OR = 0.66, 95%

CI: 0.56 - 0.77), 2 hour postprandial C-peptide (PCP, OR= 0.78, 95%CI: 0.72– 0.84),

albumin (ALB, OR = 0.90, 95%CI: 0.87 – 0.94) and blood urea nitrogen (BUN, OR =

1.08, 95%CI: 1.01 - 1.17). The areas under the curves (AUC) of the nomogram were

0.703 (95% CI 0.664-0.743) and 0.704 (95% CI 0.652-0.756) in the training and

validation sets, respectively. The Hosmer–Lemeshow test and calibration curves

revealed high consistency between the predicted and actual results of the

nomogram. DCA demonstrated that the nomogramwas valuable in clinical practice.

Conclusions: The DPN nomogram prediction model, containing 7 significant

variables, has exhibited excellent performance. Its generalization to clinical

practice could potentially help in the early detection and prompt intervention

for high-risk DPN patients.
KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is recognized as a global public health

disease, with an extremely high prevalence in both developed and

developing countries. Diabetic peripheral neuropathy (DPN) is one

of the main chronic complications of DM and significantly affects

an individual’s quality of life (1, 2). Patients with DPN can yield

serious health ramifications such as numbness or pain in the distal

extremities, possibly progressing to diabetic foot or even

necessitating amputation (1–6). Therefore, early detection and

timely intervention in cases of DPN are crucial in reducing the

incidence of adverse outcomes.

Numerous measurements are currently accessible for clinical

use in facilitating the diagnosis of DPN; however, bedside foot

screening assessment fail to detect subtle neuropathy, scored clinical

sensory tests are plagued by a lack of objectivity and

standardization, and the gold standard neurophysiological

examination is hindered by its high cost and time consumption

(1–8). Consequently, the application of these methods is limited in

wide-scale screening activities or routine clinical practice. It is

therefore imperative to develop an accessible, objective and

accurate tool to facilitate the early detection and quick assessment

of DPN risk in restricted clinical settings.

Thus, our goal was to construct a straightforward and visual

nomogram model utilizing assorted clinical variables to predict the

risk of developing DPN. Such a model would empower clinicians in

identifying high-risk individuals early and providing effective

treatments in time to enhance clinical prognosis.
2 Subjects and methods

2.1 Subjects

In this cross-sectional study, a total of 1185 individuals aged 18-

75 years were recruited from June 2020 to June 2023 at Taizhou

Central Hospital (Taizhou University Hospital), China. The

subjects included were diagnosed with diabetes according to the

World Health Organization guidelines of 1999 and all participants

were capable of independent communication. Patients with a

history of drug or medication abuse, acute infectious diseases,

malignancies, severe life-threatening illnesses, and other causes

contributing to peripheral neuropathy were excluded. The study

protocol was approved by the Ethics Committees of Taizhou

Central Hospital and conformed to the Helsinki Declaration.

Informed consents were obtained from all participants.
2.2 Anthropometric and
laboratory assessments

A digital sphygmomanometer was used to measure the diastolic

blood pressure (DBP) and systolic blood pressure (SBP). The blood

pressure was measured at least twice consecutively and the average
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of the two readings was taken as the final recorded value. The

weight and height of participants were measured by a digital scale,

and body mass index (BMI) was subsequently calculated as weight

(kg) divided by height squared (m2). The well-trained examiner

performed circumference measurements with the tape placed

horizontally and tight to the skin without compressing the soft

tissues. Neck circumference (NC) was measured horizontally at the

level of the lower border of the laryngeal prominence with the head

erect and eyes facing forward. Waist circumference (WC) was

measured on the midline between the lowest rib margin and the

upper margin of the iliac crest. Hip circumference (HC) was

measured at the level of the pubic symphysis to the most convex

part of the gluteus maximus muscle.

In addition, fasting pre-elbow venous blood specimens were

taken early in the morning after 8 hours of fasting, and patients were

requested to eat a low-fat diet and to avoid alcoholic consumption

and staying up late the day before blood collection. Hematological

and common biochemical examinations of all patients were

performed in the same laboratory following standard laboratory

methods, including: alanine aminotransferase (ALT), aspartate

aminotransferase (AST), alkaline phosphatase (ALP), g-glutamyl

transpeptidase (g-GT), albumin (ALB), blood urea nitrogen (BUN),

serum creatinine (Scr), serum uric acid (SUA), triglyceride (TG),

total cholesterol (TC), high-density lipoprotein cholesterol (HDL-

c), low-density lipoprotein cholesterol (LDL-c), serum fasting

plasma glucose (FPG), 2 hour postprandial plasma glucose (PPG),

fasting C-peptide (FCP), 2 hour postprandial C-peptide (PCP),

glycated hemoglobin A1c (HbA1c), and hemoglobin (Hb).
2.3 Assessment of peripheral
nerve function

Nerve conduction studies stand as the gold standard for

assessing peripheral nerve function and diagnosing DPN due to

the accuracy, reliability, and sensitivity (2–8). Motor and sensory

nerve conduction velocities and nerve action potential

amplifications of the bilateral median, ulnar, tibial, and common

peroneal nerves were measured by experienced technicians.

Subsequently, DPN is diagnosed on the basis of the functional

abnormalities detected within the aforementioned peripheral

nerves (9).
2.4 Statistical analysis

The Quantile-Quantile plot (Q–Q plot) was used to determine

the normality of the data. Normally distributed continuous variables

were expressed as mean ± standard deviation (SD) and non-normally

distributed continuous variables were described as median

(interquartile range, IQR). Continuous variables were compared

using the Student’s t-test or the Mann-Whitney U-test. Categorical

variables were expressed as percentages and compared using the Chi-

squared or Fisher’s exact test. The least absolute shrinkage and
frontiersin.org

https://doi.org/10.3389/fendo.2024.1419115
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1419115
selection operator (LASSO) logistic regression was used for

multivariate analysis to reduce the effect of multicollinearity

between independent variables. Significant independent risk factors

screened by LASSO regression were subsequently entered into

multivariate logistic regression to construct a nomogram model.

Further, the discriminatory capacity of the nomogram model was

assessed by the area under the curve (AUC) of receiver operating

characteristic (ROC). The calibration performance was assessed by

the calibration curve and the Hosmer-Lemeshow test. The decision

curve analysis (DCA) was incorporated to verify the clinical validity

of the model. Statistical analyses were performed using SPSS version

26.0 (IBM, Chicago, IL, USA) and R software (version 4.3.2; https://

www.R-project.org). P-value < 0.05 in two-tailed test was considered

statistically significant.
3 Results

3.1 Baseline characteristics

In the present study, a comprehensive assessment was undertaken

in involving 1185 diabetic patients who fulfilled the inclusion criteria.

Of these participants, 801 were diagnosed with DPN, whereas the

remaining 384 did not exhibit peripheral neuropathy. All patients were

randomly divided into the training set (n = 711) and the validation set

(n = 474) at a ratio of 6:4. When developing prediction models for

binary outcomes, an established rule of thumb for the required sample

size is to ensure at least 10 events for each predictor parameter being

considered for inclusion in the prediction model equation. This is

widely referred to as needing at least 10 events per variable (10-EPV)

(10). There were a total of 27 independent variables in our study;

therefore, according to the 10-EPV rule of thumb, the number of

positive event cases (i.e., DPN) in the training set for this study should

be at least greater than 270. As shown in Table 1, there were 467 DPN

patients in the final training set of this study, indicating that the study

had adequate power to detect significant effects. Upon comparison, the

basic characteristics of the two sets revealed no statistically significant

differences (p>0.05, Table 1). The overall similarity of the cohorts

provided a solid foundation for further investigations into predictive

modeling and outcomes.
3.2 LASSO regression analysis

LASSO regression analysis was performed on the training set to

identify the variables associated with DPN. A cross-validated error

plot of the LASSO regression model is shown in the Figure 1. The

most regularized and parsimonious model was developed with a

cross-validated error within one standard error of the minimum.

After 10-fold cross-validation, lambda.1se parameter was selected as

0.027287. At this point, a total of 7 significant variables were finally

screened: age (OR = 1.02, 95%CI: 1.01 - 1.03), HC (OR = 0.94, 95%CI:

0.92 – 0.97), FPG (OR = 1.06, 95%CI: 1.01 - 1.11), FCP (OR = 0.66,

95%CI: 0.56 - 0.77), PCP (OR = 0.78, 95%CI: 0.72 – 0.84), ALB (OR =

0.90, 95%CI: 0.87 – 0.94) and BUN (OR = 1.08, 95%CI: 1.01 - 1.17).
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TABLE 1 Comparison of basic characteristics between patients in
training and validation sets.

Characteristics training set
(n = 711)

validation set
(n = 474)

P-
value

Gender (%) 0.645

Male 486 (68.4%) 330 (69.6%)

Female 225 (31.6%) 144 (30.4%)

DPN (%) 0.085

No 244 (34.32%) 140 (29.54%)

Yes 467 (65.68%) 334 (70.46%)

Age (years) 55.0 (46.0, 63.0) 55.0 (46.0, 63.0) 0.955

DBP (mmHg) 75.0 (72.0, 83.0) 76.0 (74.0, 84.0) 0.195

SBP (mmHg) 126.0 (121.0, 136.0) 126.0 (122.0, 136.0) 0.249

HR 73.0 (70.0, 79.0) 72.0 (70.0, 78.0) 0.537

BMI (kg/m2) 24.3 (22.3, 26.7) 24.6 (22.5, 27.0) 0.191

NC (cm) 36.8 ± 3.5 37.0 ± 3.6 0.356

WC (cm) 89.0 ± 10.0 89.0 ± 10.0 0.766

HC (cm) 93.0 (89.0, 98.0) 93.0 (89.0, 97.0) 0.456

FPG (mmol/L) 8.6 (6.4, 11.4) 8.5 (6.7, 11.2) 0.916

PPG (mmol/L) 13.5 ± 4.7 13.6 ± 5.0 0.608

FCP (ng/mL) 1.40 (0.81, 2.02) 1.35 (0.88, 1.94) 0.962

PCP (ng/mL) 2.35 (1.33, 3.82) 2.21 (1.27, 3.85) 0.502

HbA1c (%) 10.30 (8.55, 12.30) 10.50 (8.50, 12.20) 0.873

Hb (g/L) 139.0 ± 19.0 139.0 ± 19.0 0.923

ALT (U/L) 21.0 (15.0, 36.0) 20.0 (14.0, 32.0) 0.060

AST (U/L) 19.0 (15.0, 26.0) 19.0 (15.0, 25.0) 0.903

ALP (U/L) 76.0 (63.0, 92.0) 75.0 (62.0, 90.0) 0.152

g-GT (U/L) 28.0 (18.0, 44.0) 26.0 (18.0, 41.0) 0.336

ALB (g/L) 40.6 (38.0, 43.7) 40.5 (37.6, 43.0) 0.223

BUN (mmol/L) 5.1 (4.0, 6.5) 5.1 (4.0, 6.1) 0.185

Scr (mmol/L) 65.0 (55.0, 79.0) 66.0 (55.0, 78.0) 0.862

SUA (mmol/L) 314.0 (255.0, 383.0) 313.0 (250.0, 382.0) 0.444

TG (mmol/L) 1.67 (1.15, 2.44) 1.67 (1.11, 2.52) 0.964

TC (mmol/L) 4.60 (3.82, 5.43) 4.58 (3.82, 5.35) 0.573

HDL-c (mmol/L) 0.96 (0.79, 1.16) 0.94 (0.78, 1.13) 0.507

LDL-c (mmol/L) 2.68 (2.05, 3.35) 2.66 (2.09, 3.33) 0.859
front
Data are expressed as the mean ± SD or the median (IQR); categorical variables are expressed
as n, (%).
DPN, diabetic peripheral neuropathy; DBP, diastolic blood pressure; SBP, systolic blood
pressure; HR, heart rate; BMI, body mass index; NC, neck circumference; WC, waist
circumference; HC, hip circumference; FPG, fasting plasma glucose; PPG, 2 hour
postprandial plasma glucose; FCP, fasting C-peptide; PCP, 2 hour postprandial C-peptide;
HbA1c, glycated hemoglobin A1c; Hb, hemoglobin; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; ALP, alkaline phosphatase; g-GT, g-glutamyl transpeptidase; ALB,
Albumin; BUN, blood urea nitrogen; Scr, serum creatinine; SUA, serum uric acid; TG,
triglyceride; TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-
density lipoprotein cholesterol.
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3.3 Construction of the nomogram

Independent risk factors screened by LASSO regression analysis

in the training set were subsequently entered into the prediction

model. Consequently, a nomogram model incorporated 7

significant risk factors for predicting DPN was constructed

(Figure 2). As displayed in the figure, the corresponding

parameters from top to bottom were inclusive of the individual

points, age, HC, FPG, FCP, PCP, ALB, BUN, the total points, and

the risk of developing DPN. Each parameter was assigned a score on

the point scale axis. The individual scores of all parameters were

aggregated to determine the total points, which can be employed to

estimate the probability of developing DPN.
3.4 Validation and performance of
the nomogram

According to the ROC analysis, the AUC of the nomogram for

the training set was 0.703 (95% CI 0.664-0.743), with a sensitivity of

68.9% and a specificity of 60.8%; the AUC of the nomogram for the

validation set was 0.704 (95% CI 0.652-0.756) with a sensitivity of

67.1% and a specificity of 62.0%, indicating the relatively good
Frontiers in Endocrinology 04
accuracy and discriminatory power of the model (Figure 3). The

positive predictive value was 0.479 (95% CI 0.426 - 0.531) in the

training set and 0.425 (95% CI 0.360 - 0.491) in the validation set;

and the negative predictive value was 0.789 (95% CI 0.747 - 0.831)

in the training set and 0.818 (95% CI 0.771 - 0.866) in the validation

set. The p-values of Hosmer–Lemeshow test were 0.943 and 0.381

in the training and validation sets respectively, emphasizing an

appreciable consistency between the predicted and actual

probabilities (p>0.05). To prevent overfitting of the model,

internal validation was performed on the training set by

bootstrapping techniques and the average AUC obtained after

200 iterations was 0.704 (95% CI 0.701-0.707). In addition, the

calibration curves were obtained through the bootstrapping

validation of the model with a total of 1000 repetitions. The

‘apparent’ and the bootstrap-corrected ‘bias-corrected’ line in the

calibration curves of the nomogram presented a strong resemblance

to the ideal diagonal line, indicating a close alignment between the

predicted probabilities and the actual probabilities (Figure 4). This

observation accentuated the high level of prediction accuracy that

the nomogram exhibited in both the training and validation sets.

Figure 5 illustrated the DCA for predicting the possibility of DPN

and evaluating the clinical utility of the model. The decision curves

demonstrated that with a threshold probability of 0.15-0.97 in the

training set and 0.20-0.95 in the validation set, the nomogram

yielded greater net benefits as compared to the “full treatment” or

“no treatment” strategies. The results suggested that the model

serves as an effective evaluation tool holding considerable value in

the clinical setting.
4 Discussion

DPN is a significant neurological complication of DM and a

major contributor to diabetic foot syndrome characterized by

painful neuropathic symptoms, paresthesia and sensory deficits

leading to increased risk of burns, injuries, infections, foot

ulcerations and even amputations (1–6). This reinforces the

critical importance of early screening and diagnosis of DPN,

which can facilitate effective interventions to halt the progression

and reduce the morbidity of these severe complications.

As an acknowledged gold standard for the early subclinical diagnosis

of DPN, electrophysiological testing offers an objective and quantitative

method for detecting peripheral neuropathy. The sensitivity of nerve

conduction studies is superior to the clinical examinations of peripheral

neuropathy (2–8). However, the prohibitive cost and inconvenience

considerably limit the widespread application in large-scale screening or

routine clinical practice. Recognizing these challenges, our study aimed to

create a workable solution by developing a nomogram for predicting the

risk of DPN. This model is designed to facilitate a faster, more efficient,

and early assessment of DPN and advance patient care amidst

resource constraints.

The nomogram derived from LASSO regression analysis was

ultimately composed of age, HC, FPG, FCP, PCP, ALB and BUN. It

exhibited good discriminative power and clinical utility in both the

training and validation sets, making it a notably convenient and

practical tool for clinical use.
FIGURE 1

LASSO regression for the screening of the predictor variables. (A)
LASSO regression cross-validation plot. (B) LASSO regression
coefficient path plot.
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Previous literatures have suggested that advancing age is a

notable risk factor for DPN. The prevalence of DPN has been

shown to increase with age, reaching a peak in more than half of all

patients with type 2 diabetes aged 60 years or older (4). Wang W

et al. found that the DPN severity was accentuated in those aged

over 60 years (11). The univariate and multivariate analyses from

their study further indicated that age groups ≥50 years were 1.512-

1.853 times more likely to develop DPN than those < 40 years.

Similarly, Cheng Y et al. observed that patients older than 66 years

had 2.65 times greater probability of developing DPN compared to

those < 66 years old (12). DPN is well-recognized as a chronic

complication that takes time to develop. It is hypothesized that the

primary pathophysiological mechanisms contributing to the onset

of DPN are associated with inflammation, oxidative stress and

mitochondrial dysfunction, which typically occur during the aging

process (1, 4, 13, 14). As individuals age, chronic inflammation and

oxidative stress in nerve cells intensify, while the function of

mitochondria in these nerve cells gradually declines. This

culminates in an insufficient supply of cellular energy,

subsequently triggering cellular apoptosis (14).

Prior epidemiological studies have demonstrated that obesity

represents a significant risk factor for developing DPN (15–18). A

study was performed to investigate the relationship between body

composition and DPN (16). The study demonstrated that the

presence of DPN was associated with visceral fat area (OR =

1.026; 95% CI, 1.005–1.048) after adjusting for age, sex, diabetes

duration, and smoking status. It was thus concluded that abdominal

obesity was associated with DPN. It is well known that abdominal

obesity is characterized by the accumulation of visceral fat, withWC

commonly used in clinical practice as an approximate measure of
Frontiers in Endocrinology 05
visceral fat content (19). In contrast, subcutaneous fat accumulates

predominantly in the gluteal and lower extremity regions, making

HC a widely employed indicator for the assessment of subcutaneous

adipose tissue. The findings of our study indicated that HC was

negatively associated with DPN, thereby acting as a protective factor

for DPN. Similarly, Zhen Q et al. found that leg subcutaneous fat

played a protective role in the development of DPN. The risk of

developing DPN was reduced by 30% for every 1kg increase in

subcutaneous leg fat (17). Appropriate subcutaneous fat mass may

exhibit neuroprotective properties due to the lower lipolytic activity

of subcutaneous adipose tissue and the preferential absorption of

plasma free fatty acids, thereby protecting skeletal muscle from high

levels of free fatty acids (17, 20).

It has been proposed by several studies that hyperglycemia and

impaired pancreatic islet function are the initiating factors for a

range of pathophysiological changes in DPN (21–25). The

deterioration of nerve fibers resulting from hyperglycemia gives

rise to an imbalance between the nerves responsible for damage and

those engaged in repair (23). Abnormal glucose precipitates

alterations in mitochondrial function, inflammation, oxidative

stress, specific gene transcription and expression, ultimately

resulting in neuronal-glial cell damage (24). Additionally,

increasing evidence suggests that C-peptide (CP) exerts a range of

effects on metabolism, neuroprotection and anti-apoptosis (25–27),

including the Na+/K+- ATPase activity, endothelial nitric oxide

synthase, expression of neurotrophic factors, and the regulation of

molecular species underlying the degeneration of the nodal

apparatus in nerves of T1DM (25, 26). A community-based study

in China revealed a negative correlation between FCP, PCP levels

and DPN in T2DM after adjusting for potential confounders (27).
FIGURE 2

Nomogram for predicting the risk of DPN in diabetic patients. DPN, diabetic peripheral neuropathy; HC, hip circumference; FPG, fasting plasma
glucose; FCP, fasting C-peptide; PCP, 2 hour postprandial C-peptide; ALB, albumin; BUN, blood urea nitrogen.
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They further proposed that residual b-cell function, as reflected by

CP concentrations, exhibits a significant neuroprotective role. This

highlights the necessity of minimizing drug-induced b-cells
overstimulation and initiating insulin therapy at the optimal

juncture to maintain endogenous b-cell activity during the T2DM

progression (27).

The relationship between ALB and DPN has been investigated

extensively in various studies. Specifically, a study conducted by

Yan P et al. demonstrated a negative correlation between serum

ALB levels and increased risk of DPN (28). In their study, ALB

remained significantly associated with increased risk of DPN after

adjusting for demographic, metabolic, inflammation and oxidative

stress, and other parameters (OR = 0.499, 95% CI 0.385–0.645, P <

0.01). Furthermore, the optimal cutoff point of ALB linked with the

prevalence of DPN was determined to be 39.95 g/L according to

ROC analysis (28). In agreement with previous reports, our study
Frontiers in Endocrinology 06
also confirmed that ALB was negatively associated with DPN.

Synthesized and secreted by hepatocytes, ALB is a main protein

component of blood plasma in human body. As an indicator of the

body’s nutritional state, ALB is potentially neuroprotective and

exhibits a range of physiological features including antioxidant,

anti-inflammatory, and anti-thrombotic activities (28, 29).

Moreover, it averts apoptosis in endothelial cells, Schwann cells

and neurons. It also shields neurons from injuries caused by

ischemia and reperfusion, and enhances neurological functional

recovery (28–31). Thus, elevated capillary permeability to ALB in

diabetic patients can induce basement membrane thickening,

interstitial ALB retention and secondarily neurogenic edema. This

series of events could result in severe neurological lesions and foster

the progression of DPN (32, 33).

A large number of evidences lend support to the observed

positive correlation between BUN and the risk of DPN (34–36).

Urea nitrogen, a crucial component of urea, mainly emerges as a

byproduct of protein metabolism within the body. This substance,

excreted through glomerular filtration, is a key metric in assessing

renal function, thereby revealing the risk of indirectly related

diseases (35, 36). Increased levels of BUN possess the potential to
FIGURE 3

ROC curves of the nomogram. (A) Training set. (B) Validation set.
ROC, receiver operating characteristic; AUC, area under the
ROC curve.
FIGURE 4

Calibration curves of the nomogram. (A) Training set. (B)
Validation set.
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directly affect the function of pancreatic b-cell. Such interference

can disturb glucose homeostasis and eventually result in the

development of DM and impairment of renal function (37).

Along with diabetic nephropathy, DPN is recognized as one of

the microvascular complications of DM. There exists a significant

link between both conditions at different stages in patients with type

2 diabetes (38). The prevalent understanding posits that the

evolution and progression of diabetic nephropathy and DPN
Frontiers in Endocrinology 07
occur concurrently due to the exposure of peripheral nerves and

renal vessels to the deleterious elements present in diabetic

environment (35). There is an imperative necessity for more

robust and scientifically rigorous studies to investigate the links

between BUN and DPN, thereby illuminating the processes through

which BUN affect the pathogenesis of DPN.

A number of prediction models for DPN have been developed

in the reviewed literature. Fitri A et al. developed a scoring system
FIGURE 5

DCA curves of the nomogram. (A) Training set. (B) Validation set. DCA, decision curve analysis.
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prediction model for the severity of diabetic polyneuropathy based

on vitamin D levels (39). This model indicated that patients with

scores above 4 had a 2.7-fold higher risk of severe DPN. However, it

should be noted that this study included only 50 patients with DM

and did not indicate specific differences in the risk of developing

DPN when specific scores differed. Another study had also devised a

nomogram (40); however, the study population was limited to a

community-based cohort of 700 cases. Additionally, the diagnostic

criteria of DPN based on scores from the Toronto Clinical Scoring

System test may result in false positives.

The principal benefit of this study is that the derived

nomogram, based on a sample size of 1185 patients, incorporates

both anthropological parameters and conventional serum

biochemical indicators that are readily accessible in general

healthcare settings. Furthermore, our nomogram is the inaugural

predictive model to concentrate on the correlation between C-

peptide and DPN, thereby elucidating the influence of islet function.

The nomogram exhibits favorable discriminatory and predictable

properties, rendering it a valuable tool for clinical practice.

There are several certain limitations in our study. Firstly, it was

a single-center study with an inevitable degree of internal bias and a

lack of generalization to diverse populations. Secondly, as a

retrospective cross-sectional study, it was unable to accurately

ascertain the precise sequence and causality between the exposure

and outcome variables.

Further external validation of the nomogram model in various

regions and ethnic groups is required to mitigate selection bias and

confirm the generalizability and applicability of the model in

different clinical settings. In addition, prospectively designed

studies containing more novel indicators or biomarkers are

necessary to enhance the predictive accuracy of the nomogram

and provide a more favorable and reliable reference for clinical

assessment of DPN risk.
5 Conclusion

In conclusion, the nomogram prediction model developed in

our study consists of age, HC, FPG, FCP, PCP, ALB and BUN. It

exhibits good predictive ability and clinical benefits, thus endowing

clinicians with an intuitive and practical tool for early identification

of individuals with a high risk of DPN in a wide range of clinical

settings, especially in centers with limited medical resources.
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