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In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial

role. However, traditional manual interpretations are plagued by inter-observer

variability and limitations in recognizing details. Radiomics, based on MRI,

facilitates quantitative analysis by extracting high-throughput data from

images. This approach elucidates correlations between imaging features and

pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent

studies have demonstrated the extensive application of radiomics in differential

diagnosis, subtype identification, consistency evaluation, invasiveness

assessment, and treatment response in pituitary adenomas. This review

succinctly presents the general workflow of radiomics, reviews pertinent

literature with a summary table, and provides a comparative analysis with

traditional methods. We further elucidate the connections between

radiological features and biological findings in the field of pituitary adenoma.

While promising, the clinical application of radiomics still has a considerable

distance to traverse, considering the issues with reproducibility of imaging

features and the significant heterogeneity in pituitary adenoma patients.
KEYWORDS

Pit-NET, pituitary adenoma, radiomics, textual analysis, machine learning,
biomarkers, neuroimaging
1 Introduction

Pituitary adenoma (PA, also known as pituitary neuroendocrine tumor, [Pi-NET]) is a

relatively common entity, accounting for about 10%-15% of primary intracranial tumors

(1–3). Most of these tumors are benign and typically present with hormone hypersecretion

syndromes and/or mass effect on critical structures; patients with these benign tumors also

experience poor quality of life (1). Moreover, over 30% of PAs may be invasive and infiltrate

surrounding structures, including the cavernous sinuses, bone, hypothalamus, and internal
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carotid (4). Even with the inclusion of multidisciplinary

comprehensive treatment, there remains a tendency for frequent

recurrence (5). The management of pituitary lesions presents a

significant challenge due to the intricate nature of pituitary

occupancy and the heterogeneity of pituitary adenoma subtypes,

necessitating precision identification methods and individualized

management strategies.

In addition to hormonal assays and biopsy, the diagnosis and

treatment plan of PA are highly dependent on imaging, mainly on

magnetic resonance imaging (MRI). In patients suspected of

harboring a pituitary lesion, it is widely recognized to conduct

MRI scanning first to non-invasively identify tumor type, as well as

ascertain mass size and location (6–8). Additionally, long-term

radiological follow-up can provide vital information regarding

tumor progression and postoperative recurrence. MRI, with the

advantages of high soft tissue contrast, no radiation, and

multiplanar imaging capability, proves to be an indispensable tool

(9). However, owing to the diverse classification of pituitary

adenomas, the wide range of clinical manifestations, and the

similarity in imaging characteristics, traditional manual

interpretation of radiological images remains limited in clinical

practice. The actual effectiveness of these qualitative diagnoses

highly relies on the experience and expert knowledge of the

neuroradiologists, introducing an inherent issue of unavoidable

human errors. In contrast, the advantages of objective

quantitative methods lie in their high time efficiency, strong

repeatability, and enhanced capability to recognize intricate

features (10). Here, radiomics has emerged in response to this need.

Radiomics refers to quantitatively capturing features from

routine medical scans through data characterization algorithms,

enabling the detection of subtle cues that are not discernible to the

naked eye (11). These features are high-dimensional, mineable data,

containing information reflective of tumor texture and

heterogeneity (10). In recent years, radiomics has been applied in

various brain tumors, such as meningiomas (12, 13), gliomas (14–

16), and metastases (17, 18), and other CNS tumors (19–21). Yet,

only a few studies have reported on radiomics analysis of PA.

The aim of this review is to examine the current application of

MRI-based radiomics in the management of PA from a clinical

perspective, in a way that even those not familiar with computer
Abbreviations: PA, pituitary adenoma; Pi-NET, pituitary neuroendocrine tumor;

PM, pituitary macroadenoma; PHA, plurihormonal pituitary adenoma; PIT1,

pituitary transcription factor 1; TPIT, t-box pituitary transcription factor; SF-1,

steroidogenic factor 1; DG, densely granulated; SG, sparsely granulated; NFPA,

non-functional pituitary adenomas; NCA, null cell adenoma; SCA, silent

corticotroph adenoma,; LDA, linear discriminant analysis; SVM, support

vector machine; RF, random forest; KNN, k-nearest neighbor; LR, logistic

regression; DT, decision tree; GBDT, gradient boosting decision tree;

AdaBoost, adaptive boosting,; SGD, stochastic gradient descent; MLP,

multilayers perceptron; ANN, artificial neural network; CNN, convolutional

neural network; WBC, white blood cell; FIB, fibrinogen; T1WI, T1-weighted

image,; T2WI, T2-weighted image; T1CE, T1-weighted imaging with contrast

enhancement; DWI, diffusion-weighted image,; DCE, dynamic contrast-

enhanced; AUC, area under curve; ROC, receiver operating characteristic; PFS,

progression free survival.
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science could understand. Specifically, we provide a concise

overview of the workflow in radiomics, and systematically

summarize and organize the information from five perspectives:

diagnosis, subtyping, aggressiveness, consistency and treatment

response assessment, and provide comparative tables for

reference. Finally, we discuss the future prospects and limitations

of radiomics in the field of PA.
2 Overview of radiomic pipeline

Radiomics refers to the extraction and analysis of large amounts

of advanced quantitative imaging features with high throughput

from radiological images, which can be employed for diagnosis,

prognosis assessment, and adjunctive selection of therapeutic

modalities (10). Compared to conventional radiology, radiomics

offers the benefit of being less subject to individual radiologist biases

and can capture a lot more additional information. The steps

involved vary across different studies, each tailored to specific

objectives (10). The workflow of classic radiomics typically

involves the following steps:
a. Image acquisition and reconstruction: This first step

involves obtaining raw data from various medical imaging

modalities such as CT, MRI, PET, etc. Then the raw non-

image-formative data undergo reconstruction into 2D or

3D image format. Unfortunately, standardization of these

parameters in acquisition and image reconstruction is still

lacking, necessitating the provision of error bars to improve

the reliability.

b. Region of Interest (ROI) identification/segmentation: In

this step, areas of interest, usually tumors or other

pathological lesions, are identified in the images. It is

crucial as the subsequent feature data are generated from

the segmented areas. This can be delineated manually by a

neuroradiologist; while this method is effective in ensuring

accuracy, the process can be somewhat cumbersome and is

subject to significant inter-observer variability (22).

Alternatively, automatic identification can rapidly process

large datasets, significantly improving work efficiency but

may compromise accuracy in complex cases (23, 24), and

semi-automatic segmentation techniques may find a

balance between the two approaches (25).

c. Feature extraction: Radiomic features are extracted from

identified regions of interest (ROIs) under expert

supervision, using predefined algorithms to reveal the

biological characteristics of the tumor. These features can

typically be divided into four categories: i Shape features

focus on the geometry and size of the ROIs, effectively

reflecting morphological changes in tumors. ii Texture

features describe the spatial distribution and arrangement

of pixel values within the image, making them suitable for

analyzing tumor heterogeneity (26). iii Histogram features

are derived from the statistical distribution of pixel values,

without considering their spatial relationships. iv By

applying complex mathematical transforms and filters,
frontiersin.org
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Fron
high-order features convert image data into alternative

forms, enabling the extraction of deeper, more intricate

information (10). It’s important to note that semantic

features are cumulative diagnostic expertise of

radiologists, facilitating the interpretation of lesions in a

biologically meaningful context. While they are not

radiomic features, they are often compared with radiomic

features for model evaluation.

d. Feature selection: Given the vast number of features

extracted, one way to decrease the propensity for model

overfitting linked to the high-dimensional nature of the

radiomic feature set is to select the most representative and

top-ranking features. Eliminating irrelevant features is

imperative, as their presence can obscure the significance

of related features and negatively impact the predictive

model ’s performance. There are four common

algorithmic approaches: i Filter Methods: Select features

based on statistical criteria, such as variance thresholding to

remove low-variance features. ii Wrapper Methods: Choose

features based on model performance, like forward

selection, which iteratively adds features that improve

performance. iii Embedded Methods: Perform feature

selection during model training, automatically identifying

important features, such as least absolute shrinkage and

selection operator (LASSO) regression using L1

regularization (27). iv Statistical Methods: Techniques like

principal component analysis (PCA) reduce dimensionality

by transforming high-dimensional data into a lower-

dimensional space through linear combinations of the

original features (28).

e. Modeling: Once optimal features are identified, feed the

data, the features of training set that are annotated with

categorical labels, into the classification algorithms

(classifier). The labels represent the categories of interest

(e.g., invasive and non-invasive). It is noteworthy that the

model can integrate not only radiomic features but also

additional information, such as clinical, demographic, or

genomic data (10).
The core of radiomics is quantitative analysis of imaging

features; thus, not all radiomics studies strictly adhere to the

aforementioned processes. For instance, deep learning models,

such as convolutional neural networks (CNN), learn not only the

features but also how to map these features to the predicted

outcomes, which directly integrate the processes of feature

identification, selection, and even modeling across different

layers (Figure 1).
3 Application in pituitary adenoma

3.1 Application in differential diagnosis

When lesions are situated in the sellar and suprasellar regions, it is

often difficult to differentiate pituitary adenomas, craniopharyngiomas,

meningiomas, Rathke cleft cysts, and inflammatory processes from one
tiers in Endocrinology 03
another based solely on MR imaging (29). Given the distinct surgical

strategies and treatment protocols for each of these conditions, correct

preoperative diagnosis of these lesions is clinically critical. The

advancement of radiomics offers a new avenue to meet this challenge.

Zhang et al. (30) conducted a study where they retrospectively

extracted qualitative MRI features and textual features from 126

patients diagnosed with pituitary adenoma (N = 63) or

craniopharyngioma (N = 63). The results indicated that a radiomic

feature from T1CE and two features from T2WI could act as

independent diagnostic predictors. Besides, cystic change was the

only independent diagnostic predictor among the image features,

and histogram skewness, gray level co-occurrence matrix contrast

(GLCM-Contrast) from the textual features extracted from T2WI

was significantly associated with the macroscopic cystic change (p ≤

0.001). This suggests that textual analysis may provide a microscopic

perspective on the tissue heterogeneity of cystic changes. In another

study conducted by the same team (31), they applied five feature-

selection methods (distance correlation, random forest (RF), least

absolute shrinkage and selection operator (LASSO), extreme gradient

boosting (XGboost), and gradient boosting decision tree (GBDT)) and

nine machine-learning classifiers (linear discriminant analysis (LDA),

support vector machine (SVM), random forest (RF), adaptive boosting

(AdaBoost), k-nearest neighbors (KNN), Gaussian naive Bayes

(GaussianNB), logistic regression (LR), gradient boosting decision

tree (GBDT), and decision tree (DT)) for discrimination of sellar

masses (including craniopharyngioma, pituitary adenoma, Rathke cleft

cyst, and meningioma). They found that LASSO stands out as an

exceptional feature-selection technique and LASSO + LDA model

demonstrated superior aggregate performance, achieving an area

under the curve (AUC) exceeding 0.80 across all training and testing

cohorts. It’s noteworthy that the average AUC of the general

radiologists in the differentiation among pituitary macroadenoma,

craniopharyngioma, and Rathke cleft cyst is 0.876, but for the

neuroradiologists it’s 0.952 (32). This indicates that radiomic models

that solely rely on cues from medical imaging predominantly play a

role in assisting diagnosis, yet there remains a discernible gap in

diagnostic efficacy compared to experienced neuroradiologists.

Wang et al. (33) aimed to explore the diagnosis value of MRI-

based radiomics model for the classification of cystic pituitary

adenoma and Rathke cleft cyst. They developed six models, three

of them based on single sequence radiomic features: T1WI model,

T2WI model, and postcontrast T1WI model, as well as

multiparametric radiomics models, semantic models, and the

combined radiomics and semantic model, and compared their

diagnostic efficacy. The findings published indicated an

enhancement in the performance of the radiomics model upon

the addition of semantic features. Compared to the radiologist

mentioned in the text, the machine-learning model based on

radiomics exhibits superior diagnostic performance.

Regrettably, none of the three studies incorporated clinical

information in the establishment of a diagnostic model. Zhao et al.

(34) formulated and validated a diagnostic nomogram for classifying

Cystic-Solid pituitary adenoma from craniopharyngioma, which

integrates radiomic signatures with hematological parameters,

encompassing four elements: radiomics signature, patient age, white

blood cell (WBC) count, and fibrinogen (FIB) levels. In both the
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training and testing sets, the radiomic-clinical nomogram notably

outperformed the radiomics-only model, evidenced by p-values of

0.031 and 0.038, respectively.

Analogous to the clinical manifestations of pituitary adenomas,

hypophysitis may present as a mass effect or aberrant hormone

secretion. Although a novel radiological approach introduced by

Gutemberg et al. significantly improved the differential diagnosis of

hypophysitis and non-functioning pituitary adenoma (NFPA), the

diagnostic criterion still possesses a certain degree of misdiagnosis

(35–37). This underscores the necessity for more precise methods to

differentiate between these two conditions. Sahin et al. (38)

manually depicted ROI images from coronal and sagittal planes

in a three-dimensional (3D) fashion and extracted textual features

from each T2 weighted coronal, T1CE coronal, and T1CE sagittal

MRI. Top 3 features, those that could differentiate the two lesions,

were employed to build a machine learning diagnostic model. The

linear SVM classifier showed the highest performance among all

classifiers, with AUC of 0.91.

Approximately 40% of al l pituitary adenomas are

microadenomas (< 10 mm in diameter), that may remain
Frontiers in Endocrinology 04
undetectable by radiologist, even if experienced experts and

advanced instrumentation including dynamic contrast enhanced

imaging techniques are applied (39, 40). This phenomenon is

particularly pronounced in adrenocorticotropic hormone

(ACTH)-secreting adenomas, although selective inferior petrosal

sinus sampling (IPSS) serves as the gold standard for MRI-

negative ACTH adenoma, clinicians remain cautious in its use

due to its invasive nature (7). Recognizing this challenge, Li et al.

(41) first attempt to propose a pituitary microadenoma (PM)

diagnosis system from MRI by CNN. The algorithm’s strength is

its ability to automatically identify the ROI area and features

extraction, achieving a diagnostic accuracy of 96.5% in an

independent validation set, matching the performance of

radiologists with over ten years of experience in the field. Most

importantly, the authors have launched a user-friendly tool,

requiring only the upload of a patient’s T1CE images. The

algorithm provides diagnostic results within 1-2 seconds. This

innovation aims to reduce the workload of radiologists and assist

clinicians in making diagnoses. A summary of the diagnostic-

related literature is presented in Table 1.
FIGURE 1

Overview of radiomic pipeline. Panels (A-E) illustrate the manual radiomics workflow, while panel (F) demonstrates the integration of a deep learning
radiomics algorithm using a Convolutional Neural Network (CNN) as an example.
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3.2 Application in distinguishing subtypes

Differentiated therapeutic strategies are necessitated by the

diverse types of pituitary adenomas. Management of functional

pituitary adenomas primarily focuses on controlling hormone

hypersecretion, whereas the management of non-functional

pituitary adenomas centers on addressing tumor growth and mass

effects (7). Laboratory tests can quickly and accurately differentiate

these conditions. However, other causes, such as medication side

effects, hypothyroidism, or the stalk effect from other masses, can

also result in abnormal hormone levels (42). The hook effect may

present misleadingly low values (42, 43). In cases where

confounding factors impact laboratory tests or results are unclear,

radiomics offers an alternative approach to confirm diagnoses or

supplement laboratory findings. Furthermore, the pathological

classification of PAs relies on immunohistochemistry and even

electron microscopy (3). Patients who cannot undergo tissue

biopsy cannot benefit from subtype-specific treatments. Recently,
Frontiers in Endocrinology 05
several investigations have aimed to clarify the relationship between

radiomic features and histopathological characteristics.

Sanei Taheri et al. (44) applied first and second-order histogram

analysis on diffusion-weighted images (DWI) of 32 patients with

macroadenoma and reported that smoothness and uniformity are

proposed as indicators for non-functional tumors, whereas the 75th

percentile is deemed more suitable for the diagnosis of functional

tumors. DWI is seldom used as a standard procedure for imaging

the sellar region; thus, a method that utilizes routine MRI sequences

is more likely to be widely adopted in clinical practice. Carlo et al.

(45) selected 28 texture features from coronal T2WI images, and

through the construction of models using J48, multinomial logistic

regression, and K-nearest neighbor machine learning algorithms,

they were able to accurately classify these adenomas into functional

and non-functional subtypes, achieving similarly favorable

discrimination outcomes as Sanei Taheir. Li et al. (46) introduced

the methodology of transfer learning to build a CNN classification

model and used the pre-trained segmentation model to derive
TABLE 1 Application in differential diagnosis.

Author Year Differentiation
Type

NO. of Patients MRI
sequences

Machine
learning/
statistical
method

outcomes

Zhang
(30)

2020 pituitary adenoma
VS

craniopharyngioma

126 (PAs = 63,
craniopharyngiomas = 63)

T1CE, T2 Binary logistic
regression
analyses

Three textual features were able to act as
independent diagnostic predictors, and the
presence of cystic change was significantly

linked to HISTO-Skewness and
GLCM-Contrast.

Zhang
(31)

2020 pituitary adenoma vs.
craniopharyngioma,
meningioma vs

craniopharyngioma,
and pituitary

adenoma vs Rathke
cleft cyst

235 (craniopharyngiomas =
63, meningiomas = 64, PAs
= 68 and Rathke cleft cysts

= 40)

T1CE LDA, SVM, RF,
AdaBoost,
KNN,

GaussianNB,
LR, GBDT, DT

The integration of LASSO for feature selection
and LDA for classification appeared to be the
optimal model for discrimination of lesions
located in the anterior skull base among the
45 diagnostic models, with AUC of over 0.80

in all the three comparison groups.

Zhao (34) 2021 Qian A8(101) 272 (cystic-solid PAs = 201,
craniopharyngiomas = 61)

T1CE, T2 logistic
regression,

Ridge classifier,
SGD classifier,

Linear
SVM, MLP

The radiomic-clinical nomogram
demonstrated significantly better performance
than the radiomics model, both in the training

set (p=0.031) and the test set (p=0.038).

Wang
(33)

2021 cystic pituitary
adenoma VS Rathke

cleft cyst

215 (cystic PAs = 105,
Rathke cleft cysts = 110)

T1CE, T1, T2 SVM, ANN,
AdaBoost, RF

The integrated radiomics and semantic model
with ANN classifier achieving the highest

diagnostic performance with a mean AUC of
0.924, better than the radiologist

Sahin (38) 2022 non-functional
pituitary adenoma
VS hypophysitis

34 (NFPAs = 17,
hypophysitises = 17)

T1CE, T2 LDA, fine,
medium and
coarse decision
trees, KNN,
SVM, naive

Bayes,
ensemble
classifiers

Linear SVM classifier based on top 3 features,
those extracted in a 3D fashion, showed
feasible performance in discriminating
hypophysitis from NFPAs (AUC=0.91).

Li (41) 2021 diagnose pituitary
microadenoma (PM)

1520 (PMs = 556, controls
subjects = 964)

T1CE CNN The PM-CAD system achieves a 96.5%
diagnostic accuracy, comparable to
experienced radiology experts.

Qian
(101)

2020 pituitary adenoma VS
non-

pituitary adenoma

149 (PAs = 84, control
subjects = 65)

T1, T2 CNN The CNN algorithm based on multiple MR
images exhibits exceptional performance with

an accuracy of 96.97%.
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radiomic features from 3D MRI images. The multi-view (axial,

sagittal and coronal view) automated segmentation model is

capable of accurately identifying the region of PAs, consistently

achieving Dice scores above 0.8 across both validation sets and a test

dataset. By integrating the transfer-learning method and the

attention mechanism, the classification model was able to predict

functioning and non-functioning PAs with an AUC equal to 0.848

in the test set.

In the 5th Edition of the WHO Classification of Endocrine and

Neuroendocrine Tumor, PAs are recommended to be classified

based on cell lineage as determined firstly by expression of

transcription factors (3). Peng et al. (47) investigated the

correlation between pituitary transcription factors and MRI

radiomic features and found that features extracted from coronal

T2WI could provide more information than other sequences in

classification of PAs. Additionally, their SVMmodel functioned as a

multiclass classifier distinguishing it from the majority of similar

studies that engaged in binary classification. Another group

analyzed the T2WI cohort included 176 patients with seven

different subtypes of pituitary adenomas and built a multivariable

diagnostic prediction model to differentiate the hormone secretion

profile of pituitary adenomas. It’s worth noting that all models

exhibited an AUC greater than 0.85, except for the one

distinguishing PHA (pluri-hormonal secreting adenomas), which

had an AUC of 0.74. This could be attributed to the various cell

types and significant tissue heterogeneity associated with PHA (48).

In comparison to densely granulated (DG) somatotroph

adenomas, sparsely granulated (SG) adenomas exhibit a greater

size, enhanced invasiveness, and a less favorable prognosis.

Granulation pattern were only recognized via electron microscopy

imaging or cytokeratin immunohistochemistry according to the

2017 WHO Classification (49), neither of the two methods can be

applied preoperatively. This has also been noted by researchers,

Park et al. (50)showed that a radiomics model based on T2WI and

T1CE with excellent performance distinguishing granulation

pattern of GH-PA patients (AUC =0.834). Likewise, Liu et al.

(51) validated the efficacy of features from T2WI with an AUC of

0.823, but surprisingly T1WI signatures achieved highest

performance with an AUC of 0.918, even better than radiomics

signatures combined the texture features of T1WI and T1CE

(AUC=0.908). In addition, the authors noted that variations in

ROI delineation would impact the outcome of radiomics, indicating

that it obviously yields superior outcomes when performing tumor

segmentation by excluding the cystic/necrotic portion instead of

incorporating the entire tumor region.

Due to the absence of hormone secretion in non-functioning

adenomas (NFPAs), differentiating NFPA subtypes proves more

challenging than subtype differentiation based solely on

preoperative hormone secretion. Zhang et al. (52) demonstrated

that radiomics is an effective tool in differentiating between null cell

adenomas (NCAs) and other NFPA subtypes, with an AUC equal to

0.804 obtained from T1WI in the test set. The model built on

selected T1CE features demonstrates strong performance in the

training set, yet exhibits a lack of discriminative ability in the test

set, indicating a potential risk of overfitting. The variance in uptake

rates of the contrast agent Gd-DTPA among patients may affect the
Frontiers in Endocrinology 06
T1CE texture features and the model might have overly learned the

data characteristics in the training set, including specific texture

features caused by varying renewal rates, which may not be

applicable or prominent in the test set leading to poor

generalization. Besides, they found that the inclusion of T1CE

features did not provide any extra contribution to predicting

NCAs compared to T1WI features alone, therefore T1WI was

chosen to be the best sequence.

Silent corticotroph adenomas (SCAs) had a higher propensity

for cavernous sinus invasion, along with increased rates of

progression and recurrence (53, 54). The evaluation of new

identifying markers, along with the exploration of emerging

imaging, is essential for effectively addressing the needs of this

distinct patient population. Rui et al. (55) has made efforts in this

regard and their ensemble model surpassed the existing clinical

approach in predicting patients with SCAs among NFPAs through

the application of radiomics. It’s worth mentioning that their study

utilized super-learner algorithms, employing a voting mechanism

which incorporated the predictions from other individual classifiers.

The ensemble model, trained with both semantic and radiomic

features, indeed yielded excellent results (AUC of 0.926 and

accuracy of 0.867). In the context of clinical practice, physicians

pay attention to age, gender, invasiveness, and cystic change when

prognosticating SCAs in patients who are hormone-negative (54).

However, in the ensemble algorithm, radiomic prediction emerged

as the most critical risk factor, followed by clinical-associated

features mentioned earlier. In another study for the preoperative

diagnosis of silent corticotroph adenomas, Wang et al. (56)

demonstrated that the linear SVM classifier exhibited the best

performance, achieving the highest AUC value of 0.931 for the

internal dataset and 0.937 for the external dataset. To enhance

model interpretability and rank the contributions of features, the

authors introduced an algorithm called SHAP (Shapley Additive

exPlanations) and proved radiomics-based features extracted from

T1CE and T2WI played a critical role in the machine-learning

model, with their impact on predictions second only to multiple

microcysts and age. A more detailed summary of radiomic research

applied in subtype differentiation is presented in Table 2.
3.3 Applications in
aggressiveness assessment

Approximately 40% of PAs present an aggressive behavior (57).

Currently, there is no solitary prognostic parameter capable of

decisively determining the risk of growth or malignant progression

(58). Assessing tumor proliferation through measures such as

mitotic count and/or Ki-67 labeling index, or evaluating tumor

invasion into surrounding tissues, could hold significance on a case-

by-case basis, given their correlation with more aggressive tumor

behavior (59).

Although the 2017 and the latest 2022 WHO classifications of

PA have abandoned Ki-67 index as a grading criterion, Ki-67 index

of >3% is still an indispensable prognostic marker in the assessment

of tumor aggressiveness (3, 5, 60). Numerous studies have

demonstrated the efficacy of radiomics in accurately predicting
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TABLE 2 Application in distinguishing subtypes.

Author Year Differentiation
Type

NO. of Patients MRI
sequences

Machine
learning/statistical

method

outcomes

S. Taheri
(44)

2019 Distinguishing
functional from non-

functional
pituitary

macroadenomas

32 (functional
adenomas=10, NFPAs=22)

DWI Mann-Whitney U test Histogram-extracted smoothness,
uniformity and 75th percentile based on
DWI were able to differentiate FPA from
NFPA. Cut-off points of FSOH features

were proposed.

Carlo
(45)

2020 Distinguishing
functional from non-

functional
Pituitary

macroadenomas

50 (functional
adenomas=25, NFPAs=25)

T2 J48, a multinomial
LR, KNN

Multinomial logistic regression and K
nearest neighbor achieved accuracies
beyond 92.0% and the AUC of ROC

till 98.4%.

Peng (47) 2020 Classified based on
transcription factors

235 (TPIT lineage
tumors=55, PIT1 lineage
tumors=110 and SF-1
lineage tumors=70)

T1, T2, T1CE SVM, KNN, Naïve
Bayes models

The SVM model exhibited optimal
classification performance and T2WIs

performed better than T1,
T1CE sequences.

Li (46) 2021 Distinguishing
Functional from non-

functional
Pituitary adenomas

185 (functional
adenomas=125, NFPAs=60)

T1, T2,
T1CE, FLAIR

CNN The CNN-based automatic segmentation
model effectively handles 3D MRI

segmentation tasks, achieving a Dice
coefficient of up to 0.818. The CNN-
based classification model also exhibits
strong performance, with an AUC

of 0.848.

Baysal
(48)

2022 Classified based on
hormone

secretion profiles

130 (NFPAs=19, GHs=21,
PRLs=64, ACTHs=6,
PHAs=6, FSA&LHs=8,

and TSHs=6)

T2 ANN The performance of ANN in
distinguishing prolactinomas from other
adenomas is the highest (AUC=0.95),

while the model for distinguishing PHAs
exhibits the lowest AUC (AUC=0.74).
The AUC values for the other 4 ANN

were >0.85.

Park (50) 2020 Classified based on
granulation pattern
of growth hormone
secreting pituitary
adenoma patients

69 (DGs = 50, SGs = 19) T2, T1CE generalized linear model The radiomics model demonstrated
better performance (AUC=0.834)than
qualitative assessment (AUC=0.597)or

T2 signal intensity evaluation identifying
granulation patterns(AUC=0.647).

Liu (51) 2021 Classified based on
granulation pattern
of growth hormone
secreting pituitary
adenoma patients

49 (DGs = 24, SGs = 25) T1, T2, T1CE LASSO LR T1WI signatures achieved the highest
diagnostic efficacy with an AUC of
0.918, better than the combined

radiomics signatures(AUC=0.908), but
the decision curve analysis indicates a

more pronounced benefit of the
latter approach.

Zhang
(52)

2018 Distinguishing null
cell adenomas

(NCAs) from other
NFPA subtypes

112 (NCAs=46, other
NFPA subtypes=66)

T1, T1CE radial basis function SVM The T1 predictive model was selected as
the ultimate model for distinguishing
NCAs from other NFPA subtypes,

with AUC=0.8042.

Rui (55) 2022 Distinguishing silent
corticotroph

adenomas (SCAs)
from other

NFPA subtypes

302 (SCAs=146, other
NFPA subtypes=166)

T1, T2, T1CE penalized logistic
regression, SVM, LDA, RF,
gradient boosting machine,

neural network,
ensemble algorithm

The ensemble model, trained with both
semantic and radiomic features

produced excellent results (AUC of
0.926). T2WI features outperformed

other single MR modalities.

Wang
(56)

2023 Distinguishing silent
corticotroph

adenomas (SCAs)
from other

NFPA subtypes

295 (SCAs=78, other
NFPA subtypes=217)

T1, T2, T1CE Elasticnet, Linear SVM, RF,
ET, KNN, DT, GBDT,

AdaBoost, MLP, XGBoost

The Linear SVM classifier exhibited the
best performance and features derived
from T1CE and T2 imaging played a
pivotal role in the predictive analysis.

Galm
(90)

2020 Distinguish NFPAs
from

somatotroph
adenomas

263(somatotroph
adenomas=85, NFPAs=78)

T1 LR Kurtosis showed strong diagnostic
accuracy with an AUC of 0.7771 in
distinguishing between the two.
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the Ki-67 index across various tumor types, such as lung cancer

(61), breast cancer (62),and glioma (63).Recent research has also

validated the potential of radiomics in prognosticating the Ki-67

index in pituitary tumor tissues, underscoring its growing relevance

in the field of oncological biomarker identification and prognostic

assessment. Ugga et al. (64) were the first to propose that the

application of radiomics is effective in predicting the Ki-67

proliferation index of pituitary adenomas. They correlated

textural analysis on preoperative T2WI of 89 patients with

postoperative pathology and reported an accuracy of 91.67% in

predicting Ki-67 proliferation index class for macroadenoma.

In a multicenter study involving 163 patients with acromegaly,

based on T1, T2, and T1CE images, Fan et al. (65) reported that the

radiomics signature achieved a satisfactory result in predicting the

Ki-67 index with AUC values of 0.96 (95% confidence interval [CI]:

0.95-0.98) in the primary cohort and 0.89 (95% CI: 0.87-0.91) in the

validation cohort, demonstrating superior performance over

clinical model in both the cohorts. However, despite the superior

clinical utility of the radiomics nomogram, as evidenced by the

decision curve analysis (DCA) curve, the results of the DeLong test

indicate no significant difference in performance between the

radiomics signature and the radiomics nomogram.

When tumor tissues invade surrounding structures, it is more

difficult to surgically remove invasive pituitary adenomas compared

with noninvasive pituitary adenomas. The definition of invasive

pituitary tumors before surgery, as accepted today, is largely based

on imaging data (66). Distinguishing invasion from compression is

challenging, often not visibly detectable. For an extended period, the

Knosp classification has been the acknowledged standard in

radiological identification of invasiveness. Within this framework,

Grade 0 indicates no invasion of the cavernous sinus, while Grade 4

denotes definite invasion, correlating with a 100% incidence of

surgical and histological invasion (67). However, Grades 2 and 3

represent a “gray area” where the level of invasiveness is not

distinctly clear. Niu et al. (68) established a radiomics nomogram

for the personalized assessment of cavernous sinus invasion in 194

patients with PAs, specifically those with Knosp grades two or three.

Incorporating the radiomics signature from the T1CE images,

Knosp grade, periarterial enhancement, and inferolateral venous

compartment obliteration, the radiomics nomogram yielded an

AUC of 0.899 in the training set and 0.871 in the test set, even

performing better than the clinico-radiological model and

radiomics models based on T1CE, T2, and T1CE&T2 images (p =

0.021 and p= 0.035 in the training and test sets, respectively). Liu

et al. (69) elucidated the invasiveness of pituitary adenomas based

on texture analysis of dynamic contrast-enhanced MRI (DCE-

MRI), interpreting the results from the perspective of tumor

angiogenesis and microvascular permeability. The morphological

features results show that the greater the volume and the more

irregular the shape, the higher the likelihood of the PM being

aggressive. A plausible explanation for this phenomenon could be

the aberrant angiogenesis occurring within aggressive tissues,

leading to a relatively irregular growth rate and heterogeneous

expansion. Similar results have also been corroborated by Wang

and colleagues (70). They ultimately selected 2 shape-related and 2

textural optimal features from 399 patients for the construction of a
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diagnostic model. In the training cohort, the morphological

features-based model demonstrated an AUC of 0.86, compared to

0.75 for the textural features-based model. Combining both

radiomic features with Knosp grades was shown to be more

effective. The AUC of composite parameter model reached 0.935

for the test set. Moreover, an association was discerned between

these radiomic features derived from volumetric T1CE images and

the high Ki-67 labeling index, high mitotic count, and positive p53

expression within pituitary adenomas (all p values < 0.05). Zhang

et al. (71) developed a model to predict highly invasive pituitary

adenomas using preoperative T1CE images and linear SVM

algorithms. Employing filter transformation with the original

features enhanced the model’s ability to utilize refined texture

features, resulting in an AUC of 0.73 in the validation set.

Literature related to aggressiveness in radiomics is summarized

in Table 3.
3.4 Applications in consistency assessment

Consistency is one of the most important risk factors

influencing the complexity of the surgical procedure. It is easier

to treat softer tumors through a transsphenoidal approach, while

firmer, fibrous tumors might necessitate more aggressive surgical

techniques or instruments (72). Accurately predicting this

consistency preoperatively can aid in designing an effective

surgical plan, reduce the need for multistage surgeries, and

improve patient prognosis. The collagen content is a critical

factor determining the texture of PA, and it ultimately affects the

performance of MRI imaging (73). However, Bahuleyan and

colleagues (74) indicated that the signal intensity of MR imaging

alone does not reliably predict the consistency of pituitary

macroadenoma. This unpredictability underscores the necessity

for more sophisticated diagnostic tools.

Evidence frommultiple studies indicates that radiomics analysis

offers significant potential in enhancing diagnostic accuracy. R.

Cuocolo et al. (75) established a methodology based on texture

analysis of T2-weighted radiomics, employing machine Extra Tree

classifier. In the study involving 89 patients (comprising 68 soft and

21 fibrous macroadenomas), a subset of 14 textual features was

utilized. The final model exhibited an accuracy of 93%, a sensitivity

of 100%, and a specificity of 87% in the test set. The AUC value was

recorded at 0.99. Similarly, Zeynalova et al. (76) employed

histogram radiomic features to describe tumor consistency. Their

ANN model, based on the extraction of tumor texture features,

performed better than conventional SIR evaluation (p= 0.021).

These findings highlight the superiority of radiomics over

traditional methods. Mendi et al. (77) extracted 206 ROIs from

52 patients who underwent surgical excision of pituitary adenomas

for classifying soft consistency from hard. The diagnostic

performance of SVM and RFC was as follows: sensitivity =

95.580% and 92.950%, specificity = 83.670% and 88.420%, area

under the curve = 0.956 and 0.904, respectively. In a study focused

on patients with acromegaly, by combining radiomic features and

clinical parameters, Fan et al. (78) could more accurately determine

the consistency of PA than using clinical characteristics alone. The
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radiomics model achieved favorable discriminability in the

multicenter prospective validation, which was underscored by an

AUC of 0.89 in the ROC analysis. Importantly, the Gray Level Co-

occurrence Matrix (GLCM), a statistical method for analyzing

image textures, was identified as the most pertinent imaging feature.

Unlike previous work focused on feature extraction from single

sequences, Wan et al. (79) conducted a comprehensive set of

radiomic features using T1, T2, enhanced T2, and their

combinations, and systematically evaluated the utility of

radiomics analysis of multiparametric MRI in assessing the

consistency of PMA. The results showed that the radiomics

model built on combined T1WI/T1CE/T2WI demonstrated the

best performance with an AUC of 0.90 (95% CI: 0.87–0.92), an

accuracy of 0.87, and a sensitivity of 0.83. Interestingly, they applied

automated 3D segmentation instead of manual 2D, providing better

visualization of tumor structures, which could add value to

individualized treatment. The summary of articles related to the

application of radiomics in consistency assessment is presented

in Table 4.
3.5 Application in assessing
treatment response

In the context of functioning adenomas, the postoperative basal

hormone level emerges as the paramount predictor for the likelihood

of recurrence (80, 81). However, for NFPA, the identification of a
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singular, persuasive predictive factor for recurrence remains elusive

(81). Texture analysis revealed that NFPA patients with mean pixel

intensity above the median had a lower recurrence or progression

risk, with a hazard ratio of 0.44 (95% CI: 0.21-0.94, P = 0.034),

compared to those below the median (82). This finding underscores

the potential of radiomic analysis in risk stratification. Zhang et al.

(83) applied an automatic segmentation approach and built a

radiomics model to predict clinical outcomes in NFPAs, presented

in terms of progression-free survival (PFS). They found that patients

with higher SVM score tended to exhibit poorer PFS. The SVM score

based on 3 selective radiomic features achieved an AUC of 0.87 in

differentiation of early progression/recurrence. Furthermore, Shen

and colleagues (84) attempted to elucidate the role of radiomics in

predicting the regrowth of postoperative residual NFPA. They

constructed logistic regression models utilizing both pre-operative

and post-operative characteristics derived from individual sequences

(T1WI, T1CE, and T2WI) as well as combined sequences

(T1WI&T1CE, T1WI&T2WI, and T1CE&T2WI) and concluded

that T1WI&T1CE was the optimal sequence to construct the

radiomic score, which incorporates various radiomic features and

their respective weights. Besides, the study emphasizes that features

derived from postoperative images are significant references for

researching residual tumors. Incorporating parameters such as

Knosp grade and tumor volume doubling time can aid in

optimizing the predictive accuracy of radiomic models.

As a pituitary tumor enlarges, it may extend superiorly and

exert pressure on the optic chiasm, typically leading to a distinctive
TABLE 3 Application aggressiveness assessment.

Author Year Differentiation
Type

NO. of Patients MRI
sequences

Machine
learning/
statistical
method

outcomes

Ugga (64) 2019 predict the
Ki-67 index

89 (low Ki-67 = 59, high
Ki-67 = 30)

T2 KNN KNN classifier on texture-derived features proved
to be an effective tool in the prediction pituitary

macroadenomas’ Ki-67 index and the four
selected features all showed very good inter-

observer reproducibility (ICC ≥0.85).

Fan (65) 2020 predict the
Ki-67 index

138 (low Ki-67 = 56, high
Ki-67 = 82)

T1, T2, T1CE SVM Radiomics nomogram achieved an area under the
curve (AUC) value of 0.91 in the validation

cohort, demonstrating comparable performance
to radiomics signature.

Wang (70) 2023 predict aggressiveness 246 (aggressive = 84, non-
aggressive = 162)

T1CE Stepwise LR Two shape-related and two textural features were
significantly associated with a high Ki-67 labeling
index (Ki-67 LI ≥ 3%), high mitotic counts, and

positive p53 expression.

Liu (69) 2020 predict aggressiveness 50 (aggressive=32,
non-aggressive=18)

dynamic
contrast-

enhanced MRI
(DCE-MRI)

LR Texture analysis based on DCE-MRI was able to
assess the vascular heterogeneity and

aggressiveness of PM.

Zhang (71) 2022 predict aggressiveness 196 (aggressive=95,
non-aggressive=81)

T1CE Linear SVM The radiomics model based on preoperative
T1CE images could predict cavernous

sinus invasion.

Niu (68) 2019 predict invasiveness 194 (invasive=82,
non-invasive=112)

T1CE, T2 Linear SVM In conjunction with clinical risk factors, the
T1CE radiomics signature was chosen to

construct a diagnostic nomogram, achieving an
AUC of 0.871.
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pattern of visual field loss termed bitemporal hemianopsia. While

the degree of visual field recovery varies greatly, even if the changes

seems to fit the expectation of the decompression procedure.

Previous research has demonstrated that the MRI-based

radiological characteristics of the optic nerve are associated with

visual function and outcome in the patients with optic neuritis (85,

86). Radiomic features may serve as predictive markers for

distinguishing between reversible axonal damage and permanent

injury. Zhang et al. (87) successfully predicted visual recovery using

preoperative T2WI in compressive lesions caused by pituitary

tumors, radiomic models using three machine learning algorithms

all achieved AUCs over 0.750. Subsequently, the same team further

collected a set of consecutive images acquired through the optic

chiasm before and after endoscopic endonasal transsphenoidal

surgery, and analyzed the dynamic radiomics feature changes (or

termed delta-radiomics) to predict visual outcome (88).

Surprisingly, while morphological alterations of the optic chiasm

after surgical decompression showed no significant differences

between the recovery and non-recovery groups, one delta-

radiomic feature provided predictive value, with an AUC of only

0.653. The final delta-radiomics model showed an AUC of 0.811 in

independent testing data and after age correction, the model

demonstrated an improved AUC value, reaching 0.841.

In addition to surgical intervention, pharmacological therapy is

available for two specific Pit-NET subtypes, i.e., dopamine agonists

for PRL Pit-NETs, somatostatin analogs (SAs) for GH Pit-NETs.

Identifying prolactinomas that are resistant to dopamine agonists

(DAs) early is vital, as it prevents patients from undergoing an

extended period of ineffective therapy before exploring other

treatment options. Park et al. (89) reported that conventional

imaging parameters such as cystic/hemorrhagic change or T2
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relative signal intensity showed no notable differences between

the DA responders and non-responders; while the subtle

distinctions could be captured via radiomic features and aid in

assessing DA response of patients with PRL adenomas. Utilizing a

soft voting ensemble classifier that amalgamated predictions from

five distinct models, the optimal performance was observed in the

test set. It achieved an AUC of 0.81 (95% confidence interval, 0.67-

0.96), an accuracy of 77.8%, a sensitivity of 78.6%, and a specificity

of 77.3%. In patients with acromegaly, Galm, B. P. et al. (90)

discovered that MRI texture features of T1WI, particularly

maximum pixel intensity, were significantly associated (p =

0.0143) with the normalization of IGF-I levels following SA

therapy, but the association weakened after adjusting for

granulation density through logistic regression. In addition to

analysis of the original images, Kocak, B. et al. (91) applied

Laplacian of Gaussian (LoG) filtering and wavelet transformation

to T2WI data to extract higher-order features. The KNN classifier

built on those features outperformed the quantitative and

qualitative assessments of relative signal intensity, as well as the

evaluation of immunohistochemical granulation patterns in terms

of predictive accuracy.

Correspondingly, patients undergoing radiation therapy may

also encounter side effects such as radiation encephalitis, cognitive

disabilities, and in rare cases, secondary tumors (92–94). Thus, it’s

crucial to select the most appropriate patients who are sensitive to

this therapy. Fan et al. (95) demonstrated that MRI-based radiomics

would provide an effective non-invasive tool for radiotherapeutic

response prediction in patients with acromegaly. Six selected

features achieved statistically significance differences between the

remission group and non-remission group (P = 0.0005–0.0494) and

radiomics signature built on these features performed better than
TABLE 4 Applications in consistency assessment.

Author Year Definition
of

consistency

NO.
of

Patients

MRI
sequences

Machine
learning/statistical

method

outcomes

R. Cuocolo (75) 2020 based on
surgical features

89
(soft=68,
hard=21

T2 ET The ET model demonstrated high accuracy in
classifying soft and fibrous pituitary macroadenomas.

Wan (79) 2022 based on
surgical features

156
(soft=104,
hard=52)

T1, T1CE, T2 RF, SVM The RF classifier built on combined T1WI/T1CE/T2WI
yielded the best performance (AUC = 0.90).

Mendi (77) 2023 based on
surgical features

52* T1, T2 SVM, RF The performance of SVM based on T2W is optimal
with an AUC of 0.956.

Zeynalova (76) 2019 based on surgical
and

histopathological
findings

55
(soft=42,
hard=13)

T1, T1CE, T2 ANN The ML-based histogram analysis performed better
than SIR evaluation in predicting PMA

consistency (p = 0.021).

Fan (78) 2019 based on
surgical features

158
(soft=100,
hard=58)

T1, T2, T1CE SVM Incorporating clinical characteristics significantly
augments the accuracy of radiomics models in
forecasting tumor consistency among patients

with acromegaly.

S. Taheri (44) 2019 based on
collagen content

32 (soft
=28
and

hard=4)

DWI Kruskal-Wallis test First and second-order histogram features on DWI are
not applicable for differentiation of high-content
collagen macroadenomas from low-content types.
*The relevant data is not available.
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the one based on five pre-radiotherapy clinical characteristics. The

relevant literature is displayed in Table 5.
4 Discussion

Since the radiomics research is grounded in imaging data, the

investigation of optimal sequences is an ever-present issue. The research

encompasses a broad range of sequences, including T1, T2, TICE, DWI,

and DCE MRI. Studies have almost unanimously supported the
Frontiers in Endocrinology 11
superior value of multimodal imaging data over unimodal data (34,

55, 68, 79, 84), aligning with prior findings (96, 97). Undoubtedly, the

value of multiple imaging modalities must be acknowledged, as they

enable the full utilization of imaging data and maximize the

information extracted from radiomic studies. However, an exception

was noted in the work of Zhang et al. (52), who observed that T1CE

imaging features did not provide an additional contribution to the

prediction of NCAs when compared to T1 imaging features alone. It

might be due to the update rates of the contrast agent among patients,

which influences the MRI image signals and the texture features of
TABLE 5 Application in assessing treatment response.

Author Year Aim
of study

NO. of Patients MRI
sequences

Machine learning/
statistical method

outcomes

Galm (82) 2018 Predicting the P/
R (progression
or recurrence)

78 (33 with P/R, 45 without
P/R)

T1 LR Tumors with log-transformed mean
pixel intensity above the median

showed a 0.44 HR for recurrence or
progression compared to lower

intensity tumors.

Zhang (83) 2020 Predicting the P/
R (progression
or recurrence)

50 (28 with P/R, 22 without
P/R)

T2, T1CE SVM Radiomics analysis using preoperative
CE T1WI and T2WI MRI could predict

recurrence in NFPA and elevated
radiomic scores correlated with reduced

PFS times (p < 0.001).

Shen (84) 2023 Predicting
residual

tumor regrowth

114 (70 with residual
regrowth, 34 with no
residual regrowth)

T1, T2, T1CE LR T1WI&T2WI outperformed other
combinations or single sequences, and
the integration of preoperative and
postoperative images proved more

effective than using them individually.

Zhang (87) 2021 Predicting
postoperative

visual
field recovery

131 (79 in the recovery
group, 52 in the non-

recovery group)

T2 SVM, RF, LDA Three radiomic models based on
preoperative T2WI all showed good
performance, each with an AUC

over 0.75.

Zhang (88) 2023 Predicting
postoperative

visual
field recovery

130 (87 in the recovery
group, 43 in the non-

recovery group)

Preoperative
and

postoperative
T2

LASSO Postoperative changes in the optic
chiasm were not significant predictors
of visual outcomes, but delta-radiomics
of the optic chiasm have prognostic

value for visual recovery.

Fan (95) 2019 predicts
radiotherapeutic

response
in acromegaly

57 (25 achieved remission,
32 did not)

T1, T1CE, T2 SVM The clinical-radiomics model showed
good discrimination abilities, achieving
an AUC of 0.96, surpassing that of any
single clinical feature or standalone

radiomics model.

Park (89) 2021 Predicting
dopamine

agonist response
in prolactinoma

177 (109 DA responders, 68
DA non-responders)

T2 RF, light gradient boosting
machine, ET, quadratic
discrimination analysis,
linear discrimination

analysis and soft voting
ensemble classifier

The ensemble classifier (AUC=0.81)
performs better than any other

individual machine learning classifier.
Two second-order features

demonstrated significant correlation
with baseline PRL levels.

Galm (90) 2020 predicting
response to
somatostatin

receptor ligands
(SRLs)

in acromegaly

34 (17 SRL responders, 17
SRL non-responders)

T1 LR MRI texture of T1WI can predict
normalization of IGF-I with

SRL therapy.

Kocak (91) 2019 predicting
response to
somatostatin

receptor ligands
in acromegaly

47 (24 SRL responders, 23
SRL non-responders)

T2 KNN, C4.5 algorithm Texture analysis based on KNN
outperformed T2-weighted relative

signal intensity, as well as
immunohistochemical granulation

pattern assessment, in
predictive accuracy.
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T1CE images. Regarding the comparison of the single-sequence model,

there is notable variability in the outcomes across different studies. Liu

et al. (51) concluded that the most significantMR image data in a single

parametric model for differential diagnosis is postcontrast T1 image

followed by T2 image. Zhao et al. (34) arrived at a contrary conclusion,

positing that T2WI exhibits superior performance in differentiating

cystic-solid pituitary adenoma from craniopharyngioma. The work of

Peng et al. (47) found that SF-1 family tumors demonstrated greater

accuracy in T1WI and T2WI, while Pit-1 family tumors showed

enhanced accuracy in TICE. These discrepancies highlight that the

underlying mechanism warrants further investigation and elucidation.

Simplifying and streamlining sequences minimizes input features and

eliminates irrelevant or noisy data, enabling models to concentrate on

critical information and reduce overfitting risks (98). Thus, it is both

necessary and crucial for future studies to investigate and determine the

most effective single imaging sequence. Some recommended exercising

caution when utilizing radiomics derived from T1W and T2WI, as the

robustness and reproducibility of features from certain specific

sequences are more assured (99). The utility of specialized sequences

like DWI and DCE-MRI has been investigated (44, 69). However, the

use of these non-routine MRI sequences of PA patients presents

challenges in data collection, which may impede their integration

into daily clinical practice.

Another important aspect of radiomics is the methodological

concerns in the practice of radiomics. Different delineations of the

Region of Interest (ROI) can significantly influence the outcomes of

imaging models, as the initial aim is to capture as much data as

possible at the front end, thereby enriching the database for more

valuable downstream analysis and mining. Zhang et al. (83) applied

different ROI areas, including the original tumor mask and masks

that included surrounding non-tumorous structures. Unexpectedly,

the results revealed that the choice of ROI had a minimal impact on

the outcomes. We consider a possible explanation: differing ROI

delineations might generate similar or overlapping features, which

could lead to extracted attributes that may not exhibit significant

statistical variations. On the contrary, Park et al. (50) pointed out

that imaging biomarkers derived from ROI, after excluding cystic/

necrotic portions, tend to offer greater utility in predicting the

granulation pattern of adenomas compared to biomarkers obtained

from the entirety of the tumor. By considering subregions within

the ROI, we can identify the tumor’s heterogeneity, providing more

effective biologically-relevant imaging features (100). Classifier

modeling can use artificial intelligence, machine learning, and

statistical approaches (10). While only a fewer small-sample

studies employed traditional statistical methods (44), machine

learning approaches are better suited for handling high-

dimensional data and have become the mainstream choice. In

terms of specific algorithms, support vector machine (SVM), a

supervised Learning method, is among the most widely used.

Models based on SVM demonstrated commendable predictive

capabilities in Wang’s research, achieving a performance AUC of

0.937 for the external dataset (56). In a comprehensive comparative

evaluation of nine machine learning algorithms, LDA emerged as

the superior algorithm, outperforming SVM (31). Ensemble

algorithm, employing a soft voting strategy, typically delivers

superior predictive performance by aggregating outputs from
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multiple weak classifiers. Park, Y. W. et al.’s (89) research

corroborates the effectiveness of the ensemble algorithm, which

shows the highest performance among the single classifiers.

Recently, deep learning has gained much attention and four

studies adopted this emerging approach (41, 46, 48, 101). With

the advantage of the ability to automatically extract features, this

method significantly reduces the workload of radiologists and

minimizes interobserver variation (102). However, it comes with

the issue of the ‘black box’ effect, where the decision-making process

of the model is challenging to interpret or understand, potentially

leading to ethical and accountability concerns.

Regarding the definition and interpretation of features chosen

for model development, we have described some unique discoveries.

Shape-related features are significantly correlated with

aggressiveness, whether defined by invasion of surrounding

structures or a high proliferation index (68–70). An exemplary

characteristic is tumor sphericity, with aggressive tumors exhibiting

low sphericity indicative of irregular growth. This can be readily

interpreted in the context of malignant tumor growth patterns: the

disorderly angiogenesis and molecular heterogeneity within tumor

cells consequently lead to the complexity of tumor shape (103).

Interestingly, Zhang et al. (52) discovered that NCAs exhibit lower

sphericity compared to other subtypes, hinting at the potential

invasiveness of NCAs. This finding aligns with clinical observations

(104), indicating a correlation between the radiomics of NCAs and

their aggressive behavior as noted in clinical settings. A similar

observation was noted in SG adenomas (50, 51). Image texture, or

termed first/second-order features, has been correlated with

histopathological findings, such as tumor subtype (44, 45),

granulation pattern (50, 51, 90) and consistency (75). Although

previous studies have shown that DG somatotroph adenomas often

exhibit hypo- or iso-intensity on T2WI during the visual qualitative

evaluation (105, 106), texture analysis provide more detailed

information, noting that SG adenomas exhibit a significantly

higher 10th percentile of T2-weighted signal intensity compared

to DG adenomas (50). Similarly, Liu et al. (51) noted that DG and

SG adenomas show significant differences in first-order features

such as maximum value, median value, and 90th percentile voxel

intensity. This is noteworthy because DG adenomas are

characterized by an abundance of GH vesicles, a notably active

Golgi apparatus, and a multitude of secretory granules, which could

lead to a high concentration of intragranular proteins (107, 108).

This composition is likely to shorten the T2 relaxation time,

resulting in T2 hypo-intensity. Galm, B. P. et al. (90) proposed

that texture features may be the radiological equivalent of

granulation density. Higher-order features are typically extracted

through mathematical transformations of the image, such as

wavelet transforms and Fourier transforms (109). These features

can reveal deeper information in images, enhancing the accuracy of

predictions. Unfortunately, the biological interpretability of most

high-order features is poor. It should be emphasized that radiomic

analyses are tools for identifying correlations, rather than

establishing causality (10). If a feature is only correlated with the

outcome variable without a clear understanding of the biological or

clinical mechanisms behind this correlation, then the practical

utility and credibility of this feature may be called into question.
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The advantages of radiomics extend beyond its non-invasive

nature and precise identification capabilities. Radiomics offers a

holistic approach in the context of tumor heterogeneity, where a

biopsy can only provide specific analysis of surgically obtained

localized tissue samples, potentially leading to misinterpretation

due to the varying immunohistochemical profiles across different

tumor regions. In contrast, radiomics allows for a comprehensive

and intuitive evaluation of the entire tumor mass, facilitating a more

accurate correlation with pathological findings (100). This is

particularly relevant in pituitary adenomas, where the presence of

adenoma with multiple staining positive results is not uncommon

(110, 111), such as in plurihormonal adenomas or mixed tumors

(112, 113). Additionally, the limitations of surgical resection,

especially in endoscopic procedures, may impede the acquisition

of complete tumor tissue samples.
5 Limitations

While highly promising, a major challenge limiting radiomics

clinical translation is lack of generalization due to variation in

acquisition parameters and radiomics approaches, which ultimately

results in the difficulty of reproducibly acquiring stable radiomic

features. Multiple studies have demonstrated parameters in MRI

acquisition can affect radiomics analysis, including image contrast,

slice thickness, magnetic strength and scanner platform (114, 115).

Variation in the segmentation of ROI is another critical factor

affecting the feature attributes. Fully automatic image segmentation

can help to reduce the influence of operator-dependent bias on

radiomic features (99). Additionally, the statistical reliability of

features is also strongly affected by different software or even

different versions of the same software (116, 117). In short, while

there are existing guidelines on radiomic data acquisition and

analysis (117–119), a standardized overall workflow of radiomics

is not available yet, making the reproducibility and repeatability of

features almost impossible. As with any biomarker, only stable and

reproducible radiomic features can be applied in the complex and

variable clinical environment (120). However, the lack of

standardized experimental protocols prevents meaningful

comparison of results between studies, making it difficult to

discuss the merits of features or models. Each study ends up

“speaking its own language,” with limited opportunities for cross-

comparison or validation, hindering the development of consensus

that could inform clinical practice globally.

For research of radiomics in pituitary tumors, A. Saha et al.

(121) conducted a literature review covering the years 2009 to 2019,

during which they found that only 11 of the studies were based on

MR. As of September 2023, we have selected a total of 39 articles for

our review. The increasing number of studies is commendable, but

the issue of research quality cannot be overlooked. A systematic

review from 2022 highlighted that the reporting quality of

radiomics studies on pituitary adenoma is inadequate, with an

average radiomics quality score of 26.6 (122). As they say,

external validation is necessary. The majority of studies are

retrospective and conducted at single centers with inevitable

selection bias. Our literature review revealed that only a few
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studies included external validation sets (41, 44, 65), and even

fewer, just one study (44), conducted prospective validation. High-

quality and large-scale datasets are scarce, and small sample sizes

and single-center studies often result in limited data

representativeness. The lack of evidence-based medical proof

makes clinicians more cautious about adopting radiomics.

The intrinsic characteristics of pituitary tumors also pose

practical challenges, as they exhibit a wide variety of subtypes

with significant epidemiological differences (7, 123, 124). A

reasonable rule is that models based on binary classifiers, a

minimum of 10 patients is required for each feature (10). Clearly,

for low-prevalence or low-incidence subtypes, it is challenging for

some studies to obtain a sufficient number of target cases to support

the data volume required for radiomics, and the included cohorts

may not represent the true proportion of the target patient

population. Carlo et al. (45) implemented the synthetic minority

over-sampling technique (SMOTE) to artificially expand the dataset

size, but the efficacy of this approach in terms of performance on

real-world data remains a subject for further investigation.

Promoting large-scale cohort studies spanning various

institutions, or facilitating the sharing of case data, may provide a

viable solution to this impediment. Another issue is that the big data

techniques applied in radiomics run counter to the concept of

precision medicine, the former focus on pattern extraction from

numerous cases and may potentially overlook individual variances.

This issue is particularly pronounced when dealing with

heterogeneous groups like those with PAs of different hormonal

types. Integrating multi-omics data, including genomics,

proteomics, and even laboratory test results, allows for a

comprehensive and accurate assessment of patient conditions.

Currently, incorporating well-established clinical variables, such

as hormone levels, into predictive models in the form of

nomograms has proven to be advantageous (34, 125).

It is important to note that radiomics should be considered an

adjunctive tool rather than an independent diagnostic algorithm

(126). In certain aspects, the necessity of radiomics is questionable,

as the efficiency and simplicity of laboratory tests make the

diagnosis, differentiation, and prognostic assessment of functional

pituitary adenomas through radiomics seems redundant.

Interestingly, in the 5th Edition of the WHO Classification of

Endocrine and Neuroendocrine Tumors, tumor classification now

relies on transcription factors, hormones, and other biomarkers,

moving beyond the conventional hormone-based classification (3).

When tumor tissue is unavailable, elucidating the relationship

between radiomic features and histopathology to predict

transcription factors or other biomarkers offers a potentially

viable approach. However, the radiomic model of Baysal B. et al.

demonstrates the least effective recognition of PHA (48), with an

AUC of 0.74, which is considered acceptable but far from excellent

(127). This highlights a current limitation in the application of

radiomics for guiding pathological analysis. Nonetheless, it

represents a promising direction for future development.

Additionally, there are several practical considerations for the

real-world application of radiomics. Radiomics can leverage

imaging data from routine clinical workflows without adding

extra burden to patients, as MRI is indispensable (7). However,
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for healthcare institutions, high-resolution medical images and

extensive feature extraction analysis demand robust computing

power and storage capacity, which brings a substantial economic

burden (128). Radiomics models access extensive patient data,

raising concerns about data security and patient privacy. The

complexity of computer technology and deep learning involved

further discourages clinical and radiology practitioners from

adopting this new technology. While end-to-end automated tools,

such as AI models generating radiology reports directly, can lower

the usage threshold for clinicians, this brings us to an ethical issue:

who is responsible for the results (129)? The legal and ethical

frameworks concerning the responsibility for artificial intelligence

need urgent refinement.
6 Conclusion

In recent years, radiomics has made significant progress and has

demonstrated potential applications in differential diagnosis,

subtype identification, consistency evaluation, invasiveness

assessment, and treatment response of pituitary adenomas. It has

also established connections between radiological features and

biological findings. However, the absence of standardized

protocols and the need for enhancement in radiomic features,

combined with the generally poor quality of existing studies,

present significant challenges for clinical application. This

technology holds more promise for non-functional pituitary

adenomas. Moreover, given the complex nature of pituitary

adenomas, it is clear that the clinical translation of radiomics in

this field still has a considerable way to go.
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